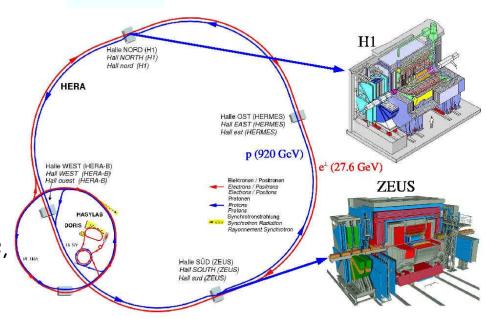

Hard probes in diffractive DIS at HERA

on behalf of H1 and ZEUS Collaborations

HERA collider experiments

- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow \sqrt{s}$ =318 GeV
- data taken in 1992-2007
- HERA I,II: ~ 500 pb⁻¹ per experiment
- H 1 & ZEUS 4π detectors

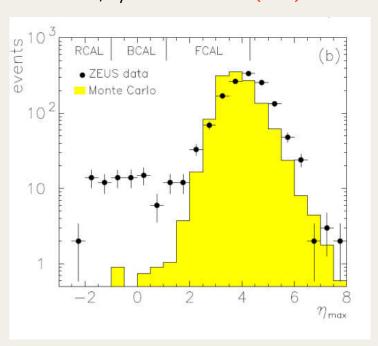

Why to study diffraction?

Fundamental aim:

understand high energy limit of QCD Novelty:

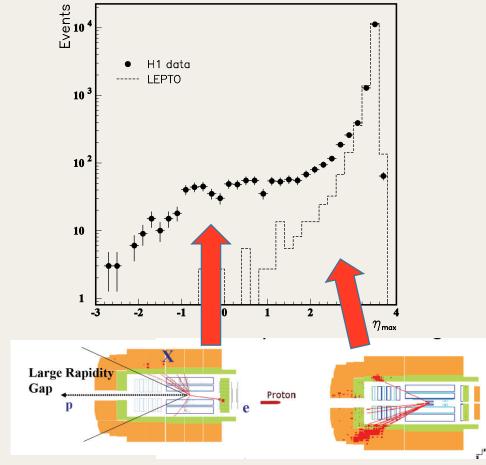
probe partonic structure of diffractive exchange

Applications: Study factorisation properties, transport PDFs to pp scattering (Tevatron, LHC).

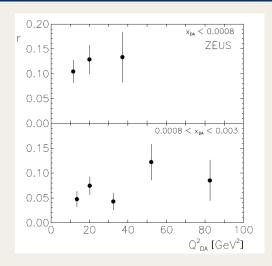


Low x, Kyoto

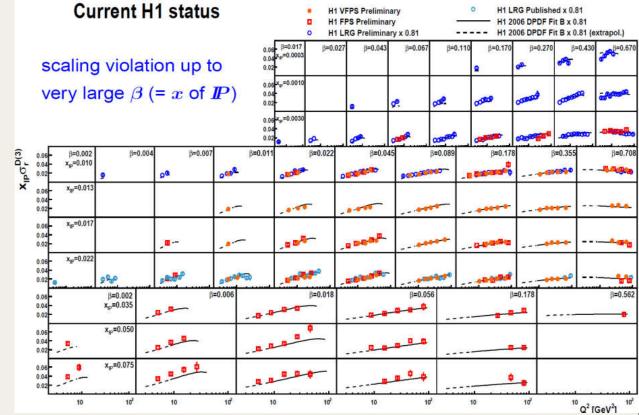
Historical reminder


- 21 years after the observation of diffractive DIS events at HERA!
- HERA opened new era of diffraction studies

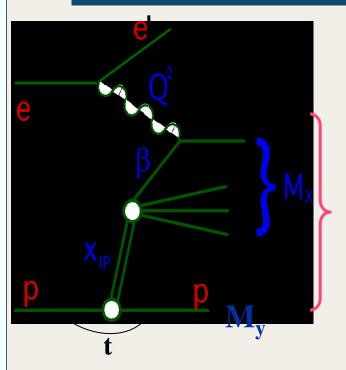
ZEUS Collab., Physics Letters B 315 (1993) 481-493



H1 Collab., Nucl. Phys. B429 (1994) 477



Historical reminder


ZEUS Collab., Physics Letters B 315 (1993) 481-493

1993

2014

Diffractive kinematics

 $M_y = m_p$ proton stays intact, needs detector setup to detect protons $M_y > m_p$ proton dissociates, contribution should be understood

Experimental methods:

- selecting LRG events
- measuring p in Roman pots (60-220m from Int.Point)

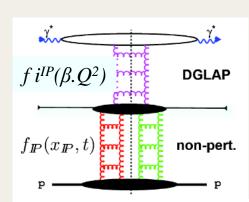
 $Q^2\sim 0$ GeV² \rightarrow photoproduction $Q^2>>0$ GeV² \rightarrow deep inelastic scattering (DIS)

HERA: ~10% of events diffractive

$$x_{I\!\!P} = \xi = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

momentum fraction of color singlet exchange

$$eta = rac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P} = rac{x}{x_{I\!\!P}}$$


fraction of exchange momentum, coupling to y

$$t = (p - p')^2$$
 4-momentum transfer squared

Modelling of diffraction

QCD collinear factorisation theorem

Infinite momentum frame - partons

[H1 Coll. EPJC28 (2006) 715]

$$\sigma^{D}(\gamma^* p \to Xp) = \sum_{parton_i} f_i^{D}(x, Q^2, x_{IP}, t) \cdot \sigma^{\gamma^* i}(x, Q^2)$$

Regge factorisation (conjecture, e.g. Resolved Pomeron Model by Ingelman&Schlein)

$$f_{i}^{D}(x,Q^{2},x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_{i}^{IP}(\beta = x/x_{IP},Q^{2})$$

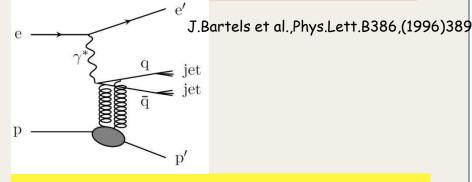
$$f_{IP/p}(x_{IP},t) = \frac{e^{Bt}}{x_{IP}^{2\alpha(t)-1}}$$

$$\text{diffractive DPDF}$$

$$\text{Pomeron flux factor}$$

DPDFs extracted from DIS data

Dipole model

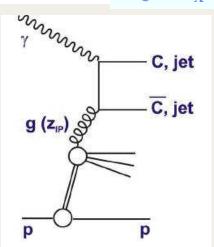

Proton rest frame - dipoles

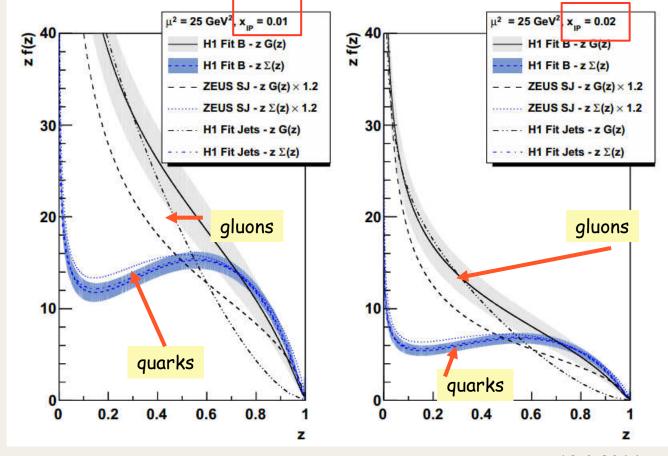
[C. Marquet PRD76 (2007) 094017]

$$d\sigma_{diff}^{\gamma^*p}/dt \propto \int dz dr^2 \overline{\Psi^*\sigma_{qq}^2(x,r^2,t)\Psi}$$

Long living quark pairs interact with gluons of the proton

Two gluon exchange model


No extra parameters needed for DDIS, fully perturbative calculations based on proton PDF


DPDFs in DIS

DPDFs obtained by H1 and ZEUS from inclusive, dijet (and D* measurements....)
DPDFs used in HERA analyses - H1 fit B, H1 fit Jets, ZEUS fit SJ

Main differences are in gluonic part.

$$\mathbf{z=z_{IP}} = rac{\mathbf{Q}^2 + \mathbf{M_{12}}^2}{\mathbf{Q}^2 + \mathbf{M_{X}}^2}$$

Low x, Kyoto

Diffractive dijet production in DIS -

Previous HERA results:

- H1, LRG measurement, JHEP 0710:042, (2007)
- ZEUS, LRG measurement, EPJC 52 (2007),813
- H1, proton tagging -FPS, EPJC 72, (2012),1970
- H1, proton tagging VFPS, R.Zlebcik talk in this workshop

All HERA results agree within errors with NLO QCD calculations

DDIS Dijet Selection $4 < Q^2 < 80 \text{ GeV}^2$ 0.1 < y < 0.7 $p_{T.1}^* > 5.5 \text{ GeV}$

$$p_{T,1}^* > 0.0 \text{ GeV}$$
 $p_{T,2}^* > 4.0 \text{ GeV}$
 $-1 < \eta_{1,2} < 2$

$$x_{I\!\!P} < 0.03$$

 $|t| < 1~{
m GeV}^2$
 $M_Y < 1.6~{
m GeV}$

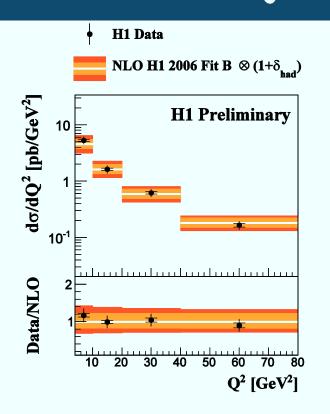
New H1 LRG measurement -

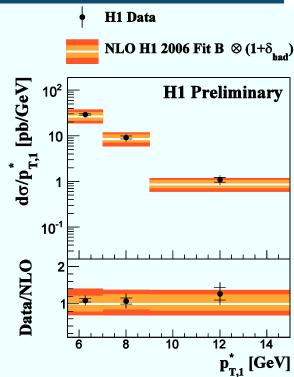
highest luminosity compared to former HERA measurements HERA II data, luminosity ~ 290 pb⁻¹

First LRG analysis with corrections for detector effects using detector response matrix (program TUnfold)

 ~ 14000 events accepted

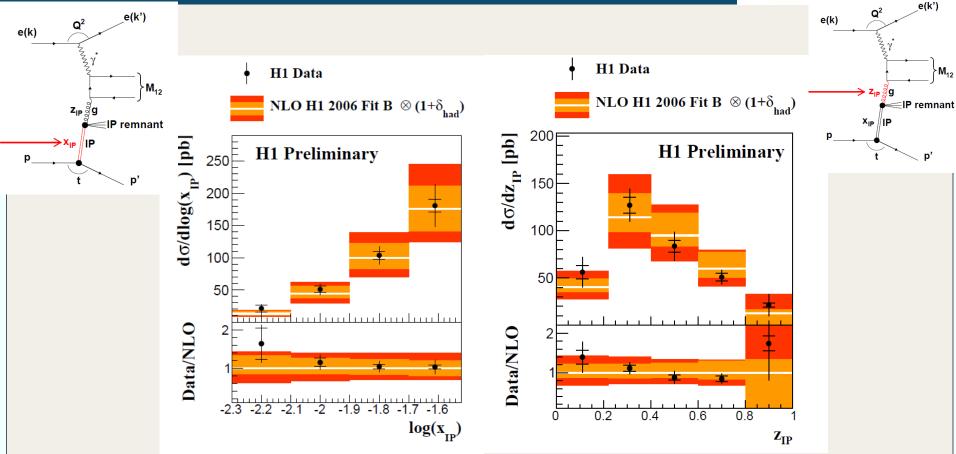
Diffractive dijet production in DIS -




- Data unfolded to hadron level using TUnfold, response matrix determined from MC generator RAPGAP
- QED radiation effects corrections applied using RAPGAP
- Measurements compared to NLO QCD predictions program NLOJET++ using DPDF H12006 Fit B.
- Scale $\mu_r^2 = \mu_f^2 = (p_{T,1}^*)^2 + Q^2$, $N_f = 5$, $\Lambda_{QCD} = 0.22 \text{ MeV}$
- Hadronisation corrections LO MC RAPGAP
- Theoretical uncertainty: scale variation, DPDF uncertainty and hadronisation

Low x, Kyoto 18.6.2014

Diffractive dijet production in DIS -


- Inner error bars of data points statistical uncertainty, outer error bars systematic uncertainties added in quadrature
- NLO QCD inner band uncertainty of hadronisation and DPDF fit added in quadrature, outer band - total uncertainty (incl.QCD scale uncertainty)

Data well described by prediction within experimental and theory uncertainty

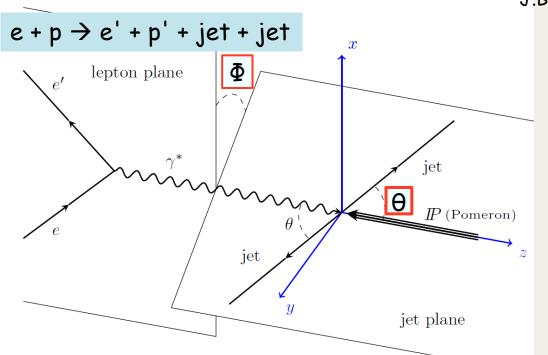
10 Low x, Kyoto 18.6.2014

Diffractive dijet production in DIS

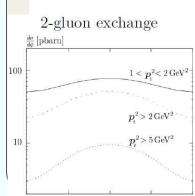
• Experimental uncertainty of measurement in z_{IP} lower than DPDF fit uncertainty, gluon DPDF might be further constrained

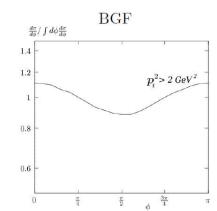
Measurements in agreement with NLO QCD calculations, factorisation confirmed.

Low x, Kyoto


18.6.2014

Diffractive dijet production in y*IP CMS




How to distinguish between theoretical diffractive models???

J.Bartels et al., Phys. Lett. B386, (1996) 389

- Φ angle between lepton and jet planes
- Θ polar angle of jet

 $d\sigma/d\phi \propto 1 + A\cos(2\phi)$

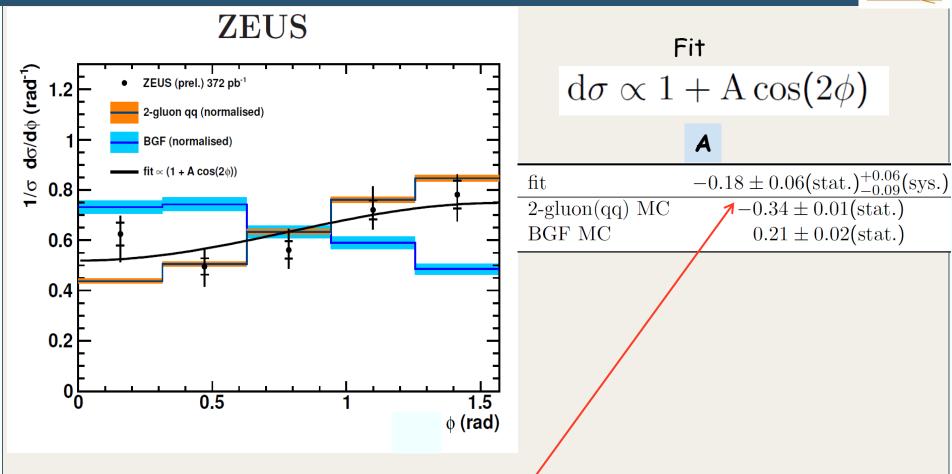
- Two gluon exchange negative A
- Boson-Gluon fusion positive A

18.6.2014

Diffractive dijet production in y*IP CMS

Kinematic region

LRG selection of diffraction


$$90 \, {
m GeV} < W < 250 \, {
m GeV}$$
 $25 \, {
m GeV}^2 < Q^2$ $x_{
m IP} < 0.01$ $0.5 < eta < 0.7$ $n_{
m jets} = 2$ $2 \, {
m GeV} < p_{
m T, jet}$

- Jet finder exclusive k_t jet algorithm
- For corrections model SATRAP used (method of singular value decomposition with regularisation - NIM, A372 (1996),469)
- Unfolded data compared to:

2-gluon exchange model - RAPGAP 3.01/26 Boson-Gluon-Fusion model (resolved pomeron) - RAPGAP 3.01/26

Diffractive dijet production in y*IP CMS

- · Negative A favours two gluon exchange model
- None of the models is able to describe the normalisation of x-section

Conclusions

- New H1 measurement of diffractive dijet production in DIS using LRG method of identification of diffractive events -> measurements described by NLO QCD predictions with H1 DPDF fit B
- Factorisation in DIS diffractive dijet production confirmed.
- The shape of the azimuthal angular distributions of exclusive dijets in diffractive DIS has been measured for the first time by ZEUS
- The measurement prefers 2-gluon exchange model of $q\bar{q}$ production over Boson Gluon Fusion model.

15