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An adiabatic matching section is discussed as option to control the divergence and emittance growth of a

beam exiting a plasma channel. Based on a general analytical solution of a focusing channel with varying

focusing strength, a focusing profile is proposed which allows for a fast expansion of the beam size while

keeping the emittance growth minimal. The solution is also applicable to other cases, e.g., the matching

of a positron source to the downstream accelerating section, which are, however, not discussed in this

contribution.
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I. INTRODUCTION

Plasma waves are considered as prime candidates

for novel compact accelerators for their ability to support

extreme accelerating fields in the GeV per centimeter scale.

Compared to conventional rf structure based accelerators

not only the accelerating field strength but also the short

wavelength of some tens to some hundreds of micrometers,

the small transverse dimensions of similar order and the

strong focusing fields inside the plasma channel are

extreme. Besides technical challenges plasma waves are

therefore also challenging from a beam dynamics point

of view.

In a recent paper [1] the matching conditions which need

to be fulfilled in order to avoid emittance growth due to

betatron phase mixing in a plasma channel have been

discussed. This study is extended here to the transition from

the plasma to a “free” beam, i.e., a beam outside of the

plasma channel. Transitions are necessary whenever the

beam shall be used outside of the plasma, e.g., to send it

through an undulator, but also when a beam is injected into

a plasma channel as in staged accelerator concepts. The

beam at the exit of a plasma channel is characterized by a

small beam spot and a large beam divergence, often in

combination with a large energy spread, while for a

conventional beam transport a larger beam size and a small

beam divergence are required. Thus a matching section in

between these quite different optical sections is required.

Equivalent conditions are found, e.g., at the source point

of a positron source where the positron beam exits the

target. Helm [2] has discussed the beam dynamics in a

tapered solenoid field which can be used to match a

positron beam to the downstream accelerating section.

Helm’s solution is approximate and valid for adiabatic

variations of the focusing strength. In this contribution a

new, exact analytic solution is presented which is valid

for a particular functional dependence of the variation of

the focusing strength. The exact solution converges to the

adiabatic solution; a comparison with Helm’s approxima-

tion is presented in the appendix. Numerical simulations

show that the beam divergence and the emittance growth

can be controlled with an adiabatic matching section. The

new field profile of the analytical solution is found to be

superior to the profile proposed by Helm. The discussion

concentrates on the transition from plasma to vacuum but

the results can equally be used to match from the vacuum

into a plasma channel.

II. THE CONDITIONS INSIDE

THE PLASMA CHANNEL

Before discussing the transition section the conditions

inside the plasma channel as presented in [1] shall be

summarized. The plasma wave presents a focusing channel

to particles traveling through the plasma at the speed of the

plasma wave. The transverse force depends on the longi-

tudinal position inside the wave, but to first order not on the

position of the wave inside the plasma. Thus slices of

particles inside the bunch are subject to a constant focusing

force while traversing the plasma channel. (Adiabatic

variations of the force will not change the results as

discussed below.) Matched conditions are reached when

the focusing compensates the expansion of the beam due to

the beam emittance, i.e., when the beam follows a kind of

Brillouin flow. With the usual definitions of the Courant

Snyder parameters:

β ¼ hx2i
ε
; α ¼ −

hxx0i
ε

; γ ¼ hx02i
ε
; βγ ¼ 1þ α2;

(1)

where ε represents the transverse rms trace-space emittance

and hi denotes the central average value of the variable

in the brackets, the matching condition yields α ¼ 0 and
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thus γ ¼ 1=β. Furthermore, the beta function in a focusing

channel with constant focusing strength K writes for

α0 ¼ 0 (index zero indicates initial conditions) as:

β ¼ β0cos
2

ffiffiffiffi

K
p

zþ 1

β0K
sin2

ffiffiffiffi

K
p

z; (2)

which is constant if the relation K ¼ 1=β20 is fulfilled. If a
beam is not matched, the beta function oscillates. Since the

focusing strength in a wave depends in a sinelike manner

on the relative longitudinal position within the wave,

different longitudinal slices oscillate with different frequen-

cies, so that the projected emittance increases until the

matching condition is reached for the projected phase-

space. In case of a pure mismatch of the beta function (i.e.,

α0 ¼ 0 holds) the ratio of the final emittance εf to the initial

emittance εi is given as [1]:

εf

εi
¼ 1

2

βm
2 þ β0

2

βmβ0
; (3)

where βm stands for the matched beta function.

Equation (3) is equally valid for a beam which is injected

into a plasma channel as for a beam which is generated

inside the channel. Especially in case of self-injection the

captured electrons form a beam with large energy spread.

Since the focusing strength is inversely proportional to the

particle momentum, the matched beta function differs for

the different energies in the bunch which leads to an

additional contribution to the emittance in accordance to

Eq. (3). The phase-space mixing is a fast process; we can

thus assume that a beam obeys the matching conditions

when it reaches the end of the plasma channel.

A particular problem encountered in the case of self-

injected beams is related to the fact that the canonical

phase-space emittance grows strongly in a drift in all cases

where a large beam divergence is combined with a large

energy spread. This fundamental process is described in

general form in [3] and applied to the case of a plasma

based electron source in [4]. The relevance of the phase-

space emittance lies in the fact that the trace-space

emittance rapidly growths up to the value of the phase-

space emittance as soon as the divergence of the beam is

reduced, i.e., in the next focusing element [3].

A reduction of the divergence of a plasma accelerated

beam by an appropriately designed transition region from

plasma to vacuum in which the beam size is increased is

considered in [5]. The emittance measurements presented

therein show the trace-space emittance. A conclusion on

the phase-space emittance can, despite the somewhat

reduced divergence, not be drawn since the divergence is

still high. A reliable emittance measurement can in the case

of self-injected beams only be performed behind a focusing

element.

The analytical treatment of a matching section presented

below concentrates on the optical functions and thus on

the trace-space emittance. Distortions of the phase-space

emittance are addressed by numerical simulations.

III. THE MATCHING SECTION

In the matching section the focusing strength KðzÞ
provided by the plasma wave shall be decreased in such

a way that the beam size expands in a controlled way and

the beam divergence in the following drift is reduced.

Noting that the equation of motion of individual particles

needs to converge to the known case of a constant focusing

channel if the focusing strength converges to a constant, the

following ansatz is formulated:

x ¼ AðzÞ cos
Z

ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p

dzþ BðzÞ
ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p sin

Z

ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p

dz:

(4)

AðzÞ and BðzÞ are arbitrary functions.

The single particle differential equation x00 þ Kx ¼ 0

can be solved for this case (see Appendix A.1 for details)

and yields:

x ¼ x0ð1þ gzÞ cosφþ ðx00 − x0gÞð1þ gzÞ
ffiffiffiffiffiffi

K0

p sinφ; (5)

where the following functional dependence of the focusing

strength is assumed:

KðzÞ ¼ K0

ð1þ gzÞ4 g ¼ −

K0
0

4K0

: (6)

g is a taper parameter introduced to describe the decay of

the focusing field and K0 and K0
0 are the initial focusing

strength and the first derivative of the focusing strength

with respect to the longitudinal coordinate z. The phase

advance φ is found as:

φ ¼
ffiffiffiffiffiffi

K0

p
z

1þ gz
; (7)

which converges for large z to φ
∞
¼

ffiffiffiffi

K0

p

g
. Figure 1 shows

some example trajectories for different values of φ
∞
. It

illustrates the transition from a free expansion for small

phase advance to the case of an adiabatic expansion with an

oscillation of slowly increasing amplitude for larger phase

advance.

Equation (5) describes the motion of individual particles.

To describe the envelope of a beam, Eq. (5) needs to be

squared followed by averaging over the variables. After

replacements according to Eq. (1) the beta function

follows as:
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β ¼ ð1þ gzÞ2
�

β0

�

cos2φ −
2g
ffiffiffiffi

K0

p cosφ sinφþ g2

K0
sin2φ

�

− α0

�

2
ffiffiffiffi

K0

p cosφ sinφ −
2g
K0
sin2φ

�

þ γ0

�

1
K0
sin2φ

��

: (8)

This equation simplifies greatly when the matching

conditions for the beam in the plasma are introduced.

With α0 ¼ 0; γ0 ¼ 1
β0
; K0 ¼ 1=β20 we get:

β ¼ β0ð1þ gzÞ2½ðcosφ − gβ0 sinφÞ2 þ sin2φ�

≈ β0ð1þ gzÞ2 ¼ β0

�

K0

KðzÞ

�1
2

: (9)

The approximation made in the second step requires that

gβ0 ≪ 1. The same approximation is made by Helm in

his derivation of the adiabatic approximation (see

Appendix A.2 for details). The connection to the adiabatic

solution becomes obvious by noting that gβ0 ¼ φ−1
∞
, i.e.,

gβ0 ≪ 1 corresponds to the case of a large phase advance as

expected for an adiabatic behavior. While the exact solution

is valid only for a tapered focusing field in accordance to

Eq. (6), the adiabatic solution is valid for arbitrary spatial

dependencies of the focusing strength provided that the

variation of the focusing strength is slow as compared to the

phase advance.

The other extreme of Eq. (9) is found for a small phase

advance by setting cosφ
∞
¼ 1; sinφ

∞
¼ ffiffiffiffiffiffi

K0

p
=g which

yields β ≈
z2

β0
. This is identical to the result of a beam in a

free drift which starts with β ¼ β0 at the exit of the plasma

channel. Of great practical importance is the transition

between adiabatic and nonadiabatic motion. The slightly

nonadiabatic case marks conditions where the fastest

expansion of the beam size is realized and nonadiabatic

effects just start to play a role. Since in a general case the

adiabaticity can differ for different locations of the field

profile, the question of the optimal field profile is directly

connected with the slightly nonadiabatic case. Both in the

fully adiabatic and in the fully nonadiabatic case the details

of the field profile are of minor importance.

Equation (9) is independent of the particle energy, i.e.,

the trace-space emittance is conserved not only in the

adiabatic limit, but also in the free space limit. However,

in order to keep the growth of the canonical phase-space

emittance under control it is important to keep the diver-

gence of the beam small. From the relation α ¼ −
1
2
β0 we

find in the free space limit:

αf ≈ −

z

β0
; (10)

while it is reduced in the adiabatic case to:

αa ¼ −β0gð1þ gzÞ ≈ −β0g
2z: (11)

The ratio is thus just given by the inverse square of the

total phase advance:

αa

αf
¼ ðβ0gÞ2 ¼ φ−2

∞
: (12)

For a comparison of the emittance growth it is, however,

not reasonable to compare parameters at the same longi-

tudinal position, because in the case of an adiabatic

matching section a much longer distance is required to

expand the beam by a significant amount.

When the matching section ends the beam expands in a

free drift with the initial conditions βe and αe which mark

the optical functions at the end of the matching section.

The derivative of the expansion in the subsequent drift is

given by:

β0drift ¼ −2αe þ 2

�

1þ α2e

βe

�

Δz; (13)

where Δz is the distance relative to the end of the

matching section. Equation (13) is dominated by αe
when α2e > 1. In this case the beam continues to expand

in the drift just as in the matching section. Thus the

maximum reasonable length of the matching section is

defined by the condition α2e > 1.

IV. NUMERICAL CALCULATIONS

For the following numerical examples beam parameters

as used in Ref. [4] have been chosen to allow a comparison.

The parameters are summarized in Table I; the focusing

strength is tapered according to Eq. (6). The simulation

assumes a theoretical radial focusing force which does not

depend on the position within the bunch. Longitudinal

forces as they appear in a plasma channel but also in other

focusing elements are not taken into account.
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FIG. 1. Example trajectories for various values of the phase

advance.
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Figure 2 compares the development of the beam size in a

matching section for varying taper parameter g. The beam
size and divergence can be controlled as predicted by

theory. The factor gβ0 yields values from 0.04 for g ¼
200 m−1 up to 0.12 for g ¼ 700 m−1 and thus spans a

parameter range from the fully adiabatic expansion into a

slightly nonadiabatic expansion. This is reflected in the

development of the normalized phase-space emittance

which is plotted in Fig. 3 for the four cases shown in

Fig. 2 with corresponding line styles. While the trace-space

emittance (not shown) stays constant in all cases the phase-

space emittance increases when the beam expands. The

emittance growth is dramatic in case of a free drift, but

negligible in case of a fully adiabatic expansion. Table II

compares the phase-space emittance which is reached at

equal transverse beam size.

The emittance growth due to the nonadiabaticity of the

field can be treated as a quadratic addition to the incoming

emittance. This contribution is then found to scale linearly

with the energy spread of the beam. A reduced energy

spread thus allows us to choose parameters deeper in the

nonadiabatic region, i.e., to realize a faster expansion of the

beam without emittance growth.

In Fig. 4 the further development in a drift following the

matching section is illustrated. As discussed in the previous

paragraph the beam continues to expand in the drift just

as in the matching section when the condition α2e > 1 is

fulfilled.

V. BEST FIELD PROFILE

In the adiabatic approximation the beta function just

scales as the square root of the initial to the local focusing

strength βðzÞ ¼ β0½ K0

KðzÞ�
1
2 and is in this form applicable to
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FIG. 2. Development of the beam size behind a plasma channel

for g ¼ 200 m−1 (smallest divergence), 500 m−1, 700 m−1 and

the free space solution (largest divergence). The constant focus-

ing channel ends at z ¼ 0.

TABLE I. Main simulation parameters.

Normalized emittance 2.5 × 10−6 m

Energy 912 MeV

rms energy spread 6.4%

Initial beam size 0.5 × 10−6 m

β0 1.8 × 10−4 m

K0 3.14 × 107 m−2
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FIG. 3. Development of the normalized phase-space emittance

behind a plasma channel. Parameters and line styles correspond

to Fig. 2. The trace-space emittance (not shown) stays constant in

all cases.

TABLE II. Comparison of beam parameters at equal transverse

size of 0.02 mm corresponding to a beam expansion by a factor

of 40.

Taper parameter g Longitudinal position Emittance

m−1 10−2 m 10−6 m

200 21.6 2.53

500 7.8 2.58

700 5.6 2.65

Free space 0.7 6.9
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FIG. 4. Development of the transverse beam size in a matching

section with g ¼ 500 m−1 (solid line). Broken lines indicate the

further development in a drift when the matching section ends at

jαej ¼ 0.5; 1.0 and jαej ¼ 2.0. The last line overlaps already

completely with the solid line.
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any variation of the focusing strength provided that the

variation is adiabatic. This opens the question of which

functional dependence of the focusing strength is optimal

in the sense that it yields the fastest expansion of the beam

with minimal emittance growth. In fact Helm formulated

the adiabatic solution without assumption of a specific

functional dependence and proposed in a second step only a

focusing following:

KðzÞ ¼ K0

ð1þ gHzÞ2
; (14)

as ideal field profile. From the definition of the adiabaticity

parameter one concludes that Helm’s taper parameter

gH ¼ 2g. In this case the weaker power of Helm’s scaling

law leads to a much smaller beam size at the end of the

matching section. For a better comparison comparable

beam sizes at the end of the section are required. Since

we are here interested in the slightly nonadiabatic case

this requires some tuning of the taper parameter. Figure 5

compares the beam size development for the power of four

scaling [cf. Eq. (6)] as found in the analytical treatment

with g ¼ 700 m−1 with the power of two scaling as

proposed by Helm with gH ¼ 9000 m−1. Despite the

comparable beam size at the end of the section the

emittance, shown in Fig. 6, is significantly larger in case

of Helm’s field profile. This is due to the fact that a fast

expansion in the beginning of the matching section is

required in order to reach the desired beam size because

the expansion is strongly reduced in the last part of the

section. The rapid expansion of the beam size leads to a

strong increase of the emittance which outranges the

emittance growth of the other field profile with the linearly

growing beam size. Due to the reduction of the beam

divergence in the last part of the section the emittance

growth in phase-space now also shows up as equivalent

growth of the trace-space emittance. The new profile found

in this study is thus the better solution for the matching of

beams with large divergence and energy spread when the

emittance growth shall be minimized. (If emittance growth

is not a concern, Helm’s solution offers a better control over

the beam divergence.) This finding does not prove that a

focusing profile following Eq. (6) is the optimum of all

possible field profiles but supports the assumption that

this is the case. Indeed, if we understand adiabaticity as a

condition where a variation of the focusing develops so

slowly that the beam size can follow the variation, a channel

in which the beam size expands at a constant rate appears to

be optimal.

VI. CONCLUSION

Adiabatic matching sections are an option to control

the beam divergence and the emittance growth of beams

exiting a plasma channel. Future investigations need to be

based on realistic density profiles of a plasma down-ramp

and take into account effects as phase dependent forces,

phase slippage, damping of the beam divergence, and

energy variation due to the longitudinal field components.

Additional variations of the focusing forces may appear as a

result of the divergence of a plasma driving laser or charged

particle beam. While in the latter case only the amplitude

of the wave changes, the plasma wavelength changes in

addition in case of density variations, which is associated

with phase shifts. The discussion above suggests that we

seek a density profile in which the beam expands at a

constant rate to meet a constant adiabaticity condition at all

locations even in cases where the theory developed in this

presentation is not strictly applicable. The dynamics in a

plasma of varying density is complicated and it is not

a priori clear that appropriate solutions for the adiabatic

matching section can be found for all plasma parameters

without being hampered by detrimental effects like decel-

eration due to phase shifts. The analytical solution can

serve as a guideline for the optimization and help to

disentangle effects of fundamental nature from effects

which are related to the specific dynamics in a plasma

channel. In the case of beams with large energy spread
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relatively long matching sections are required to be

effective, which might also not be practical in all cases.

A further reduction of the energy spread is hence highly

desirable.
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APPENDIX

1. Solution of the differential equation

Following the ansatz:

x ¼ AðzÞ cos
Z

ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p

dzþ BðzÞ
ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p sin

Z

ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p

dz

(A1)

the single particle differential equation x00 þ Kx ¼ 0 is

written as:

−

�

2
ffiffiffiffi

K
p

A0 þ AK0

2
ffiffiffiffi

K
p

�

Sþ A00Cþ
�

2B0
−

BK0

2K

�

C

þ
�

−

B0K0

K3=2
þ 3BK02

4K5=2
þ B00

ffiffiffiffi

K
p −

BK00

2K3=2

�

S ¼ 0;

C ≔ cos

Z

ffiffiffiffi

K
p

dz; S ≔ sin

Z

ffiffiffiffi

K
p

dz: (A2)

This equation can only be fulfilled if individual terms

yield zero. Thus from:

�

2
ffiffiffiffi

K
p

A0 þ AK0

2
ffiffiffi

K
p

�

¼ 0;

�

2B0
−

BK0

2K

�

¼ 0; (A3)

we get:

A

A0 ¼ −

4K

K0 ;
B

B0 ¼
4K

K0 : (A4)

Moreover,

A″ ¼ A0K0

4K
þ AK02

4K2
−

AK″

4K
¼

�

−

5

4

K0

K
þ K″

K0

�

A0 ¼ 0

(A5)

and

B00 ¼
�

−

3

4

K0

K
þ K00

K0

�

B0 (A6)

�

−

B0K0

K3=2
þ3BK02

4K5=2
þ B00

ffiffiffiffi

K
p −

BK00

2K3=2

�

¼−

�

−

5

4

K0

K
þK00

K0

�

B0
ffiffiffiffi

K
p ¼0:

(A7)

Hence, in order to fulfill Eq. (A2) the condition:

−

5

4

K0

K
þ K00

K0 ¼ 0 (A8)

needs to be fulfilled, with the solution:

KðzÞ ¼ K0
�

1 −
K0

0

4K0
z

�

4
(A9)

and

K0ðzÞ ¼ KðzÞ K0
0

K0

�

1 −
K0

0

4K0
z

� ;

Z

ffiffiffiffi

K
p

dz ¼
ffiffiffiffiffiffi

K0

p
z

1 −
K0

0

4K0
z
;

(A10)

where an integration constant is chosen such that the

integral is zero for z ¼ 0.

From Að0Þ cos
R ffiffiffiffi

K
p

dz ¼ Að0Þ follows Að0Þ ¼ x0.

Introducing K and K0 into A ¼ −4 K
K0 A0 yields A ¼

−4Cð1 − K0
0

4K0
zÞ with the integration constant C. Thus with

C ¼ −x0=4 we get:

AðzÞ ¼ x0

�

1 −
K0

0

4K0
z

�

: (A11)

Equivalently follows from B ¼ 4 K
K0 B0 B ¼ C

4

�

1

1−
K0
0

4K0
z

�

and

thus with x0ð0Þ ¼ x00 C ¼ 4ðx00 − A0Þ which finally yields:

BðzÞ ¼ x00 − A0

1 −
K0

0

4K0
z
: (A12)

Introducing the taper parameter g and the phase advance
φ yields Eq. (5).

2. Comparison with Helm’s adiabatic approximation

Helm [2] formulated an approximate solution for a

tapered solenoid field. The approximation is valid if the

adiabaticity parameter ε ¼ j B0pz

eB2 j ≪ 1. This condition is

equally fulfilled for all positions z if the field follows the

condition:

B ¼ B0

1þ gHz
; (A13)

where gH is a taper parameter and B0 is the initial solenoid

field value.
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The adiabaticity parameter writes then as:

ε ¼ gHpz

eB0

≪ 1: (A14)

The focusing strength of a solenoid is given by

K ¼ ð eB
2pz

Þ2. It follows:

KðzÞ ¼ K0

ð1þ gHzÞ2
; K0ðzÞ ¼ −2gHK0

ð1þ gHzÞ
(A15)

with the initial focusing strength K0 ¼ ðeB0

2pz
Þ2 and

K0
0 ¼ −2gHK0. Thus the taper parameter gH can be

replaced in Eq. (A15) to yield:

KðzÞ ¼ K0

ð1 − K0
0

2K0
zÞ2

¼ K0

1 −
K0

0

K0
zþ ðK

0
0

K0
Þ2 z2

4

(A16)

which needs to be compared to:

KðzÞ¼ K0

ð1− K0
0

4K0
zÞ4

¼ K0

1−
K0

0

K0
zþðK

0
0

K0
Þ2 3z2

8
−ðK

0
0

K0
Þ3 z3

16
þðK0

0

K0
Þ4 z4

256

:

(A17)

Helm’s definition of the taper parameter gH hence differs

by a factor of two from the definition introduced in this

paper. The resulting field profile is identical for small

values of z but differs for large z.
The adiabaticity parameter

ε ¼ gHpz

eB0

¼ gH

2
ffiffiffiffiffiffi

K0

p ¼ φ−1
∞

(A18)

is identical to the inverse phase advance in the limit

of large z of the analytical solution presented in this

paper. With B0=B ¼ 1þ gHz,
4pz

B0B
¼ 1

ffiffiffiffiffiffiffi

K0K
p ¼ 1þgHz

K0
and

R

eB
2pz

dz ¼
R ffiffiffiffi

K
p

dz ¼ φ Helm’s solution for the particle

radius which takes over the role of the transverse coordinate

in the rotating Larmor frame writes as:

r ¼ r0ð1þ gHzÞ
1
2 cosφþ r00ð1þ gHzÞ

1
2

ffiffiffiffiffiffi

K0

p sinφ;

ð1þ gHzÞ
1
2 ¼

�

K0

KðzÞ

�1
4 ¼ 1þ gz; (A19)

which needs to be compared to Eq. (5). The addition of

−x0g in the second term of Eq. (5) leads to the additional

term in the envelope equation (9) which is neglected in case

of the adiabatic approximation.
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