
Modelling relativistic soliton interactions in over-dense plasmas: a perturbed
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We investigate the dynamics of localized solutions of the relativistic cold fluid plasma model in the
small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale
analysis, we derive a perturbed nonlinear Schröndinger equation that describes the evolution of the
envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small
perturbation parameter, we derive a self-consistent framework for the description of the plasma
response in the presence of localized electromagnetic field. The formalism is applied to standing
electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid
model. To lowest order, a cubic nonlinear Schröndinger equation with a focusing nonlinearity is
recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time
and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of
the fifth order terms is essential for a qualitatively correct description of soliton interactions. The
defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do
not persist under perturbations in the initial phase or amplitude.

PACS numbers: 52.27.Ny, 52.35.Sb, 52.38.-r, 52.65.-y

I. INTRODUCTION

The availability of short, intense laser pulses has
opened new regimes of laser-plasma interaction, render-
ing possible the excitation and study of various localized
structures in the plasma. Amidst a plethora of excita-
tions observed, particular role is played by electromag-
netic solitons, i.e., self-trapped pulses characterized (and
sustained) by a balance of dispersion or diffraction and
nonlinearity. In particular, we shall be interested in so-
called relativistic solitons, for which the electromagnetic
field amplitude is intense enough to set plasma electrons
in relativistic motion.
Relativistic solitons have been predicted by analytical

theory [1–5] and simulations [6–11], and their signatures
have been observed in experiments [12–18]. They can be
thought of as electromagnetic pulses trapped in a plasma
density cavitation with over-dense boundaries. For one-
dimensional (1D) plasma geometry, a vast number of soli-
ton families have been identified and studied [5, 19–22],
while higher-dimensional solitons have also been encoun-
tered in simulations [9, 23]. In over-dense plasmas near
the critical density, solitons can be excited by a long in-
tense pulse incident on a plasma density gradient [2, 11].
In under-dense plasmas, relativistic solitons have been
observed behind the wake left by an intense and short
pulse [8–10, 23]. In this case, soliton creation is linked to
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the downshift of the laser pulse frequency as it propagates
through the plasma, which leads to an effective reduction
of the critical density and trapping of laser pulse energy
in the form of a soliton [23]. Therefore, from this point
on, we will use the term over-dense plasma in associa-
tion to the frequency ω of the soliton. The latter may be
lower than the frequency of the laser pulse that excited
the soliton.

Simulations [7, 11, 23] and experiments [12, 13] show
that multiple solitons may be excited by a single laser
pulse, and one may expect that these solitons can inter-
act with each other [23]. In a previous publication [24]
we presented numerical studies of interactions of standing
electromagnetic solitons of the form predicted in Ref. [5],
within the relativistic cold fluid framework. For low
soliton amplitudes, a phenomenology similar to Nonlin-
ear Scrödinger (NLS equation) equation soliton interac-
tion [25] has been observed, e.g. involving the formation
of bound states, under certain circumstances. However,
soliton interaction for larger amplitudes departs from
NLS equation phenomenology.

The aim of the present work is to gain more insight in
the origin of the NLS equation behavior of small ampli-
tude soliton interaction in over-dense plasmas, but also
to explore how deviations from NLS equation behavior
arise. Starting from the one-dimensional relativistic cold
fluid model we develop a perturbative treatment based
on multiple scale analysis [26–28], in which the small pa-
rameter is the electromagnetic field amplitude. Under
the assumptions of immobile ions and circular polariza-
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tion we derive a perturbed NLS-type equation (pNLS
equation) which describes the evolution of the electro-
magnetic field envelope. In our expansion, localization of
the soliton solution is introduced naturally as a result of
the assumption of a carrier frequency ω smaller but sim-
ilar to the plasma frequency, ω . ωpe =

√

N0e2/meǫ0,
where N0 is the plasma background density. The dom-
inant nonlinear term is a ‘focusing’ cubic nonlinearity,
while at higher order a ‘defocusing’ quintic one also ap-
pears. They both result from the perturbative expansion
of the relativistic γ factor. Additional higher order non-
linear terms result from the ponderomotive coupling of
the field to the plasma. To lowest order our pNLS equa-
tion equation reduces to a focusing NLS equation.

Our study of soliton interactions using the fluid and
pNLS equation models shows that soliton collisions are
inelastic. This is commonly regarded as a signature of
non-integrability of the governing equations [29], and is in
stark contrast with the elastic collisions of solitons of the
(integrable) cubic NLS equation. We note that although
a distinction between solitary waves and solitons based
on the nature of their interactions can be made [30], here
we adhere to the common practice in laser-plasma inter-
action literature of referring to any solitary wave solution
as a soliton.

The NLS equation is ubiquitous in physics since it
appears generically as an envelope equation describ-
ing propagation of weakly nonlinear waves in disper-
sive media [27, 28]. It has been widely used in de-
scribing phenomena such as Benjamin-Feir type mod-
ulational instabilities, solitons [27] and, more recently,
rogue waves [31, 32]. Interestingly, the NLS equation can
be derived by symmetry considerations alone [28]. How-
ever, for specific applications the coefficients of the var-
ious terms must be determined through a multiple scale
analysis procedure. Then, the NLS equation is obtained
as a compatibility condition, imposed for secular term
suppression, in third order in the small expansion param-
eter. The analogous first- and second-order compatibility
conditions are also physically meaningful, as they yield
the linear dispersion relation and the associated group
velocity for the envelope. Higher order compatibility con-
ditions contribute additional nonlinear terms [33], which
may lead to a non-integrable perturbed NLS equation. In
plasma physics, use of the cubic NLS equation has a long
history, for example to describe modulated electrostatic
wavepackets [34] and weakly relativistic laser-plasma in-
teractions [35–37]. For the case of linear polarization,
in the highly under-dense plasma limit ωpe/ω ≪ 1, fifth
order terms in the multiple scale expansion have been
partially retained in Ref. [36]. The main contribution
of the present paper is the derivation of the fifth order
terms for the over-dense, near-critical case, with circular
polarization.

This paper is structured as follows: Sec. II recalls the
relativistic cold fluid model that will be the starting point
for this work. The multiple scale expansion is described
in Sec. III leading to the derivation of the pNLS equation,

which is our main result. In Sec. IV we study in some
detail the NLS equation limit of our expansion, compar-
ing numerical results of cold fluid model simulations for
soliton interaction to classical predictions of quasiparti-
cle theory for soliton interaction. In Sec. V we compare
numerical simulations of soliton interaction in the three
levels of description: cold fluid model, pNLS equation
and NLS equation. In Sec. VI we discuss our findings and
present our conclusions. Appendix A describes the rela-
tion between fluid and envelope initial conditions, while
Appendix B provides details on the numerical implemen-
tation of the fluid code.

II. RELATIVISTIC COLD FLUID MODEL

Our starting point is the relativistic cold fluid plasma-
Maxwell model (see, for example, Ref. [38] for the deriva-
tion and history of the model) in one spatial dimension.
We assume a cold plasma of infinite extent with immobile
ions that provide a neutralizing background. Considering
infinite plane waves, propagating along the x-direction
and working in the Coulomb gauge, the longitudinal and
transverse component of Ampere’s law are expressed as

∂2Φ

∂x∂t
+

N

γ
Px = 0 , (1a)

and

∂2A⊥

∂x2
− ∂2A⊥

∂t2
=

N

γ
A⊥ , (1b)

respectively. The fluid momentum equation is

∂Px

∂t
=

∂

∂x
(Φ− γ) , (1c)

while Poisson equation yields

N = 1 +
∂2Φ

∂x2
. (1d)

Here,

γ =
√

1 + P 2
x +A2

⊥
, (1e)

is the relativistic factor, while P(x, t) = p(x, t)−A(x, t)
is the generalized momentum of the electron fluid, p(x, t)
the kinetic momentum normalized to mec, N is the fluid
charge density normalized to the plasma background den-
sity N0, A⊥ = Ay ĵ + Azk̂ is the transverse vector po-
tential and Φ is the scalar potential, both normalized
to mec

2/e. Moreover, time and length are respectively
normalized to the inverse of the plasma frequency ωp0

and the corresponding skin depth c/ωp0. In our one-
dimensional modelling we have taken the longitudinal
vector potential Ax = 0, while we have used the con-
servation of transverse canonical momentum, assuming
an initially cold plasma, to write Eq. (1b) and Eq. (1e).
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III. MULTIPLE SCALE EXPANSION

Multiple scale analysis (see, e.g. Ref. [27]) seeks to de-
scribe perturbatively a system of differential equations by
assuming it evolves in different, well separated temporal
and spatial scales. Our treatment follows the standard
procedure of removal of secular terms by imposing suit-
able solvability conditions at each order in perturbation
analysis. However, our treatment of the dispersion rela-
tion in Sec. III B is novel and has been devised in order
to relate the electromagnetic field frequency to the small
parameter of the expansion, while introducing localiza-
tion of solutions in an over-dense plasma in a natural
way.
We proceed by introducing the scaled (or slow) vari-

ables Tj = ǫjt andXj = ǫjx, where ǫ is a small parameter
and j = 0, 1, 2, . . . . We assume that the fields within the
plasma are small, so that we may expand the fluid model
variables as

Ay(x, t) =

∞
∑

j=1

ǫjaj(X0, X1, . . . , T0, T1, . . .) , (2a)

Az(x, t) =

∞
∑

j=1

ǫjbj(X0, X1, . . . , T0, T1, . . .) , (2b)

Φ(x, t) =

∞
∑

j=1

ǫjφj(X1, . . . , T1, . . .) , (2c)

Px(x, t) =

∞
∑

j=1

ǫjpj(X1, . . . , T1, . . .) , (2d)

N(x, t) =

∞
∑

j=0

ǫjnj(X1, . . . , T1, . . .) , (2e)

and

γ =

∞
∑

j=0

ǫjγj = 1 +
1

2
(p21 + a21 + b21)ǫ

2 + . . . . (2f)

Moreover we will need

δ ≡ 1/γ =

∞
∑

j=0

ǫjδj = 1− 1

2
(p21 + a21 + b21)ǫ

2 + . . . . (2g)

In writing Eq. (2e) we took into account Eqs. (1d)
and (2c). We assumed that the longitudinal quantities
Φ, Px, N do not depend on the fast time scale T0 asso-
ciated with the transverse electromagnetic field oscilla-
tions, and took into account that for CP pulses there is no
generation of harmonics of the basic frequency ω [4, 35].

These assumptions are consistent with CP soliton solu-
tions of Ref. [5], the interactions of which we shall study
here.
Defining ∂i ≡ ∂/∂Ti and ∇i ≡ ∂/∂Xi, we get

∂

∂t
= ∂0 + ǫ∂1 + ǫ2∂2 + . . . , (3a)

∂

∂x
= ∇0 + ǫ∇1 + ǫ2∇2 + . . . , (3b)

∂2

∂x∂t
= ∇0∂0 + ǫ(∇0∂1 +∇1∂0) + . . . , (3c)

etc.
We proceed by substituting Eq. (2) and Eq. (3) into

Eq. (1), and collecting terms in different orders of ǫ.

A. Order ǫ0

The only equation that contains terms of order ǫ0 is
Eq. (1d), which gives

n0(X0, X1, . . . , T0, T1, . . .) = 1 . (4)

B. Order ǫ1: linear dispersion relation

Collecting terms of order ǫ, Eqs. (1a)–(1c) give p1 =
n1 = 0, while φ1 remains unspecified. Taking into ac-
count Eq. (4), we get for the y component of Eq. (1b),

∇2
0a1 − ∂2

0a1 = a1 . (5)

We are interested in plane wave solutions of this linear
wave equation, which have the form:

a1(X0, X1, . . . , T0, T1, . . .) = a(X1, . . . , T1, . . .)e
i(kX0−ωT0) + c.c. ,

(6)
where + c.c. denotes the complex conjugate of the pre-
ceding expression. Plugging Eq. (6) back into Eq. (5),
we see that these solutions satisfy the usual plasma dis-
persion relation

ω2 = 1 + k2 . (7)

Here, we are interested in over-dense plasmas, in which
ω < 1 and thus

k2 = ω2 − 1 < 0 , (8)

i.e., k is imaginary and the waves are localized. More-
over, we are interested here in describing solutions close
to small amplitude solitons, which have ω ≃ 1. There-
fore, |k| is small and this fact in combination with the
dispersion relation, Eq. (7), suggests the following ex-
pansions

ω =

∞
∑

j=0

ǫjωj , k =

∞
∑

j=1

ǫjkj . (9)



4

Substituting Eq. (9) into the dispersion relation Eq. (7)
we obtain

ω = 1− ǫ2

2
|k1|2 + . . . , (10)

where we used k1 = ±i|k1|. This implies that expressions
such as ǫ|k1|X0, ǫ

2|k1|2T0 etc. appearing in the oscillat-
ing part of Eq. (6), do in fact represent slow variations.
Thus, we may include them into the envelope, i.e., we
may write Eq. (6) as

a1(X0, X1, . . . , T0, T1, . . .) = a(X1, . . . , T1, . . .)e
−iT0 + c.c. .

(11)
Note that the dependence on X0 has naturally dropped.

C. Order ǫ2

Collecting terms of order ǫ2 we get from Eq. (1a) and
Eq. (1d) p2 = n2 = 0, while Eq. (1c) yields

∇1φ1 −
1

2
∇0(a

2
1 + b21) = 0 , (12)

respectively. For circular polarization (CP), we have a =
−i b, and therefore Eq. (2f) yields

γ2 =
1

2
(a21 + b21) = 2 |a|2 , (13)

independent of T0. Thus, Eq. (12) simplifies to

∇1φ1 = 0 . (14)

Collecting terms of order ǫ2 we get for the y component
of Eq. (1b),

La2 = 2∂0∂1a1 = −2 i
∂a

∂T1
e−iT0 , (15)

where we introduced the operator

L ≡ (∇2
0 − ∂2

0 − 1) . (16)

The term on the right hand side is resonant forcing term
for the linear operator L. Therefore we impose the solv-
ability condition

∂a

∂T1
= 0 . (17)

Then Eq. (15) becomes La2 = 0 ,. It has plane wave
solutions that can be included in a1 in Eq. (11), so we
may take a2 = 0. From Eq. (2f) we then find γ3 = 0.

D. Order ǫ3: NLS equation limit

Collecting terms of order ǫ2 and using Eq. (14), we get
from Eqs. (1a)–(1c), p3 = n3 = 0, and

∇2φ1 +∇1(φ2 − 2|a|2) = 0 , (18)

respectively. Operating on Eq. (18) with ∇1 and using
Eq. (14), we obtain

∇2
1(φ2 − 2|a|2) = 0 , (19)

which, requiring that φ2 and a vanish as X1 → ∞, im-
plies

∇1(φ2 − 2|a|2) = 0 . (20)

Then in turn, Eq. (18) implies

∇2φ1 = 0 . (21)

Collecting terms of order ǫ2 we get for the y component
of Eq. (1b),

La3 = −∇2
1a1 + (∂2

1 + 2∂0∂2)a1 − 2|a|2a1 , (22)

= − ∂2a

∂X2
1

e−iT0 − 2 i
∂a

∂T2
e−iT0 − 2 |a|2a e−iT0 , (23)

where we also used Eq. (17). The terms in the right hand
side are all resonant with the operator L, leading to the
solvability condition

i
∂a

∂T2
+

1

2

∂2a

∂X2
1

+ |a|2a = 0 . (24)

This is a nonlinear Schröndinger (NLS) equation. Im-
posing the solvability condition Eq. (24), we get from
Eq. (22), La3 = 0, or a3 = 0.
According to the standard multiple scale treatment

of waves in the fluid plasma description, the cubic NLS
equation Eq. (24) is obtained at this order, and the it-
erative expansion procedure stops here. An exception is
Ref. [36], where the limit of small density (ωpe ≪ ω) has
been considered and a different scaling of the slow vari-
ables has been derived, partially including terms of fifth
order in ǫ. The absence of harmonic terms for circular
polarization makes the ǫ-expansion much simpler in our
case and allows us to keep all terms up to fifth order in
the following, deriving a single perturbed NLS equation.

E. Order ǫ4

From Eq. (1a) we get, with the help of Eq. (14) and
Eq. (21),

∇1∂1φ2 + p4 = 0 . (25)

Operating with ∂1 on Eq. (20) and using Eq. (17) we
obtain

∇1∂1φ2 = 0 , (26)

and therefore p4 = 0.
Equation (1d) gives

n4 = ∇2
1φ2 . (27)
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Noting that

γ4 = −2 |a|4 , (28)

we get from Eq. (1c)

∇1φ3 +∇3φ1 +∇2(φ2 + 2|a|2) = 0 . (29)

Collecting terms of order ǫ4 we get for the y component
of Eq. (1b),

La4 = 2∂0∂3a1 − 2∇1∇2a1 (30)

= −2 i∂3a e
−iT0 − 2∇1∇2a e

−iT0 . (31)

Requiring that resonant forcing terms vanish, we obtain
the solvability condition

i∂3a+∇1∇2a = 0 . (32)

Finally, Eq. (30) implies a4 may be included into a1 and
we write a4 = 0.

F. Order ǫ5

Equation (1a) gives

p5 +∇3∂1φ1 +∇2∂1φ2 +∇1∂2φ2 +∇1∂1φ3 = 0 , (33)

where we have used Eq. (21) and Eq. (14). Applying ∇1

on Eq. (29) and using Eq. (14) and Eq. (20) we get

∇2
1φ3 = 0 , (34)

which implies

∇1φ3 = 0 . (35)

On the other hand, applying ∂1 on Eq. (29) and using
Eq. (17) and Eq. (35) we get

∇3∂1φ1 +∇2∂1φ2 = 0 . (36)

Thus, we may use Eqs. (35)–(36) to get from Eq. (33)

p5 = −∇1∂2φ2 = −2∂2∇1|a|2 , (37)

where, in the last step, we have used Eq. (20).
From Poisson equation Eq. (1d) we obtain

n5 = 2∇2∇1φ2 = 4∇2∇1|a|2 . (38)

Equation (1c) gives

∇1(φ4 − γ4) +∇2φ3 +∇3(φ2 − γ2) +∇4φ1 = 0 . (39)

Operating on Eq. (39) with ∇1 and using Eq. (20),
Eq. (19) and Eq. (35) we obtain

∇2
1(φ4 − γ4) = 0 . (40)

Noting that δ4 = 6 |a|4, the wave equation gives at
order ǫ5

L a5 = −2∇1∇3a1−∇2
2a1+2∂0∂4a1+∂2

2a1+6|a|4a1+n4a1 .
(41)

All terms on the right hand side are resonant forcing
terms, and with the help of Eq. (27) and Eq. (19) we are
led to the solvability condition

−2∇1∇3a−∇2
2a−2 i ∂4a+∂2

2a+6|a|4a+2a∇2
1|a|2 = 0 .

(42)
We note, that we do not employ a parabolic approxima-
tion but rather maintain the term involving second time
derivative. Finally, Eq. (41), allows one to write a5 = 0.

G. Collecting different orders: pNLS equation

The strategy we follow in order to write a perturbed
NLS equation, inspired by Ref. [33] (Chapter 3), is to
multiply the solvability conditions imposed at various or-
ders with appropriate constants, so as to form the expan-
sions of the differential operators Eq. (3). Specifically, we
form the sum

2 i ǫ× (17) + 2 ǫ2 × (24) + 2 ǫ3 × (32)− ǫ4 × (42) , (43)

which, using Eq. (3), reads

i
∂a

∂t
+

1

2

∂2a

∂x2
+ ǫ2|a|a− 3 ǫ4|a|4a− ǫ2

∂2|a|2
∂x2

a− 1

2

∂2a

∂t2
= 0

(44)
Rescalling,

X = ǫx, T = ǫ2t , (45)

we arrive at

i
∂a

∂T
+

1

2

∂2a

∂X2
+ |a|2a = ǫ2

(

3 |a|4a+
∂2|a|2
∂X2

a+
1

2

∂2a

∂T 2

)

,

(46)
which is our main result. Equation (46) has the form
of a singularly perturbed nonlinear Schrödinger equation
(pNLS equation), since the highest order time deriva-
tive appears in the perturbation term. Note that, due
to our treatment of the dispersion relation in Sec. III B,
Eq. (46) is written in the lab frame, without the need of
a coordinate transformation to a frame moving with the
group velocity vg = ω′(k) which is usually required in the
derivation of NLS-type equations. We therefore bypass
any problems related to the fact that ω′(k) as obtained
from Eq. (7) is imaginary.
Solution of Eq. (46) for a(X,T ) also determines the

rest of the variables in the perturbation expansion of the
cold fluid model. Indeed, we get from Eq. (2e), (4), (27)
and (38), in a similar manner as above,

N = 1 + 2 ǫ4
∂2|a|2
∂X2

+O(ǫ6) , (47)

i.e., n5 may be included in the fourth order terms.
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Similarly, Eq. (37) gives

P = −2 ǫ5
∂2|a|2
∂T∂X

+O(ǫ6) , (48)

Finally, noting that Eq. (14) yields

∇2
1φ1 = 0 , (49)

and forming the sum

ǫ× (49) + ǫ2 × (19) + ǫ3 × (34) + ǫ4 × (40) , (50)

we obtain

∂2

∂X2
(Φ− γ) = O(ǫ5) . (51)

Noting that Φ, γ, do not depend on X0, and taking into
account boundary conditions at x → ±∞, we obtain

Φ = γ − 1 +O(ǫ5) (52)

= 2|a|2 ǫ2 − 2|a|4 ǫ4 +O(ǫ5) . (53)

Therefore, the solution of Eq. (46) for a(X,T ), also de-
termines N, P and Φ.
The cubic |a|2a and quintic terms 3 ǫ2|a|4a come from

the expansion of the relativistic factor γ and therefore
correspond to relativistic corrections to the optical prop-
erties of the plasma, i.e., they pertain to transverse dy-
namics. The cubic term results in compression of the
pulse, while the quintic term has the opposite effect (due
to the difference in sign). The term a ∂XX |a|2 takes into
account longitudinal effects, namely the coupling of the
electromagnetic field to the plasma through charge sep-
aration caused by ponderomotive effects [see Eq. (47)].
Moreover, Eq. (48) shows that the balance of ponderomo-
tive ∂Xγ and electrostatic force ∂Xφ implied by Eq. (51),
is violated at order ǫ5 [see also Eq. (1c)].

IV. NLS EQUATION LIMIT

Neglecting terms of order ǫ2, Eq. (46) reduces to a NLS
equation [39]

i
∂a

∂T
+

1

2

∂2a

∂X2
+ |a|2a = 0 , (54)

which has both moving and standing envelope soliton
solutions, which we now briefly study in order to establish
connection with cold-fluid model solitons.

A. Moving soliton solutions

Moving soliton solutions of Eq. (54) have the form [27]

a(X,T ) = α0 sech [α0(X − ue T )] e
i ue (X−up T ) , (55)

where ue is the envelope (or group) velocity, up is the
phase velocity, and the amplitude a0 is given by

α0 =
√

u2
e − 2ue up . (56)

Note that ue and up refer to the scaled variables X and
T . We can go back to the original variables by using
Eq. (A1) of Appendix A, which gives

Ay = F0(x, t) cos
[

ueǫx− (1 + ueupǫ
2)t

]

, (57)

where F0(x, t) = 2α ǫ sech [α0ǫ (x− ǫuet)]. A similar ex-
pression can be written for Az, while Equation (47), (48)
and Eq. (52) provide expressions for the remaining fluid
variables. We see that the phase and group velocity read

vph =
1 + ueupǫ

2

ueǫ
, (58)

and

vg = ǫue , (59)

respectively. Therefore, in terms of the cold fluid model,
moving soliton solutions Eq. (55) represent slowly prop-
agating solitons.
We show an example of propagating NLS equation soli-

tons Eq. (55) with ue = 0.9, up = 0.1 and ǫ = 0.141 in
Fig. 1. Although this is only an approximate soliton so-
lution of the pNLS equation and cold fluid model, we
observe propagation at the predicted group velocity ǫue,
while the solution approximately maintains its shape. An
exact propagating soliton solution would have to be de-
termined by methods similar to those used, for example
in Refs. [4, 21]. This is however outside the scope of this
work which emphasizes standing soliton interactions.

B. Standing soliton solutions

Standing soliton solutions of Eq. (54) have the form

a(X,T ) = φ(X)e−iλT , (60)

where the frequency λ is to be determined. A well known
soliton family of Equation (54) has the form (see, e.g.,
Ref. [27])

φ(X,T ) = α sech[α(X −X0)] , (61)

where the amplitude α is constant. Substituting
Eqs. (60)–(61) into Eq. (54) we obtain

λ = −1

2
α2 . (62)

Using Eq. (A1) of Appendix A, one may go back to
the original cold-fluid model variables,

Ay(x, t) = C0(x) cos(t− ǫ2α2 t/2) , (63a)
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FIG. 1. (color online) Simulation of a propagating soliton with ue = 0.9, up = 0.1 and ǫ = 0.141, using (a) the fluid model
Eq. (1), (b) pNLS equation Eq. (46), (c) NLS equation(24).

Az(x, t) = C0(x) sin(t− ǫ2α2 t/2) , (63b)

where C0(x) = 2ǫα sech[ǫα(x − x0)]. Note that the
term −ǫ2α2 t/2 corresponds to the term −ǫ2|k1|2 t/2 in
Eq. (10) which has been included into the envelope. This
correction to ω therefore corresponds to the slow os-
cillations of the soliton envelope, and we may identify
α = |k1|.
A connection to exact cold-fluid mode solitons of

Esirkepov et al. [5] which have

Ay = R(x) cos(ωt) , Az = R(x) sin(ωt) , (64)

where

R(x) =
2
√
1− ω2 cosh

[√
1− ω2(x− x0)

]

cosh2
[√

1− ω2(x− x0)
]

+ ω2 − 1
(65)

can now be established. Taking into account that
Eq. (10) yields

ω2 = 1− ǫ2 |k1|2, (66)

Ay from Eq. (64) becomes, in leading order in ǫ,

Ay = 2ǫ|k1|sech [ǫ|k1|(x− x0)] cos(t− ǫ2 |k1|2 t/2) . (67)

Comparison of Eq. (63a) with Eq. (67), once again
shows that we may identify α = |k1|. The value of |k1|
still remains unspecified, apart from the requirement that
|k1| ∼ O(1) which follows from Eq. (9). For the study
of a single soliton, or interacting solitons of the same
amplitude, we may, without loss of generality, set |k1| =
1, i.e., work with α = 1 in Eq. (63). Then, the small
parameter ǫ in the expansion is related to ω through

ǫ =
√

1− ω2 . (68)

However, the indeterminancy of k1 in Eq. (67) allows to
model interactions of solitons with different frequences
(and therefore amplitudes) using a single small parameter
ǫ, see Sec. V.

C. Quasiparticle approach to soliton interactions

Soliton interactions of NLS equation (54) have been
studied through different methods and are well under-
stood, particularly when the separation of the two soli-
tons is large, see for example Ref. [25]. In that case, one
may consider the solitons as ’quasiparticles’, i.e., inde-
pendent entities that exert a force to one another and to
a good approximation maintain their shape during their
interaction [25, 40, 41] (adiabatic approximation). One
then may approximate the evolution of the solitons with
a set of few coupled ordinary differential equations for
the evolution of the soliton parameters.
A particularly useful perspective is that of Gordon [41],

who shows that within this framework the dynamics of
two solitons may be described by the system of ODEs

D̈ = −8 e−D cos(Ψ) , (69a)

Ψ̈ = 8 e−D sin(Ψ) , (69b)

where D(T ) and Ψ(T ) are the soliton peak-to-peak dis-

tance and relative phase, respectively, 1 ± Ψ̇/2 are their
amplitudes and a dot indicates derivative with respect to
T . Therefore, the solitons exert to each other an effective
force with magnitude that decreases exponentially with
distance D and sign that depends on their relative phase
Ψ.
For the particular case of solitons of equal initial am-

plitude, Ψ̇0 = 0, and zero initial phase difference, we see
from Eq. (69) that the force is attractive, while the rel-
ative phase remains zero, leading to the formation of an
oscillatory bound state. A detailed calculation [25, 41]
shows that the peak-to-peak separation varies as

D(T ) = D0 + 2 ln | cos(2 e−D0/2 T )| , (70)

where D0 ≫ 1 is the initial distance. Equation (70)
implies that the time after which the solitons collide for
the first time is [25, 41]

Tcoll =
1

2
eD0/2 cos−1

(

e−D0/2
)

≃ π

4
eD0/2 . (71)
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We note that in scaled variables collision time Tcoll is,
according to Eq. (71), independent of ω. However, when
we go back to units of ω−1

pe and c/ωpe for time and space,
respectively, through Eqs. (45) and (68), we obtain

tcoll =
π

4(1− ω2)
e
√

(1−ω2) d0/2 . (72)

where tcoll = Tcoll/ǫ
2 and d0 = D0/ǫ. For large enough

d0, tcoll decreases for increasing ω. Analytical predictions
of Eq. (72) is compared with numerical simulations in
Sec. V.

For solitons of equal initial amplitude, Ψ̇0 = 0 and
initial relative phase Ψ0, the seperation versus time
reads [25]

D(T ) = D0 + ln

∣

∣

∣

∣

cosh(−κ1 T ) + cos(κ2 T )

2

∣

∣

∣

∣

, (73)

where

κ1 = 4 e−D0/2 sin (Ψ0/2) , κ2 = 4 e−D0/2 cos (Ψ0/2) .

Thus, the solitons eventually drift apart since, as we see
from Eq. (69), the force is not attractive for all T . For
large T , after the solitons drift apart, the soliton ampli-
tudes differ by

|∆a| = |a1 − a2| = |4 e−D0/2 cos (Ψ0/2) | . (74)

The minimum peak-to-peak distance is

Dmin = D0 + ln

[

1

2

(

cosh

(

−π tan
Ψ0

2

)

− 1

)]

(75)

reached at time

Tmin =
π

4 cos(Ψ0/2)
eD0/2 (76)

or, in units of ω−1
pe ,

tmin =
π e

√
(1−ω2) d0/2

4(1− ω2) cos(Ψ0/2)
. (77)

From Eq. (75) one finds [25] that the collision is inhibited
for initial phase Ψ0 > Ψc, where

tan
Ψc

2
=

1

π
cosh−1

(

1 + 2 e−D0

)

. (78)

In the case of solitons with different initial amplitudes,
Ψ̇0 6= 0 and no initial relative phase, Ψ0 = 0, one finds
that the solitons form an oscillatory bound state, with
their distance oscillating periodically between a mini-
mum and a maximum distance. Qualitative results can
also be obtained for this case, and may be found in
Ref. [25].

V. NUMERICAL SIMULATIONS

This section compares numerical simulations of soliton
interactions of the three different levels of description:
the cold fluid model Eq. (1), the pNLS equation Eq. (46),
and the NLS equation (24). Where appropriate, com-
parisons of the simulation results and the quasiparticle
predictions of Sec. IVC are also presented.
We investigate the interactions of standing solitons

first found by Esirkepov et al. [5]. Labeling each soli-
ton by an index (j), we have for the cold fluid model
variables:

A(j)
y (x, t) =

2
√

1− ω2
j cosh

2(ζj)

cosh2(ζj) + ω2
j − 1

cos(ωj t+ θj) , A(j)
z (x, t) =

2
√

1− ω2
j cosh

2(ζj)

cosh2(ζj) + ω2
j − 1

sin(ωj t+ θj) , (79a)

E(j)
x (x, t) =

4 (1− ω2
j )

3/2 cosh(ζj) sinh(ζj)
(

cosh2(ζj) + ω2
j − 1

)2 , E(j)
y (x, t) = ωj A

(j)
z , E(j)

z = −ωj A
(j)
y , (79b)

N (j)(x, t) = 1 +
(

1− ω2
j

)2 cosh(4ζj)− 2 (2ω2
j − 1) cosh(2 ζj)− 3

(

cosh2(ζj)− 1 + ω2
j

)3 , Px = 0 , (79c)

where ζj =
√

1− ω2
j (x − xj) and θj is an initial

phase. The soliton amplitude is R
(j)
0 ≡ |A⊥(xj)| =

2
√
1− ω2/ω2. It takes its maximum value R0,max =

√
3

for ωmin =
√

2/3, where the branch of Esirkepov solitons
terminates because the minimum local density vanishes.

In the following, we study interactions of pairs of soli-
tons with frequences ω1, ω2 and initial phase differ-
ence Ψ0 = θ2 − θ1, i.e., with initial conditions given by

Ay(x, 0) = A
(1)
y (x, 0) + A

(2)
y (x, 0), etc. For the density

we take care that the boundary condition N(x, 0) → 1
as x → ±∞ is satisfied by using the initial condition
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N(x, 0) = N (1)(x, 0) +N (2)(x, 0)− 1.
For the simulations using pNLS equation Eq. (46), we

introduce a parameter k
(j)
1 for each soliton. We then set

|k(1)1 | = 1, which fixes ǫ =
√

1− ω2
1 through Eq. (66),

and introduce the soliton amplitude as αj =
√

1− ω2
j /ǫ,

effectively using the freedom to choose k
(j)
1 = αj . Then,

according to Eqs. (A3) and (A5) of Appendix A, initial
conditions for the soliton centered at xj = Xj/ǫ are given
as

a(j)(X, 0) =
αj cosh

2(αj(X −Xj))

cosh2 [αj(X −Xj)] + ω2
j − 1

e−iθj , (80a)

∂a(j)

∂T

∣

∣

∣

∣

T=0

=
i α2

j

2
a(j)(X, 0) . (80b)

Finally, for the simulations with the NLS equation
Eq. (54), we expand Eq. (80a) to lowest order in ǫ, to
obtain the NLS equation soliton

a(j)(X, 0) = αjsech [αj(X −Xj)] e
−iθj . (81)

All simulations are carried out with the package
XMDS2 [42], using the pseudospectral method with Fourier
space evaluation of partial derivatives and a fourth or-
der Adaptive Runge-Kutta-Fehlberg scheme (known as
ARK45) for time-stepping. More details on the imple-
mentation are provided in Appendix B. We validated
our fluid code by verifying that a single soliton with

ω1 = 0.98, i.e., of the largest amplitude R
(j)
0 = 0.414

studied here, follows Eq. (79) up to t = 2× 104.
Initial conditions Eq. (80) do not correspond to an

exact soliton solution of the pNLS equation. However,
by integrating such initial conditions up to t = T/ǫ2 =
2 × 104, we show in Fig. 2 that the relative error intro-
duced by the choice of initial conditions, remains small
for the maximum amplitude considered in the following
numerical examples (corresponding to ω ≥ 0.98).

A. Small amplitude limit

For small amplitude solitons we find excellent agree-
ment between cubic NLS equation, pNLS equation and
cold-fluid model predictions.

1. Solitary waves of equal amplitude and no phase

difference

A typical case in which we have formation of a bound
state of solitons is shown in Fig. 3. In these simula-
tions, both solitons have frequencies ω1 = ω2 = 0.999,

R
(1)
0 = R

(2)
0 ≃ 0.0896 (corresponding to ǫ ≃ 0.0447,

k
(1)
1 = k

(2)
1 = 1), initial distance is d0 = 100 and there is

no initial phase difference. The behavior of the exact cold

4× 10−2 1× 10−1 4× 10−1

ǫ

10−6

10−5
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10−3

10−2

10−1
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ti
v
e
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FIG. 2. (color online) Estimate of the relative error in-
troduced by neglecting higher order terms in pNLS equa-
tion Eq. (46). We plot max [a(x, T )− a(x, 0)] /a(0, 0) for
solutions of Eq. (46) up to T/ǫ2 = 2 × 104, with initial
condition Eq. (80) with x1 = 0. Dots correspond to ω =
(0.999, 0.99, 0.98, 0.97, 0.96, 0.95). The solid line is the best
fit to the data, showing that rel. error ∼ ǫ4.3.

fluid model solutions is captured correctly by both the
NLS equation and pNLS equation models. Therefore, at
very small amplitudes, the behavior may be completely
understood in terms of the NLS equation. The major role
in soliton attraction and in bound state formation is thus
played by the leading term of the relativistic nonlinearity,
i.e., by the cubic term in the NLS equation.

The predictions of quasiparticle theory of Sec. IVC
for the collision time tcoll or the period of oscillations
tp = 2 tcoll are in excellent agreement with fluid model
simulations, see Fig. 4.

2. Solitary waves of equal amplitude and finite phase

difference

Next, we study the case of two solitons of equal fre-

quency ω1 = ω2 = 0.999 and amplitude R
(1)
0 = R

(2)
0 ≃

0.0896 (corresponding to ǫ ≃ 0.0447, k
(1)
1 = k

(2)
1 = 1) and

a finite initial phase difference Ψ0 = 0.1π, see Fig. 5. Also
in this case, we find excellent quantitative agreement be-
tween cold fluid model, NLS equation and pNLS equation
simulations. The solitons attract, but do not collide, in
agreement with quasiparticle theory which predicts that
collisions are inhibited for Ψ0 > Ψc = 0.136. The solitons
reach a minimum distance dmin ≃ 57 at time tmin ≃ 3485
and subsequently drift apart. Quasiparticle theory un-
derestimates the minimum distance dmin = 38.2, while
the time of minimum approach tmin = 3720 is in good
agreement with simulations. According to quasiparti-
cle theory, Eq. (74), the solitons differ in amplitude by
|∆A| = 2 ǫ |∆a| = 0.037. This is in excellent agreement
with the NLS simulation, for which the soliton ampli-
tudes differ at t = 105 by |∆A| = 0.036.
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FIG. 3. (color online) Comparison of simulations of two soliton interaction with frequencies ω1 = ω2 = 0.999, R
(1)
0 = R

(2)
0 ≃

0.0896 (corresponding to ǫ ≃ 0.0447, k
(1)
1 = k

(2)
1 = 1) and initial distance d0 = 100 using (a) the fluid model Eq. (1), (b) pNLS

equation Eq. (46), (c) NLS equation (24).
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FIG. 4. (color online) Comparison of results of quasiparticle
theory for ω = 0.999 (red, dashed line) and ω = 0.99 (blue,
solid line) with numerical results from simulations of the fluid
model (circles and cross signs, respectively) for the first col-
lision time tcoll for solitons of equal amplitude and no initial
phase difference, as a function of initial separation d0.

3. Solitary waves of unequal amplitude and no phase

difference

For solitons of unequal frequences ω1 = 0.999 and

ω2 = 0.998, and therefore also unequal amplitudes R
(1)
0 ≃

0.0896, R
(2)
0 ≃ 0.127 (corresponding to ǫ ≃ 0.0447,

k
(1)
1 = 1, k

(2)
1 ≃ 1.4139), with no initial phase difference,

as shown for example in Fig. 6, the solitons interact and
form a periodic bound state. However, their separation
remains finite. Again, there is excellent agreement be-
tween all three levels of description. This behavior can
be also understood in terms of quasiparticle theory of
NLS equation, see Ref. [25].

B. Larger amplitudes

For solitons of moderately large amplitude, but still in
the perturbative regime ǫ ≪ 1, cold-fluid model simula-
tions deviate from cubic NLS equation predictions and
the fifth order terms need to be taken into account.

1. Solitary waves of equal amplitude and no phase

difference

Figure 7 shows the interaction of two solitons of equal
amplitude with ω1 = ω2 = 0.99 (R0,1 = R0,2 ≃ 0.2879,

ǫ ≃ 0.1411, k
(1)
1 = k

(2)
1 = 1), separated by d0 = 60 and

no initial phase difference. The solitons collide approx-
imately at tcoll ≃ 2800, in good agreement with quasi-
particle theory prediction tcoll ≃ 2717, and they form a
bound state. However, contrary to the prediction of the
cubic NLS equation model, collisions are inelastic and
part of the soliton field decays away each time the soli-
tons collide, see Fig. 8. The bound state is reminiscent of
a system of damped oscillators: after each encounter, the
solitons decrease in amplitude and come closer together.
In turn, this implies that the period of bound state os-
cillations becomes shorter, as predicted by Eq. (72).

This behavior is also captured qualitatively by the
pNLS equation, see Fig. 7(b). However, the pNLS equa-
tion overestimates the loss of soliton field at collisions
and, correspondingly, the period of oscillations decreases
with a faster rate than in the fluid model simulations.
These deviations may be attributed to the breakdown, at
the moment of collision, of the assumptions of small field
magnitude and slow spatio-temporal evolution. In partic-
ular, close to the collision, the spatial scale for variations
in the envelope is a few c/ωpe, indicating that we should
expect quantitative discrepancies between the fluid and
pNLS equation simulations.

The cubic NLS equation approximation on the other
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FIG. 5. (color online) Comparison of simulations of two soliton interaction with frequency ω1 = ω2 = 0.999, amplitude

R
(1)
0 = R

(2)
0 ≃ 0.0896 (corresponding to ǫ ≃ 0.0447, k

(1)
1 = k

(2)
1 = 1) initial distance d0 = 100 and phase difference Ψ0 = 0.1π

using (a) the fluid model Eq. (1), (b) pNLS equation Eq. (46), (c) NLS equation (24).
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FIG. 6. (color online) Comparison of simulations of two soliton interaction with ω1 = 0.999, R
(1)
0 ≃ 0.0896 and ω2 = 0.998,

R
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0 ≃ 0.127 (corresponding to ǫ ≃ 0.0447, k

(1)
1 = 1, k

(2)
1 ≃ 1.4139) and initial distance d0 = 100 using (a) the fluid model

Eq. (1), (b) pNLS equation Eq. (46), (c) NLS equation (24).
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FIG. 7. (color online) Comparison of simulations of soliton interaction with frequencies ω1 = ω2 = 0.99, amplitude R
(1)
0 =

R
(2)
0 ≃ 0.2879 (ǫ ≃ 0.1411, k

(1)
1 = k

(2)
1 = 1) and initial distance d0 = 60 using (a) the fluid model Eq. (1), (b) pNLS equation

Eq. (46), (c) NLS equation (24).

hand, presents qualitative difference in this case. Since
cubic NLS equation is an integrable model, all soliton

collisions are elastic, leading to an exactly periodic bound
state of solitons. Therefore, the inclusion of the fifth
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order terms in our analysis is necessary for a qualitatively
correct description of soliton interactions.

The collision time on the other hand, as predicted by
quasiparticle theory of NLS equation, agrees very well
with fluid simulation results even in this larger ampli-
tude case, see Fig. 4. The reason for this is that attrac-
tion of solitons is determined by their overlap. For large
initial separation of the solitons this overlap occurs at
small amplitudes. Moreover, in the limit x → ±∞ the
exact soliton envelope Eq. (80a) takes the form of the
NLS equation soliton Eq. (80b). Therefore, NLS equa-
tion approximation is a valid one in order to determine
the initial attraction phase of two well separated solitons
even for larger amplitudes.
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FIG. 8. (color online) Two snapshots from cold fluid model
simulations of soliton interaction with frequencies ω1 = ω2 =

0.99, amplitude R
(1)
0 = R

(2)
0 ≃ 0.2879 (ǫ ≃ 0.1411, k

(1)
1 =

k
(2)
1 = 1) and initial distance d0 = 60 [see also Fig. 7(a)].

Dashed (blue) line corresponds to t = 0; solid (green) line
corresponds to t ≃ 10745, i.e., at maximum separation after
the third collision. The inset corresponds to the area in the
gray box.

2. Solitary waves of equal amplitude and finite phase

difference

As an example, we show the interaction of two soli-
tons with ω1 = ω2 = 0.99 (R0,1 = R0,2 ≃ 0.2879,

ǫ ≃ 0.1411, k
(1)
1 = k

(2)
1 = 1) with initial distance d0 = 60

and phase difference Ψ0 = 0.1π, in Fig. 9. The fluid
simulations show that the solitons initially approach and
then separate, moving in opposite directions with veloc-
ities vL = −0.002 and vR = 0.0021 for the left and right
moving soliton, respectively. The pNLS equation simu-
lations agree with the fluid model predictions quantita-
tively, faithfully capturing the velocities of the outgoing
solitons to be vL = −0.0024 and vR = 0.0025. On the
other hand, NLS equation simulations exhibit oscillations
in soliton position before the latter drift apart, a feature
not present in the fluid simulations. Furthermore, the
velocities of the outgoing solitons in the NLS equation

simulations are vL = −0.0005 and vR = 0.0007, rather
small compared to the fluid simulations.
Quasiparticle predictions for the distance of minimum

approach dmin and corresponding time tmin are compared
with the results of the numerical simulations in Table I,
showing excellent agreement.

dmin [c/ωpe] tmin [ω−1
pe ]

quasiparticle (analytical) 40.5 2751.4

fluid simulation 39.8 2703.0

pNLS equation simulation 39.7 2682.2

NLS equation simulation 40.0 2688.4

TABLE I. Comparison of analytical prediction based on
quasiparticle theory and results of numerical simulations of
the different models studied here, for the distance of minimum
approach dmin and corresponding time tmin, for two solitons

of frequency ω1 = ω2 = 0.99, amplitude R
(1)
0 = R

(2)
0 ≃ 0.2879

(ǫ ≃ 0.1411, k
(1)
1 = k

(2)
1 = 1), initial distance d0 = 60 and

initial phase difference Ψ0 = 0.1π (see Fig. 9).

We also present the interaction of two solitons with
ω1 = ω2 = 0.99 (R0,1 = R0,2 ≃ 0.2879, ǫ ≃ 0.1411,

k
(1)
1 = k

(2)
1 = 1), initial distance d0 = 60 and very

small phase difference Ψ0 = 10−6 in Fig. 10. In this
case, Ψ0 < Ψc, and indeed the two solitons do collide.
However, after a subsequent recollision, they diverge and
move away from each other. The pNLS equation simula-
tions capture this feature, even though the velocities of
the escaping solitons are much larger than in the fluid
simulations. However, in the NLS equation simulations
we see that the solitons keep recolliding for many itera-
tions. Quasiparticle theory predicts that even for small
initial phase difference the solitons will eventually drift
apart; however, from Eq. (73) we find that the time scale
required for this to happen for such a small initial phase
difference is of the order of 109, well beyond the max-
imum integration time t = 2 × 105 for which we could
simulate the system.
The cold fluid model conserves the normalized energy,

E = El + Ep + Ee, where

El =
1

2

∫

[

(

∂Ay

∂t

)2

+

(

∂Ay

∂x

)2
]

dx , (82)

Ep =
1

2

∫
(

∂φ

∂x

)2

dx , (83)

Ee =

∫

(γ − 1)n dx , (84)

are electromagnetic, electrostatic and kinetic energy con-
tributions, respectively. In soliton collisions with a finite
phase difference, energy can be transfered between the
two solitons. We show this in Fig. 11, where we plot as
a function of time the total energy Etot in the computa-
tional domain and the energy EL (ER) in the left (right)
half of the domain, for the cold fluid model simulation of
Fig. 10(a). We find that after the solitons separate, en-
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FIG. 9. (color online) Comparison of simulations of two soliton interaction with frequency ω1 = ω2 = 0.99 (amplitude
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FIG. 10. (color online) Comparison of simulations of two soliton interaction with frequency ω1 = ω2 = 0.99, amplitude
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(2)
1 = 1) initial distance d0 = 60 and phase difference Ψ0 = 10−6 using (a) the fluid

model Eq. (1), (b) pNLS equation Eq. (46), (c) NLS equation (24).

ergy has been transfered to the soliton in the right half
of the domain, while its amplitude has increased.

The results of Fig. 10 indicate that for larger ampli-
tudes, cold fluid model bound states do not persist under
perturbations involving phase difference of the two soli-
tons, leading to qualitative difference from the NLS equa-
tion model dynamics. Fig. 12 illustrates that the number
of re-collisions between solitons decreases as Ψ0 increases.
Such dynamics has been associated with chaotic scatter-
ing of solitons in the context of a perturbed NLS equa-
tion [43]. However, determining parameters for which
chaotic scattering occurs in our problem is beyond the
scope of this work. Fig. 12 suggests that truncation er-
ror in simulations can lead to the breaking of a bound
state, even when there is no initial phase difference, as
we have observed in Ref. [24]. Therefore, we have taken
care that simulations presented here are well resolved by
checking that varying the spatial resolution does not af-
fect the results.

3. Solitary waves of unequal amplitude and no phase

difference

The case of solitons of frequencies ω1 = 0.99, ω2 =

0.98, amplitudes R
(1)
0 ≃ 0.2879, R

(2)
0 ≃ 0.4144 (corre-

sponding to ǫ ≃ 0.1411, k
(1)
1 = 1, k

(2)
1 ≃ 1.4107), initial

distance d0 = 30 and relative phase Ψ0 = 0, is shown in
Fig. 13. In this case, the solitons after some oscillations
quickly diverge from each other. Simulations using the
pNLS equation faithfully capture this behavior. On the
contrary, NLS equation simulations show the formation
of a bound state of oscillating solitons. We can therefore
conclude that once again we have qualitative differences
between cold-fluid model and NLS equation soliton in-
teractions, with bound states appearing unstable within
the former model.
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FIG. 11. (color online) Total energy Etot in the computa-
tional domain (red, dot-dashed line) and energy EL (blue,
solid line) and ER (green, dashed line) in the left and right
half of the domain, respectively, corresponding to cold fluid
model simulation of Fig. 10(a).

C. Cubic-quintic NLS equation approximation

Finally, we show that the qualitatively new features
present in the larger amplitude simulations, may be cap-
tured by keeping only the quintic nonlinearity in Eq. (46),
i.e., by the cubic-quintic NLS equation:

i
∂a

∂T
+

1

2

∂2a

∂X2
+ |a|2a− 3 ǫ2 |a|4a = 0 , (85)

We present three different examples of soliton interac-
tion dynamics under Eq. (85) in Fig. 14. In all cases,
there is agreement at a qualitative level with cold fluid
model simulations of Eq. (85) of Sec. VB. This suggests
that the ’defocusing’ quintic term induces the qualitative
changes in soliton interactions. However, obtaining bet-
ter quantitative agreement requires keeping all terms in
Eq. (46), as in Sec. VB.

VI. DISCUSSION AND CONCLUSIONS

We studied weakly relativistic bright solitons and their
interactions using a perturbative, multiple scale analysis
and direct numerical simulations. We derived an equa-
tion for the evolution of the field envelope valid for small
amplitudes, keeping terms up to order five in the small
parameter.
Localization of the soliton solutions appears naturally

in our scheme through the requirement ω . ωpe ob-
tained through the linear dispersion relation. The lowest
order nonlinear effect is due to the relativistic nonlin-
earity, leading to a classical cubic NLS equation. The
cubic nonlinearity balances pulse dispersion, leading to
the formation of solitons. However, higher order terms,
most importantly the quintic term resulting from the ex-
pansion of the relativistic nonlinearity, become essential
at larger amplitudes. In particular, the response of the

plasma to the ponderomotive force and the formation of
a density cavitation which confines the soliton, is only
captured by keeping fifth order terms in the small pa-
rameter, leading to the pNLS equation Eq. (46). At even
higher amplitudes, soliton width becomes comparable to
the wavelength of the carrier electromagnetic wave and
the perturbative description breaks down.

We have demonstrated the utility of the NLS equation
and pNLS equations derived here by applying them to
the problem of standing solitary wave interaction. We
have found that the lowest order, NLS equation approx-
imation works very well for lower amplitudes, but gives
qualitatively different results at higher amplitudes. For
well separated solitons the quasiparticle approach pro-
vides analytical estimates for the first collision time and
minimum distance of approach of two solitons. We have
found that these estimates are in very good agreement
with fluid simulations, even for larger amplitudes. The
reason for this is that the overlapping part of well sep-
arated relativistic solitons can be well approximated by
the tails of NLS equation solitons. The effect of higher
order terms that leads, e.g., to inelastic collisions, only
becomes significant after the solitons have approached
each other.

Once the solitons are sufficiently close to each other,
the higher order terms become important, and lead to
qualitatively different results than in NLS equation. For
example, since the NLS equation is a completely inte-
grable equation, its soliton collisions are elastic. How-
ever, in our fluid simulations we have clear signatures
of inelastic soliton collisions accompanied by emission of
radiation. These features are captured qualitatively by
keeping the higher order terms in the pNLS equation.
We can attribute the emission of radiation in collisions
to the role of the ’defocusing’ fifth order nonlinearity. In
cases in which the total amplitude of the field remains
in the perturbative regime, good quantitative agreement
is obtained between the cold-fluid and pNLS equation
simulations. Our study suggests that the collision time
for well separated solitons can become larger than the

typical response time of the ions (mi/me)
1/2

2π /ωpe [8],
and ion dynamics would have to be taken into account
in future studies.

As we have seen in Fig. 11, one feature of soliton col-
lisions is the transfer of energy from one soliton to the
other during the interaction. Moreover, it can be seen
in Fig. 10, that the wave on the right hand side has a
larger amplitude after the collision. This is interesting
in connection to wave-breaking of solitons, which occurs
above a certain amplitude threshold, and has been pro-
posed in the past as a means to accelerate particles [5, 19].
Our simulations indicate that soliton interaction is a good
candidate to trigger wave-breaking, through which elec-
tromagnetic energy of the wave could be transfered to
the particles.

The introduction of NLS equation as the lowest order
approximation to the problem of relativistic solitary in-
teraction allowed the application of quasiparticle theory
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FIG. 12. (color online) Cold fluid model simulations of two soliton interaction with frequency ω1 = ω2 = 0.99, amplitude
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FIG. 13. (color online) Comparison of simulations of two soliton interaction with frequencies ω1 = 0.99, ω2 = 0.98, amplitudes

R
(1)
0 ≃ 0.2879, R

(2)
0 ≃ 0.4144 (corresponding to ǫ ≃ 0.1411, k

(1)
1 = 1, k

(2)
1 ≃ 1.4107), initial distance d0 = 30 and relative phase

Ψ0 = 0 using (a) the fluid model Eq. (1), (b) pNLS equation Eq. (46), (c) NLS equation (24).

−100 −50 0 50 100

x [c/ωpe]

0.0

0.2

0.4

0.6

0.8

1.0

t
[ω

−
1

p
e
]

×104

(a)

−100 −50 0 50 100

x [c/ωpe]

0.0

0.2

0.4

0.6

0.8

1.0

×104

(b)

−60−40−20 0 20 40 60

x [c/ωpe]

0

1

2

3

4

5
×103

(c)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.60

|A
⊥
(x

,t
)|

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.60

|A
⊥
(x

,t
)|

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

|A
⊥
(x

,t
)|

FIG. 14. (color online) Solitary wave interaction using the cubic-quintic NLS equation approximation Eq. (85) for two solitons

with (a) frequencies ω1 = ω2 = 0.99, amplitudes R
(1)
0 = R

(2)
0 ≃ 0.288 and initial distance d0 = 60, as in Fig. 7 , (b) frequencies

ω1 = ω2 = 0.99, amplitudes R
(1)
0 = R

(2)
0 ≃ 0.288 initial distance d0 = 60 and phase difference Ψ0 = 10−6, as in Fig. 9 and (c)

frequencies ω1 = 0.99, ω2 = 0.98 (R
(1)
0 ≃ 0.288 and R

(2)
0 ≃ 0.414) and initial distance d0 = 30, as in Fig. 13.

of NLS equation solitons in order to obtain analytical estimates for collision time and minimum distance of ap-
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proach. The development of the pNLS equation frame-
work, on the other hand, suggests the possibility to use
further mathematical tools such as the inverse scatter-
ing transform (IST) [25]. For instance, in the context of
Alfven waves, IST applied to the derivative-NLS equation
was used to explain the collapse of the bright Alfven soli-
ton and the formation of robust magnetic holes [44, 45].
The model derived here suggests that the IST of the NLS
equation could be used in a similar manner to analyze
simulations and get insight on the interaction and disap-
pearance of solitons in laser-plasma interaction.
In summary, a perturbed NLS equation describing

electromagnetic envelope evolution for weakly relativistic
pulses in plasmas has been derived. Auxiliary equations
describe the plasma density, momentum and electrostatic
potential in terms of the electromagnetic field. The pNLS
model agrees very well with fluid model simulations of
soliton interactions. Our simulations suggest that in the
small but finite amplitude regime the defocusing quintic
nonlinearity becomes important and soliton collisions are
inelastic.
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Appendix A: Relation of fluid model and envelope

initial conditions

Here, we specify how initial conditions of the cold fluid
model are related to initial conditions of the pNLS equa-
tion. Letting a = ar + i ai, we note that Equations (2a)–
(2b) and Eq. (11) with the help of a = −i b give

Ay(x, t) = 2 ǫ [ar(X,T ) cos t+ ai(X,T ) sin t] , (A1a)

Az(x, t) = 2 ǫ [−ai(X,T ) cos t+ ar(X,T ) sin t] , (A1b)

or

ar(X,T ) =
1

2 ǫ
(Ay cos t+Az sin t) , (A2a)

ai(X,T ) =
1

2 ǫ
(−Az cos t+Ay sin t) . (A2b)

Setting T = t = 0 we get

ar(X, 0) =
1

2 ǫ
Ay(x, 0) , (A3a)

ai(X, 0) = − 1

2 ǫ
Az(x, 0) . (A3b)

Using Eq. (10) in Eq. (A2) we arrive at

ar =
1

2 ǫ

[

Ay cos ω t cos

(

|k1|
2

2
T

)

−Ay sin ω t sin

(

|k1|
2

2
T

)

+Az sin ωt cos

(

|k1|
2T

2

)

+Az cos ωt sin

(

|k1|
2

2
T

)]

, (A4a)

ai =
1

2 ǫ

[

−Az cos ω t cos

(

|k1|
2

2
T

)

+Az sin ω t sin

(

|k1|
2

2
T

)

+Ay sin ωt cos

(

|k1|
2T

2

)

+Ay cos ωt sin

(

|k1|
2

2
T

)]

. (A4b)

Taking the derivative of A4 with respect to T and setting
t = T = 0 we get

∂ar
∂T

∣

∣

∣

∣

T=0

=
Az(x, 0)

4ǫ
|k1|2 , (A5a)

∂ai
∂T

∣

∣

∣

∣

T=0

=
Ay(x, 0)

4ǫ
|k1|2 . (A5b)

Appendix B: Numerical solution of fluid equations

For the numerical solution of the fluid system we chose
to use spectral (Fourier) discretization of the field and
plasma quantities, while time stepping is handled by an
adaptive fourth order Runge-Kutta scheme. This neces-
sitates the introduction of the components of the electric
field, in order to arrive at partial differential equations in-
volving only first time derivatives. Specifically, we write

the longitudinal component of Ampere’s law as

∂Ex

∂t
=

N

γ
Px , (B1)

while the wave equation is split into

∂E⊥

∂t
= −∂2A⊥

∂x2
+

N

γ
A⊥ , (B2)

and

∂A⊥

∂t
= −E⊥ . (B3)

The momentum equation yields simply

∂Px

∂t
= −Ex − ∂γ

∂x
. (B4)

Instead of solving Poisson Eq. (1d), we introduce the con-
tinuity equation in order to determine the rate of change
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of density,

∂N

∂t
= − ∂

∂x

(

N Px

γ

)

. (B5)

Finally, using Eq. (1e) we derive an equation for the rate
of change of γ,

∂γ

∂t
= − 1

γ

(

Px

(

Ex +
∂γ

∂x

)

+Ay Ey +Az Ez

)

. (B6)
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