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Abstract: Surface sensitive X-ray scattering methods are mostly non-destructive
tools which are frequently used to investigate the nature of thin �lms, interfaces
and arti�cial near surface structures. Discussed here are di�raction based meth-
ods, namely re�ectometry and the related techniques grazing incidence di�rac-
tion and crystal truncation rodmeasurements. For the experiment, an X-ray beam
is di�racted from surface near structures of the sample and detected by adequate
detectors. To analyze the data the according X-ray scattering theory has to be ap-
plied. The full theory of surface sensitive X-ray scattering is complex and based
on general considerations from wave optics. However, instructive insights into
the scattering processes are provided by the Born-approximation which in many
cases yields su�cient results. The methods are applied to solve the structure of
a mercury-electrolyte interface during a chemical reaction and to determine the
strain distribution in surface near SiGe quantum dots.
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1 Introduction

In today’s technology surfaces, interfaces and thin �lms are of eminent impor-
tance. The most prominent example are semiconductor devices which are solely
made from thin layers or nanometer sized objects. Other examples are coatings,
liquid-liquid interfaces and catalysts where chemical reactions take place at the
surface. The physical and chemical properties of �lms and interfaces are unique
and di�er signi�cantly from bulk materials. Reason is the con�nement in one (in
the case of a �lm) or more (roughness, quantumwires and dots) dimensions. The
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investigation of con�ned systems canbedone in di�erentways if the top surface is
accessible. However, for buried layers and interfaces X-ray or equivalent neutron
scattering methods are the only suitable measuring techniques which give reso-
lution on the atomic scale, are mostly non-destructive and do not require special
preparation of the sample.

The choice of X-rays or neutrons is determined by the scienti�c case. In gen-
eral but not always, neutrons are more adequate for samples of light elements
such as organicmatter, the investigation ofmagnetism, radiation sensitive objects
or in materials sciences with large samples requiring high penetration depth. X-
rays are advantageous for samples containing some heavy elements (sodium and
heavier), which are smaller than a few square millimeter and for measurements
with very high resolution and high dynamic range.

We are concentrating on X-radiation in this article.¹ X-rays are electromag-
netic waves with wavelengths of about a tenth of a nanometer. Therefore, elec-
trical and magnetic properties of matter can be probed with this resolution. The
largest detectable length scales are of the size of some ten micrometers. They are
determined by the resolution function of the experiment and by the coherence
properties of the X-rays. Measurements can be done time resolved. In particular
cases a time resolution of around hundred pico seconds can be achieved. In fu-
ture, some ten femto seconds may be attainable.

For surface near investigations di�erent X-ray methods are available, namely
X-ray re�ectometry (e. g. [1, 2]), surface di�use scattering methods at grazing inci-
dence (e. g. [3, 4]), crystal truncation rodmeasurements [5] and grazing incidence
di�raction (e. g. [6]). Each of the methods is sensitive to particular characteristics
of the sample. E. g. re�ectometry detects the �-dependent electron density pro-
�le whereas surface di�use scattering is sensitive to in-plane correlation lengths
and surface di�raction yields the atomic distribution close to the surface. The re-
sulting surface near electron density or atomic distribution are not just abstract
functions. Inmost of the cases a direct relationship to physical, chemical or mate-
rials science properties of the sample exists, such as stress, strain, surface tension
or growth and catalytic parameters [7–10]. This makes surface X-ray techniques
irreplaceable in surface science.

The quality of the X-ray data, and therefore the signi�cance of the scienti�c
results, is strongly determined by the quality of the X-ray source and the exper-
imental setup. To satisfy the increasing request of high-end X-ray applications,
in the recent decades various 3rd generation synchrotron radiation sources have
been launched (e. g. [11–13]). They o�er X-ray beams with sub-nanometer diame-

1 The theory for elastic scattering can easily be extended to neutrons
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ter, micro radiandivergence and timing capabilities in the sub-nanosecond range.
Moreover, the �rst 4th generation sources, the X-ray lasers, have become avail-
able, supplying a pulsed beam which allow for sub pico second experiments [14].
Tomake use of the unique features of state of the art X-ray facilities, dedicated ex-
perimental stations are availablewhich employ specially designedX-ray detectors
enabling fast data acquisition with high resolution and dynamic range.

In this article we introduce the surface sensitive X-ray methods based on
di�raction, particularly re�ectometry, crystal truncation rod measurements and
grazing incidence di�raction. We also present two descriptive and recent scien-
ti�c examples. The surfaces sensitive X-ray methods based on di�usely scattered
beams are not presented.

2 Theory of X-ray scattering from surfaces

X-rays are electromagnetic waves. They interact with electrical charges, in case of
matter mainly with the electrons. An instructive way to introduce the scattering of
X-rays is to employ the Born approximation [15, 16]. For this it is assumed that the
scattered intensity is small and that no energy is transfered to or from the X-ray
photon. In Born approximation the scattered amplitude��(�) of the X-ray waves
is proportional to the Fourier transformation of the electron density �(�) via

��(�) ∝ ∫�(�) exp(�� ⋅ �)	3
 (1)

where thewave vector transfer� = ��−�� is the vector di�erence of the exit and in-
comingwave vectors ��,�. If no energy is transfered the scattering is called ‘elastic’
and |��,�| = � = 2�/
 applieswhere 
 is the wavelength. In general, themeasured
quantity is not the amplitude, which is usually a complex function, but the inten-
sity �(�) = �(�)�∗(�) = |�(�)|2 where �∗ is the conjugate complex function of�.

In the case of a single atom this scattering amplitude is called atomic form
factor �(�) which for � = 0 resembles the number of electrons. It only depends
on the modulus of � as atoms are of spheric shape. The values of the form factors
are accurately tabled (see [17]). Remarkably, for each atom very speci�c correction
terms, �� and ���, exist. They are originated from direct interactions of the x-ray
photons with the electron shells of the atom. Both, �� and ���, depend on the
X-ray wavelength. They have their maximum at the element speci�c absorption
edges with�� on the order of some electrons. This enables X-ray experiments with
contrast variation as presented later in the example about germanium quantum
huts.
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Figure 1: Geometry of X-ray experiments at surfaces. The incident beam is marked by �� with
incident angle ��. Depending on the sample orientation several exit beamsmay exist
simultaneously. Drawn here are �� with exit angle �� in specular direction and �GID with a wave
vector transfer �GID in the surface. The angle � is the azimuth of the sample surface, the angle
2	GID the in-plane scattering angle.

In the context of this article, a surface is the boundary of a condensed matter
sample with di�erent electron density inside and outside. This can mathemati-
cally be expressed as �(�) = �∞(�)�(�)where �∞(�) is the (virtual) bulk electron
density extended to in�nity and �(�) represents the shape of the sample. In the
simplest case, �(�) is 1 inside and 0 outside the sample. With this representation
of �(�) and using the convolution theorem [18] the scattered amplitude can be
calculated by convolving of the scattering amplitude of the in�nite bulk and the
surface

��(�) ∝ ��∞(�) ⊗ ��(�) (2)

where the symbol ⊗ denotes the convolution de�ned by

�(�) ⊗ �(�) = ∫�(�)�(� − �)	3�
Here, ��(�) is the scattered X-ray amplitude originated from the presence of the
surface and��∞(�) from an in�nitely extending bulk, respectively. Consequently,
the surface modi�es the bulk scattering at all wave vector transfers � and vice
versa the modi�ed scattering amplitude contains information about the surface
properties at all �.

In principle, any surface scattering can be modeled by calculating the con-
volution of scattering amplitudes. However, it is more convenient to identify cer-
tain cases of surfaces sensitive scattering experiments and derive the theory sep-
arately. In the following, we discuss the crystal truncation rod scattering, the re-
�ectivity and the grazing incidence di�raction.
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2.1 Crystal truncation rods

In Born approximation, the scattering amplitude of an in�nite crystal can be de-
scribed as a sum of delta functions (the Bragg re�ections �(� − �ℎ
�)) which in
�-space are located at the Laue conditions �ℎ
� = ℎ�� + ��� + ��� where ℎ, �, �
are the Miller indexes and the ��,�,� are the reciprocal lattice vectors [15]. Hav-
ing in mind that �(� − �ℎ
�) ⊗ ��(�) = ��(� − �ℎ
�), the scattering amplitude
of the surface repeats at each Bragg re�ection, if the re�ections are su�ciently
far apart. In the special case of a semi in�nite sample which has the surface in
the (�, �)-plane at � = 0, the surface scattering amplitude can be simpli�ed as��(�) ∝ �(��)�(��)��(��), so the X-ray amplitude from the surface scattering
basically only depends on �� which is the direction perpendicular to the surface.
Convolving ��(�) with the Bragg re�ections results into intensity rods along ��.
These rods are called crystal truncation rods (CTR).

To actually calculate the CTRs, the amplitudes of the single unit cells of the
lattice are summedup rather than carrying out the convolution. The scattered am-
plitude of one unit cell of a crystal

�(�) = �∑
�=1

��(�) exp(�� ⋅ ��)
is the sum of the atomic form factors��(�) of all� atoms, taking into account the
position �� in the unit cell. �(�) is called structure factor andmust not be confused
with �(�)which is the shape function in this article. For the scattering amplitude
of an in�nite bulk sample

�(�) = �(�) ∑
��,�,�

exp(�� ⋅ [��� + ��� + ��	]) (3)

all structure factors have to be summed up, complying with the positions of the
unit cells in the crystal which are given by multitudes of the lattice vectors span-
ning the unit cell �, �, 	.

This equation has the form of a product of three geometrical series∑� �� with� = ��,�,� and� = exp(�� ⋅
)with
 ∈ {�, �, 	}. The calculation of the sum is rather
simple in the case of �nite geometrical series as a generalized formula exists [19].

In the simplest case and assuming that the lattice vector 	 is parallel to the�-axis, the surface information enters through the truncation of the series in (3)
at some index ��0 which corresponds to � = 0. The indexes ��,� are of no further
relevance for the CTR surface scattering as they correspond the scattering ampli-
tudes generated along the in-plane direction. In the case of a thin layer with �nite
thickness 	 the sum starts at some other index ��� with ��� = −	, thus, the series
(3) has a �nite length and can be calculated. In the case of semi-in�nite samples
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Figure 2: Left: Calculated CTRs for strained Germanium layers on a silicon substrate. The letters
correspond to the sketches on the left. The symbols on the top mean the position of Bragg
reflections: silicon (∙), relaxed germanium (△), strained germanium (⋆). The ��-axis is
displayed in units of the miller index � of silicon. Curves are shifted for clarity. Right: Sketches of
the corresponding samples. Bulks silicon (B), strained germanium (S), relaxed germanium (R).

the X-ray absorption factor exp(−�/!)with the absorption length! limits the se-
ries (3). The X-ray absorption damps the scattering amplitude from atomic layers
inside the sample and all terms at �-values much larger than! become insignif-
icantly small. Therefore, due to X-ray absorption the series (3) of a semi-in�nite
sample always becomes �nite and can accordingly be calculated by means of the
generalized formula for �nite geometrical series.

This procedure can be applied to various surface structures. For example, for
stacks of � crystalline layers prepared on a crystalline substrate (3) is used to cal-
culated the scattered X-ray amplitude ��(�) for each layer " and the substrate
separately. The total scattering amplitude is then given by the sum of all scatter-
ing amplitudes

�(�) = �∑
�=0

��(�) exp(−�����)
where the phase shifts of the amplitudes due to the ��-positions of the layers have
to be taken into account.

The concept of CTRs is not only restricted to crystalline layer systems but can
be extended to any surface or interface structure with preserved crystallinity. Ex-
amples are arti�cial nano-structures on substrates [20], surface roughness or sur-
face reconstructions [5]. The only requirement is that all parts of the sample ex-
hibit crystalline order.
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An example is shown in Figure 2 for which an eight atomic layer thick ger-
manium layer is positioned on top of a semi-in�nite silicon substrate. For the cal-
culation it was allowed for straining or relaxing the germanium layer in di�erent
ways. The according CTRs exhibit intensity maximawhich aremarked by symbols
on the top of the graph. Themaxima are the Bragg re�ections and the positions in�-space, in the �gure given in units of theMiller index � for silicon, are determined
by Laue conditions of silicon, germanium and strained germanium, respectively.
The width of the Bragg re�ections and the oscillation periods are determined by
the thickness of the according layer viaΔ� = 2�/	.

In summary, CTR measurements are a useful tool to investigate surface near
crystal structures, however, they are fully insensitive to amorphous matter. In
a later chapter an example is shown of CTRmeasurements on semiconductormul-
tilayer �lms which exhibit self organized inverted quantum hut structures.

2.2 Reflectivity

As mentioned, CTRs do not occur at amorphous matter. The reason is that (3)
describes the scattered X-ray amplitude of well ordered materials through the
sum over unit cells. To generalize the concept of surface scattering we are start-
ing again from (1) by locating the sample surface in the (�, �)-plane at � = 0.
Samples of this type could be surfaces of liquids, stacks of di�erent materials or
surface near layers. For now, we are assuming full translation symmetry in the(�, �)-plane. This means that atoms are not considered. Instead, an averaged �-
dependent electron density pro�le �(�) is used (see Figure 3). With this informa-
tion (1) becomes

�(�) ∝
�/2

∫
−�/2

	
2sin 
�∫

− 	
2 sin
�

�2∫
−�1

�(�) exp(���� + ���� + ����)	�	�	�.

Here, the limits of the integration in � direction are determined by the X-ray beam
width $. In the �-direction (along the beam direction) the limits are given by the
footprint of the beam with height % and in � direction the limits &1,2 are set to
values well outside the sample.

In the following, only beams with wave vector transfers � parallel to the �-
component are taken into account. This means, that the condition '� = '� and�� = 2� sin '� holds (see Figure 1) where '�,� are the incident and the exit angles
of the X-rays measured to the surface plane. This type of measurement is called
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Figure 3: (A) Possible representation of a two layer system on a substrate. (B) In-plane average
density generated from (A). (C) electron density �(�). (D) derivative of (C). The values �
represent the rms-roughness values of the according distribution functions.

X-ray re�ectivity. Now, we can write

�(�) ∝ �(��)�(��)��

�2∫
−�1

�(�) exp(����)	�
where the prefactor originates from the integration along the footprint direction.
By concentrating on the � components this equation can be reformulated as

�(��) ∝ 1�2
�
∫ 	�(�)	� exp(����)	�. (4)

using the fact that X-rays are not scattered from the �-positions &1,2 outside the
sample.

Equation (4) represents the scattered amplitude in the case of an X-ray re�ec-
tivity experiment. All properties of interfaces or layer systems, such as layer thick-
ness and interface roughness, determine the shape of the re�ectivity data �(��)
via a Fourier transformation of the derivative of the electron density pro�le (see
Figure 4). The pre-factor 1/�2

� damps the scattered amplitude at large '�,�. There-
fore, thenormalized re�ected intensity, called re�ectivity, drops at leastwith 1/�4

� .
Equation (4) is very descriptive, useful and easy to use, however, there is

a weak point: The assumption that the scattering signal is weak, as required for
the Born approximation, is inherently wrong for small incident angles. Therefore,
this equation cannot describe the full X-ray re�ectivity curve. To come around this
problem the re�ectivity has to be calculated using the dynamical scattering theory
which takes into account the full theory of electromagnetic waves. For re�ectivity
this means to employ the refractive index � which in the case of X-rays can be
written as (e. g. [2])

� = 1 − � + �* (5)

with

� = 
2

2�
 � and * = 
4�! (6)
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Figure 4: Calculated X-ray reflectivities in Born approximation for di�erent combinations of
parameters of the density pro�le according to Figure 3. Every single parameter signi�cantly
influences the shape of the curves. Numbers of � and � ar given in Å. Curves are shifted for
clarity.

and the classical electron radius 
 = 2.81719 × 10−5 Å. Here, e�ects of the elec-
tronic shell structure of atoms have been neglected. The value � is called disper-
sion. It is directly proportional to the electron density �. The value * is called
absorption depends on the absorption length !.

It is evident that the refractive index is smaller than unity for X-rays. Conse-
quently, a critical angle '�[rad] ≈ √2� exists and for '� < '� total external re�ec-
tion is observed. To actually calculate the re�ectivity using the dynamical scatter-
ing theory the density pro�le has to be sliced into layers. In the case of multilayer
samples this is naturally possible. In other cases, the electron density pro�le can
be approximate by very narrow slicing virtually perfect (see Figure 5).

Havingadequately sliced�(�), which is equivalent to slice the refractive index
pro�le �(�), the Fresnel re�ection coe�cients


�,�+1 = ��,� − ��,�+1��,� + ��,�+1
with kz,j = k√n2

j − cos2 'i (7)

of each interface between slice " and " + 1 are used to calculate the amplitude of
the X-ray re�ectivity [21]. The recursion algorithm

6� = exp(−2���,���) 
�,�+1 + 6�+1 exp(−2���,�+1��)1 + 
�,�+16�+1 exp(−2���,�+1��) (8)

is employed to calculate the amplitude of the re�ected beam where, actually,6�
is the ratio of the amplitudes of the re�ected wave and the transmitted wave. The
starting value is 6�+1 = 0 as no beam is re�ected from the backside of a semi-
in�nite sample. The recursion is carried out until " = 1. At the vacuum side of
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Figure 5: Left: Calculated X-ray reflectivities using the Fresnel theory according to the values of
case (a) in Figure 4. The plateau of the total external reflection, originated from �(�), is visible at
small ��. The three curves a,b and c correspond to di�erently sliced !-pro�le on the right with
(a) 1000, (b) 40 and (c) 25 slices. Curves of left and right graph are shifted for clarity.

the top interface the amplitude of the transmitted wave, which is equivalent to
the incident beam, is unity, thus61 = �(��) and the re�ectivity is given by |61|2.
Examples of resulting re�ectivity curves are displayed in Figure 5. They show the
plateau of total external re�ection at � < 0.04Å−1 which has not been predicted
by the Born approximation (Figure 4). For large �� the curve strongly depends on
the accuracy of the slicing. It shows, that the step width of the slicing Δ� should
be smaller thanΔ� ≤ 2�/(4��,max)with ��,max being the maximum ��-value of the
re�ectivity.

In summary, X-ray re�ectivity measurements are sensitive to the �-dependent
pro�le of the refractive indexwhich is proportional to the electron density. Hence,
re�ectivity data can be used to measure �lm thickness, interfacial roughness and
average electron density of mulitlayer samples with accuracy on the Å level. In
a later chapter an example of re�ectivity data taken at mercury-electrolyte inter-
faces is presented which shows that layers of ions form on applying an electrical
potential across the interface.

2.3 Grazing incidence di�raction

Comingback to crystalline samples itmayoccur that on zero incident angle'� and
and exit angle '� the in-plane rotation ; of the sample surface matches the Laue
conditionof an in-plane lattice vectorwith the in-plane scatteringangle2>GID (see
Figure 1) [6, 22]. In this case the corresponding wave vector transfer �GID would
be in the surfacewith �� = 0. However, in Born approximation this scenario is not
realistic as zero incident and exit anglemeans that all X-ray photons actually pass
the surface. On applying small '�,� to allow for photons hitting the surface �GID
would not the Laue condition of the in-plane lattice vector and the measurement
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of surface near in-plane characteristics of crystals seems to be virtually impossi-
ble.

But as for X-ray re�ectivity, the Born approximation is oversimplifying the re-
ality and refraction e�ects have to taken into account. For this, we consider the
X-ray wave inside the matter which is transmitted with an angle '" (see Figure 6)
given by Snell’s law of refraction. It turns out, that '" is always smaller than the
incident angle '� due to the real part of the refraction index of the matter which
is smaller than unity, and '" is zero for '� ≤ '� where '� is the critical angle as in-
troduced before. However, this does not mean that the X-ray amplitude inside the
matter is zero. In fact, an evanescent wave with �nite penetration depth ? forms.

The penetration depth is determined by the imaginary part of the Fresnel re-
�ection coe�cient inside the matter [6] where both waves, the incident and the
exiting, have to be considered. For a surface of a sample with refractive index �
and ��,(�,�) = �√�2 −  @A2'�,� the penetration depth is given by

? = 1|JB(��,� + ��,�)| (9)

which in the case of'� = '� converts to ? = 1/(2�|JB(√'2
� − 2� − 2�*)|), for small'� given in radian.Here, the functionJB()denotes the imaginarypart of a number.

If it is assumed that the absorption * is signi�cantly smaller than the dispersion�, which is usually the case for photon energies larger than 10 keV, then we can
�nally write for the penetration depth of an evanescent wave

? =
{{{{{{{{{{{{{{{{{{{{{

1
2�√'2

� − '2
�

for '� < '�

1
2�√* for '� ≈ '�

√'2
� − '2

�

2�* for '� > '�

. (10)

This means that ? is on the order of some 10Å for very small angles, between 100
and 200 Å for incident angles close to the critical angle and roughly linearly in-
creasing with '� for large incident angles. This is a very important �nding. First,
the evanescent wave traveling along the surface is useful for measuring pure in-
plane characteristics of the sample. Second, depth pro�ling is possible by tuning'�,� for adequate penetration depths.
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Figure 6: Incident ��, exit �� and transmitted wave �� with the according angles. Displayed from
left to right are decreasing �� (as noted). For �� below the critical angle �� an evanescent wave
evolves, which exponentially decays inside the matter.

Figure 7: Intensity #GID of a crystalline layer of 1000 Å thickness, calculated at �GID matching
the Laue condition (black curve, left axis). The surface roughness is � = 2 Å. Also shown is the
penetration depth for � = 1 − (5 − �0.5)10−6 (gray curve, right axis).

To actually calculate the scatteredX-ray amplitude froman in-plane re�ection
the Fresnel transmission coe�cients of each layer

I�,�+1 = 2��,���,� + ��,�+1
. (11)

for the incident and the exiting X-ray beams are needed. Considering a sample
with just one surface and no layer on top, I�,�+1 = I0,1, the Distorted Wave Born
Approximation DWBA yields

�GID(�GID, �$,�) ∝ I0,1('�)I0,1('�)�(�GID, �$,�) exp (−12K2�2
$,�) (12)

for the scattered amplitude of the GID re�ection. Here, �GID is the in-plane com-
ponent of the wave vector transfer (see Figure 1) and, in good approximation,�$,� = RM(�1('�) + �1('�)) is the real part of the � component of the wave vec-
tor transfer in matter (as derived from (7)), � is the scattered amplitude (see 3)
and K the surface roughness [6]. This equation generates a maximum intensity at
the critical angle. Therefore,measurements are usually conducted at incident and
exit angle close to the critical angle if the penetration depth is of no signi�cance.
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If a crystalline layer is investigated by GID a CTR like rod along �� appears
with oscillations according to Figure 2. In this case the penetration depth has to
be considered. Reason is that for small '� (that means small ?) the penetration
may not be su�cient to scatter X-rays from the lower interface whereas for larger'� this is the case and intensity beatings would be observed. This is illustrated in
Figure 7 which shows �rst the raising contrast of the beating at large penetration
depths and second the maximum of the di�racted intensity at '� = '�

To recapitulate, grazing incidence di�raction is a method which employs the
e�ects of the critical angle and the �nite penetration depth to receive �-dependent
information about in-plane crystalline structures. Examples of GID data will be
shown later. There, GID has been used to solve the in-plane structure of a thin
adlayer at mercury-electrolyte interfaces. This data is used to complement the re-
�ectivity data and enables to determine the 3d structure of the interfacial layers.
GID is also part of the second example where it complements CTR data to deter-
mine the strain of inverted quantum hut structures in semiconductor layers. In
this example the contrast has been varied by changing the X-ray wavelength to
enhance the sensitivity of the measurements.

3 Examples

In this chapter two example will be presented in more detail. The �rst is an in-
vestigation of layers arising at mercury-electrolyte interfaces under electrostatic
potential. The second example deals with strain determination in inverted Ge-Si
quantum hut structures. Both example stress on the X-ray method and the scien-
ti�c outcome. Details on sample preparation will not be presented.

3.1 X-ray studies of crystal nucleation at the

mercury-electrolyte interface

X-ray re�ectivity andGID are complementingmethods in identifying the structure
of crystalline layers which, for example, appear at mercury-electrolyte interfaces
on applying electrostatic potentials. One example is the work of A. Elsen et al. [23]
which is summarized here.

Chemical reactions of two immiscible liquids take place at the interface. The
surface area is a very well de�ned environment being soft, smooth, defect- and
stress-free and with a well de�ned equilibrium state. That means that at liquid-
liquid interfaces the growth ofmaterials can occur in a very controlled way. There-
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Figure8: (A) Measured (symbols) and �tted (solid lines) X-ray reflectivities of the
mercury-electrolyte interface, all shifted vertically for clarity. The upper curve is a reference
without Pb2+ in the electrolyte. For the others the potential of th mercury against a reference
anode is given. (B) The corresponding cyclic voltammogram with the vertical bars at the
potentials of the reflectivities. (C) Electron density pro�les which have been used for the �t. The
reference is not shown. (D) A possible arrangement of atoms according to (C).

fore, the investigation of the contact area of two liquids is of eminent importance
for material synthesis. To analyze the growth of such layers with atomic resolu-
tion, X-ray scattering methods are superior over others: They are non-destructive
and do usually not a�ect the chemical reaction. Furthermore, full 3d information
is available.

The initial stages of crystal growth at model mercury-electrolyte interfaces
have been investigated with X-ray re�ectivity and grazing incidence di�raction.
For this the electrolyte, a sodium �uoride base electrolyte containing Pb2+ and
Br− ions has been used. The crystal growth has been controlled electrochemically
via a Faradaic reaction. Pb amalgamates into Hg at potentials ≤ −0.70V (mea-
sured against a reference electrode situated in the electrolyte), whereas at more
positive potentials the amalgamated lead is released into the electrolyte. This fully
reversible process can be investigated by measuring the electron density pro�le
perpendicular to the mercury-electrolyte interface using X-ray re�ectivity mea-
surements, the in-plane structure by grazing incidence di�raction. The presented
data has been recorded at the high resolution di�raction beamline P08 [24] which
is situated at the 3rd generation synchrotron radiation source PETRA III in Ham-
burg, Germany [13]

Figure 8 presents the X-ray re�ectivity measurements, the re�nements and
the results. It shows, that during Pb amalgamation at −0.9V the re�ectivity and
therefore the interface structure is identical to that of the reference: a Pb2+-free
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Figure 9:Measured Bragg-reflections of the PbFBr adlayer in GID geometry (“surface plane”)
and out of-plane data (“specular axis”). The dashed vertical lines mark the position of PbFBr
Bragg-reflections. The according (ℎ
�) is noted on top. The �-axis � denotes �GID in the case if
“surface plane” data and �� in the case of “specular axis”.

electrolyte on mercury. However, drastic changes are observed as the potential
increases into the deamalgamation regime. Although a small maximum at �� ≈2.2Å−1 due to Hg atomic layering still persists pronouncedmodulations appear in
the re�ectivity (Figure 8a). These indicate signi�cant structural changes at the in-
terface, speci�cally the presence of a well-de�ned interfacial adlayer. The period
of the modulation yields an estimated adlayer thickness of 7.8 Å. The curves have
been analyzed quantitatively. The modeling reveals that the density pro�le of the
adlayer corresponds to a monolayer of PbFBr with the  -direction (the �-direction
in reciprocal space) of the unit cell pointing perpendicular to the interface. This
adlayer of PbFBr is composed of a stack of 5 ionic sub-layers (Figure 8c and 8d).

However, the X-ray re�ectivity data does not yield any information about the
in-plane structure of the adlayer, and it cannot be used as a proof for atomically or-
deredPbFBr�lms. Tomonitor crystallinity, in-planeGIDmeasurementshavebeen
conducted. The positions of the Bragg-re�ections which appeared in this data are
a unique �ngerprint and match perfectly PbFBr. For this measurement the detec-
tor has been scanned along 2>GID (see Figure 1) which is, for powder like samples,
equivalent to scan �GID. The intensity along the '�-direction has been integrated.
The data (see Figure 9 “surface plane”) show the (110), (111),(102) and (200) Bragg-
re�ections of the tetragonal PbFBr. Surprisingly, re�ections appear with Miller in-
dex � ≠ 0, even though it was expected from the re�ectivity that the �-direction
of PbFBr is perpendicular to the interface meaning that only (ℎ�0) peaks would
arise in the in-plane direction.

To understand this �nding an out-of plane scan of the detector has been con-
ducted with '� = '� + O'. Here, O' is a small angular o�set (of e. g. 0.1∘) to
avoid measuring the re�ectivity. This data (“specular axis”) is also displayed in
Figure 9. The Bragg-re�ection here are mainly of the type (00�), as expected, but
with a small contamination of the (101)-peak.
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All data can be interpreted as follows: The re�ectivity indicates the formation
of a PbFBr adlayer with an orientation of the  -axis along the surface normal of
the interface. The in-plane symmetry of the adlayer is identical to the P, Q-plane of
PbFBr and it acts as a template for 3D crystallites. The observed di�raction peaks
imply the presence of these crystallites at the interface in addition to the adlayer.
Theyarenot randomlyorientedbutwith apreferredorientationdeterminedby the
adlayer. Thewhole processmay be viewed as a controlled precipitation,where the
electrochemical deamalgamation reaction increases the Pb2+ concentration near
the surface, promoting formation of the solid adlayer. This precursor layer acts as
a template for subsequent growth of highly aligned 3D crystalline deposits.

3.2 X-ray studies of inverted quantum hut structures in a Si-Ge

superlattice

CTR scattering and GIDmeasurements have been used to determine the structure
and the stress in self organized inverted quantum huts which arise when grow-
ing thin germanium siliconmultilayer stacks with molecular beam epitaxy at low
temperatures, as published by M. Sharma et al. [25].

Germanium and silicon crystallize in a cubic diamond structure with lattice
constants PSi = 5.431Å and PGe = 5.658Å. In bulk crystals Ge and Simix perfectly
at any given ratio with the resulting lattice constant P(�) given by Vegard’s lawP(�) = PSi(1 − �) + PGe� for the composition Si1−�Ge� [26]. However, when de-
positing Ge on Si (001) surfaces by molecular beam epitaxy intermixing does not
occur but the growth of a well separated Ge-layer is observed (e. g. [27]). Due to the
lattice mismatch, the �rst two to three layers of Ge grow heavily strained. For tem-
peratures higher than 500 ∘C further growth gives rise to formation of Ge quantum
hut structures. At lower growth temperatures large length-scale interdi�usion of
Ge occurs into the underlying silicon provided the Ge layer thickness is between
4 and 6 unit cells [28] (see Figure 10a for a Si-Gemulitlayer). These inverted quan-
tum hut structures exhibit quite strong photoluminescence originated from the
complex strain distribution which couples to the electronic band structure.

Subject of this investigation is the strain distribution of the inverted quan-
tum huts. To exactly determine the strain, CTR and GIDmeasurements have been
conducted at beamline P08 at PETRA III [24] using the contrast variation method
as introduced in the theory part about the atomic form factor. Accordingly, X-ray
measurements have been done at two di�erent wavelengths 
1 = 1.1227Å and
1 = 1.1167Åwhere the latter corresponds the the germaniumK absorption edge.
For both wavelengths the atomic form factor ��

�� is as good as identical whereas��
Ge,1 and ��

Ge,2 di�er signi�cantly.
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Figure 10: (A) High resolution TEM of a stack of inverted quantum huts in a Si-Ge multilayer. B
and C point to the of bulk and cap layer, respectively. Dark parts correspond to high germanium
content. (B) Scans around the Si 800 reflection measured in GID geometry at di�erent
wavelength and a bare reference sample. (C) Calculated fraction � of Ge, using (B) and (13). (D)
In-plane strain calculated using (C), Vegard’s law and (14). (E) Out of-plane lattice constant
calculated using (D) and (15).

Using the equation

� = [1 + ��
Ge,2√�1 − ��

Ge,1√�2��
��(√�2 − √�1) ]

−1

(13)

the content of germanium in Si1−�Ge� can directly be determined (the small ���

corrections are neglected here) from the data �1,2 without modeling or re�ne-
ment [29]. Here, the intensities �1,2 aremeasured around the Si 800 in-plane Bragg
re�ection by scanning the intensity over �GID (see Figure 10b). The resulting Ger-
maniumcontent � is displayed in Figure 10c. Having a closer look at the �gure, re-
gion II represents the Si1−�Ge� wet layer between the actual quantum hut and the
Si bu�er layer as P|| is matching PSi = 5.431Å. The value of � is approximately 0.4
which is in accordance to the �nding of the TEM picture Figure 10a which shows
a diluted Ge-layer below the base of each quantum hut. Very likely, region III rep-
resents the quantum huts itself.

The in-plane strain (Figure 10e) can be derived from

X|| = [P|| − P(�)]/P(�) (14)
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Figure 11: (a) CTR measurements at the 004 Bragg reflection. The narrow feature at �� = 4.63 Å−1

is the Si Bragg reflection. The solid line is the re�nement, the symbols or the data. (b) The
resulting depth dependent �⊥(�). (c) The out of-plane strain as calculated from (d) and Vegard’s
law. (d) Ge fraction � as derived from (b) and Figure 10e and c. The insets show magni�cations
of one subunit of the multilayer with the arrows marking the top and bottom of the the inverted
quantum hut.

when using Vegard’s law and, furthermore, the out-of plane lattice constant (Fig-
ure 10e) has been derived using the Poisson relation

P⊥ = P(�) − Y12Y11
[P|| − P(�)]. (15)

Here, Y11 and Y12 are the known values of the strain tensor where the ratiosY12/Y11 for Si and Ge have similar values around 0.38.
The out of-plane lattice constant distrubution can also be deduced indepen-

dently fromCTRmeasurements (see Figure 11a). For this, the functionP⊥(�) serves
as the �t parameterwhereas the content� of Gehas been extracted fromFigure 10.
The perpendicular strain can be calculated by X⊥ = [P⊥−P(�)]/P(�), correspond-
ing to (14). The resulting P⊥-pro�le shows the above mentioned wet layer as max-
ima in lattice constant and Germanium fraction. The actual quantum dot appears
as a hump (see insets of Figure 11) with Ge concentrations between 20% and 30%
as it was already concluded from the GID data.

From all the collected information, including the TEM picture, the average
strain and lattice parameter distribution of an inverted quantum dot can be de-
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duced. It turns out that at the base of the quantum hut the strain X|| is almost2% whereas X⊥ is basically 0. On the contrary, at the tip values of X|| = 0 andX⊥ = −0.5% are observed. In the original publication, a further measurement was
used to con�rm these �ndings [25].

4 Conclusion

It has been shown, that X-ray re�ectivity, gazing incident di�raction and crys-
tal truncation rod measurements are sensitive tools to investigate the surface
near properties of condensed matter. In particular, re�ectivity measurements are
suited to determine the electron density pro�le perpendicular to the sample sur-
face with sub-angstrom resolution. Crystal truncation rod data and grazing inci-
dence di�raction are useful if the sample is, at least partial, crystalline. Best re-
sults without ambiguity are achieved by combining methods, as presented in the
examples. Very recent developments are stressing on time resolved surface mea-
surements with resolution of better 1/10 s per full CTR-scan to investigate the re-
action process on catalytic surfaces [10] or with nanosecond resolution in pump-
probe mode to learn about the vibrational modes of lipid membranes [30]. This
opens new perspectives for surface sensitive X-ray scattering methods.
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