
JAVA DOOCS Data Display (JDDD) [1] is the

standard tool for developing control system panels for

the FLASH facility and European XFEL. The panels are

mainly started on DESY campus. For remote monitoring

and expert assistance a secure, fast and light-weight

access method is required. One possible solution is

using HTML5 as transport protocol, because it is

available on many common platforms including mobile

ones.

For this reason an HTML5 version of JDDD, running

in a Tomcat application server, was developed.

WebSocket technology is used to transfer the panel

image to the browser. In the other direction, mouse

events are sent back from the browser to the Tomcat

server. Now thousands of existing JDDD panels can be

accessed from remote using standard web technology.

No special browser plugins are required.

This article discusses the general issues of the web-

based interaction with the control system such as

security, usability, network traffic and scalability, and

presents the WebSocket approach.

JDDD is a common tool for designing and running

control system panels at DESY [2,3,4,5,6]. Around 3000

control panels are started each day from DESY offices

and in the control room.

Experience shows that many of these panels are

needed by experts for remote assistance. The most

comfortable access way is using a web interface, which

is available on any PC and mobile device all over the

world without the necessity of installing any additional

software. The requirement for this interface is that no

special web version of the panels should be needed to

avoid double work. The communication should be fast

and light-weight and has to work also in limited

bandwidth environments.

A common technology for modern responsive web

communication is AJAX (Asynchronous JavaScript and

XML). Using AJAX, the web browser polls the server

for data on each update. For the transfer of big data

packages at high frequency – as it is needed for the

JDDD web interface - the creation of a new HTTP

connection every time would be a bottleneck. A better

solution is a persistent connection like WebSockets.

WebSockets provide a protocol between client and

server, which runs over a persistent TCP connection. A

visual representation of such a communication is

displayed in Fig. 1:

Any network communication that uses the WebSocket

protocol starts with an opening handshake. The client

web browser sends a request to the server to upgrade the

HTTP to WebSocket protocol and if the server supports

WebSockets, it sends back a response saying: Ok I am

upgrading your HTTP to a single TCP socket

connection.

Through this open connection, bi-directional, full-

duplex messages can be exchanged at a high frequency

(simultaneously or back and forth). In the case of a

JDDD WebSocket connection, panel images, which are

created on the server side, are sent to the client and

mouse events, which are produced in the browser

window, are sent back to the server.

If the client or server closes the connection, the panel

image creation is stopped on the server and all monitors

to control systems values are removed.

The WebSocket protocol has been supported since

Tomcat 7 and Glassfish 4. Both possibilities were tested

and finally the choice was made for Tomcat, because it

is more light-weight and the administration is easier.

On the server side one JDDD application is running in

the Tomcat web server (see Fig. 2). All panels are started

in headless mode in this single JDDD instance. A

buffered image is created for each panel with an update

rate of currently 0.5 Hz.

To run the JDDD web interface on systems with low

bandwidth, the network traffic has to be reduced to a

minimum. On the server side this is done by cutting the

panel image in 10 times 10 sub-images. Each sub-image

is checked for modification and only the parts, which

have changed are sent to the client.

In the web browser (client side) all mouse move, click

and drag actions are collected using JavaScript. Since

the positions differ from browser to browser, they are

corrected on the client side before sending them to the

server. Now the JDDD web interface emulates the

corresponding Java mouse events, so that the panel

reacts like on “normal” mouse clicks.

Figure 2: The JDDD web interface architecture using

WebSockets for client / server communication.

Before starting the web service a JavaScript login

dialog is displayed in the web browser. The user name

and password is sent to the server and a DESY Kerberos

authentication is executed. The panel is already started

in the background and shows up on valid authentication.

The JDDD WebSocket project contains a session

manager storing the username, session id and a time

stamp for each session. When a new panel is opened on

a button click, the session id is inherited from the parent

panel and no further authentication is required. The

session times out a certain time (currently 1 hour) after

the last mouse click. Then all panels of the session are

stopped and the session id is removed from the session

manager.

During the first test phase, the JDDD web interface

has been deployed in a “read only” mode. Changing

control system values is not possible.

At the moment one Tomcat instance is running on the

web server. In this Tomcat server JDDD is started in a

single Java Virtual Machine (JVM). The number of

panels, which can be operated in one JDDD application,

depends on the CPU power, the maximum heap space

and on panel complexity. With the existing hardware 15

to 20 standard panels can be started with a proper speed.

Assuming that each user starts approximately 5

control system panels at the same time in his web

browser, 3 to 4 people can use the JDDD web interface

simultaneously.

To provide the service for a larger number of users,

the installation of a Tomcat Cluster is required. A load

balancer distributes the incoming requests among the

Tomcat servers in the cluster.

A proof of concept that the presented technology

fulfils our requirements has been done. The web

interface has a similar look and feel and functionality as

native JDDD (see Fig. 3) and the panel update rate of

0.5 Hz is fast enough for most operational tasks (some

restrictions exist: e.g. right mouse clicks cannot be

handled, since these are reserved for browser context

menus).

The fundamental advantages of the used architecture

are:

• Panels have to be designed only once and can be

used in standard JDDD as well as in the web

interface.

• Changes and improvements in the JDDD source

code are instantly available in the web interface.

Some accelerator experts are already working with the

current JDDD web interface. To provide the web

interface to a larger group of users an improved server

setup is required. To support the real operation the “read

only” mode has to be changed to full read/write mode,

which is planned to be done in the near future.

[1] jddd website: http://jddd.desy.de

[2] E. Sombrowski. A. Petrosyan, K. Rehlich, W. Schütte,

“jddd: a tool for operators and experts to design control

system panels”, ICALEPCS’13, San Francisco, USA,

October 2013.

[3] E. Sombrowski. A. Petrosyan, K. Rehlich, W. Schütte,

“jddd, a state-of-the-art solution for control panel

development”, ICALEPCS’11, Grenoble, France,

October 2011.

[4] E. Sombrowski, P. Gessler, J. Meyer, A. Petrosyan, K.

Rehlich, “jddd in action”, ICALEPCS'09, Kobe, Japan,

October 2009.

[5] E. Sombrowski, K. Rehlich, “First Experiences with

jddd for Petra Vacuum Controls”, PCAPAC’08,

Ljubljana, Slovenia, October 2008.

[6] E. Sombrowski, A. Petrosyan, K. Rehlich, P.Tege,

"jddd: A Java Doocs Data Display for the XFEL",

ICALEPCS'07, Knoxville, Tennessee, October

