Measurement Accuracies of Higgs Hadronic Branching Fractions in vvh at a 350GeV ILC

Felix Müller

Terascale Alliance Meeting 2014 02.12.2014

Collaborators: Hiroaki Ono

Introduction and Motivation

- Measuring the Higgs BR is one of the key issues of the ILC after the discovery of the 125 GeV Higgs
- Any deviations in the Higgs coupling to mass relation is an indication of new physics
- Need precision measurements as predicted deviation are small

Introduction and Motivation

- All decay channels accessible for the ILC (even charm)
- High precision measurements of Higgs hadronic decay channels possible for a 125 GeV Higgs

BR /	bb	СС	gg	TT	WW*	ZZ*	μμ
LHCHXSWG	57.8%	2.7%	8.6%	6.4%	21.6%	2.7%	0.2%

Possible Final States for the ILC

- Nearly all final states from Higgs Strahlung and Vector Boson Fusion (VBF) accessible
- Z→qq possible due to tagging performance (b and c) and low QCD background
- Z→ee has very low VBF contribution and good reconstruction of the Z
- Z→vv possible due to the known initial state
 →BUT more difficult to distinguish between
 VBF and Higgs Strahlung

Introduction and Motivation

- > 250 GeV: Higgs Strahlung dominant
 - $\sigma_{zH} \times BR$
 - σ_{ZH} from recoil measurement
- > 350 GeV: Higgs Strahlung + WW-fusion

•
$$(\sigma_{ZH} + \sigma_{WW}) \times BR$$

 $\blacksquare \ \, \text{Need} \,\, \sigma_{ww}$

Goal of the Analysis

- Update the Letter Of Intent (LOI) analysis (arXiv:1207.0300) with a full simulation study using Technical Design Report (TDR) data samples
 - Update Higgs Mass (from 120 GeV to 125 GeV)
 - → Branching fractions depend on the mass of the Higgs
- Check the influence of γγ-overlay
- Add missing mass in the fit to get cross section ratio of Higgs Strahlung and WW-fusion

BR	bb	СС	gg	TT	WW	ZZ	γγ	Ζγ
previous study	65.7%	3.6%		8.0%	15.0%	1.7%	0.3%	0.1%
new study	57.8%	2.7%	8.6%	6.4%	21.6%	2.7%	0.2%	0.2%

Reconstruction Strategy

- > vvh → 2 Jets + Missing Mass
- γγ-overlay removal
 - Low p_⊤ γγ → hadron background
 - Virtual photons get radiated off the primary beam e⁻/e⁺
 - Real photons from bremsstrahlung and syncrotron radiation
- Jet clustering and flavor tagging (LCFIPlus)
- Event selection with cut analysis and BDT
- > Log Likelihood Template fit to the flavor likeness of the Higgs di-jets

γγ-Overlay Removal

- Overlaid background per event depends on beam energy : 350 GeV → < N_{vv} > = 0.33
- Exclusive k₁ algorithm to remove overlay
- By tuning the number of jets and r parameter the overlay can be removed
- Kinematic variables are correctly reconstructed in the relevant energy regime
- Getting more important for higher beam energies (500 GeV → < N_{vv} > = 1.7)

Binned Log Likelihood Template Fit

- Create 3D-Templates with b,c and bc likeness of the events
- LOI study used the fit function:

$$N_{ijk}^{Data} = \sum_{s=b, c, g, other} \frac{\sigma \cdot BR(h \to s)}{(\sigma \cdot BR(h \to s))^{SM}} \cdot N_{ijk}^{h \to s} + N_{ijk}^{bkg}$$

with N_{iik} the number of events in the bin ijk

- h → other was fixed
- > σ includes Higgs Strahlung and WW-fusion
 - Disentangling both processes done by hand
- Binned log likelihood fit ignoring zero entry bins
 - Zero entry bins do contain information
 - Bias of the fit results

Improved Fit Function

> Assuming the knowledge of $\sigma(Zh)$ from recoil measurements

$$\frac{\sigma^{SM}(Zh)}{\sigma(Zh)}N_{ijk}^{Data} = \sum_{t=ZH,WWH} \sum_{s=b,c,g,other} \frac{\sigma^{SM}(Zh)}{\sigma(Zh)} \frac{\sigma(t)}{\sigma^{SM}(t)} \cdot \frac{BR(h \to s)}{BR^{SM}(h \to s)} \cdot N_{ijk}^{t \to s} + \frac{\sigma^{SM}(Zh)}{\sigma(Zh)} N_{ijk}^{bkg}$$

- One can fit the cross section ratio and the branching ratios directly
- > Log likelihood fit which also takes zero bins into account
- Determination the error on the fit:
 - Fit 1000 toy MC samples from data
 - Study dependency on the binning (expect convergence)

3D-Templates (Branching Ratio)

3D-Templates (Cross Section)

Results

- Using the LOI fit function the obtained results worsen with the additional free parameter of $h \rightarrow$ other
- No cut on the missing mass as this seems difficult in the final missing mass spectrum
 - \rightarrow assume knowledge of: $\sigma = e_{Zh} \cdot \sigma(Zh) + e_{WWh} \cdot \sigma(WWh)$

Realtive Error on	3 par. Fit [%]	4 par. Fit [%]
σ·BR(h->bb)	1.0	1.0
σ·BR(h->cc)	5.9	5.9
σ⋅BR(h->gg)	2.5	3.0
σ·BR(h->other)	-	3.9

Results

- With the new fit function, one directly receives the branching ratios
- > Slightly worse performance expected due to a new free parameter, but we don't need to get the BR out of σ -BR
- The error on σ(Zh) is not yet included

Realtive Error on	%
BR (h->bb)	1.8
BR (h->cc)	6.0
BR (h->gg)	3.2
BR (h->other)	4.0
σ(WWh)/σ(Zh)	2.3

Combining Results

- Combining vvh with other final state analysis
- Extrapolated results from scaling signal and background with the effective cross sections with the current beam parameter and by using LHC recommended Higgs BR
- The fitting procedure was changed which improved the results compared to the extrapolated results

Updated results		250 GeV	1	,	350 GeV	/
L(fb ⁻¹)	250 fb ⁻¹	P(-0.8,+0).3)	330 fb ⁻¹	P(-0.8,+0	0.3)
ΔσBR/σBR	bb	CC	gg	bb	CC	gg
ννh (WW and ZH)	1.6%	14.8%	9.7%	1.1%	5.9%	2.5%
qqh (ZH)	1.6%	24.0%	18.4%	1.5%	15.0%	13.2%
eeh (ZH)	4.4%	57.4%	36.3%	6.5%	>100%	>100%
μμh (ZH)	3.4%	34.0%	22.3%	4.6%	65.7%	30.9%
Combined	1.0%	11.6%	7.8%	0.8%	5.5%	2.5%
Extrapolated	1.1%	8.0%	6.8%	0.9%	6.5%	5.2%

All ZH only studies performed by Hiroaki Ono

Summary and Outlook

- Higgs hadronic branching ratios were studied in the vvh final state for a 350 GeV ILC
- γγ-overlay not an issue for a center of mass energy of 350 GeV
- New method to extract the branching fractions and cross section ratio was introduced
 - More model independent
 - → Qualitative and quantitative improvement of the existing analysis

- Incorporate in global Higgs coupling fit
- ➤ Exploit opposite polarization → different polarization dependence of the two signal processes

Backup

Study was performed for the LOI with a 120 GeV Higgs

E _{cm} (GeV)	250	350	500
Lumi (fb-1)	250	250	500
M _H (GeV)	120	120	120
$\Delta\sigma_{\rm BR}/\sigma_{\rm BR}$ (h $ ightarrow$ bb)	1.0%	1.0%	0.57%
$\Delta\sigma_{\rm BR}/\sigma_{\rm BR}$ (h $ ightarrow$ cc)	6.9%	6.2%	5.2%
$\Delta\sigma_{\rm BR}/\sigma_{\rm BR}$ (h $ ightarrow$ gg)	8.5%	7.3%	5.0%

Extrapolate results by scaling signal and background with the effective cross sections with the current beam parameter and by using LHC recommended Higgs BR

E _{cm} (GeV)	250	350	500
Lumi (fb-1)	250	330	500
M _H (GeV)	125	125	125
$\Delta\sigma_{_{\mathrm{BR}}}/\sigma_{_{\mathrm{BR}}}$ (h $ ightarrow$ bb)	1.1%	0.9%	0.66%
$\Delta\sigma_{\rm BR}/\sigma_{\rm BR}$ (h $ ightarrow$ cc)	8.0%	6.5%	6.2%
$\Delta\sigma_{_{\mathrm{BR}}}/\sigma_{_{\mathrm{BR}}}$ (h $ ightarrow$ gg)	6.8%	5.2%	4.1%

Jet Clustering and Flavor Tagging

- Decluster the 4 Jets from the γγ-overlay and cluster the particles into 2 jets using Durham algorithm
- Determine the flavor tag from LCFIPlus
- Evaluate flavor likeness X_i of the event (i=b,c,bc)

$$X_{i} = \frac{X_{i1}X_{i2}}{X_{i1}X_{i2} + (1 - X_{i1})(1 - X_{i2})}$$

with x, the flavor tag of the single jets

- ➤ LOI study: LCFIVertex → bc-tag = c-tag trained with b-jets as background only
- > TDR study: LCFIPlus $\rightarrow x_{bc} = \frac{x_c}{x_c + x_b}$

Cut Optimization

- Cuts optimized for significance and for equal sensitivity to Higgs strahlung and WW fusion (~39% signal left for both processes)
- > BDT variables:
 - All cut parameters, Longitudinal momentum, global cos(Θ), thrust, thrust axis, jet masses, jet momenta, jet angles

	condition	BG	Signal	Signf
Expected		19856532.5	32555.3	7.3
isolated leptons	#iso lep = 0	16605973.9	28922.8	7.0
Transverse P	$240 > P_{t,vis} > 30$	1171943.3	24423.1	22.3
Visible Mass	135 > m _{vis}	366041.9	23242.9	37.2
Angle between jets	$0.27 > \cos a$	194536.1	21636.8	46.5
# tracks > 1GeV	$N_{chd} > 26$	58945.0	14903.7	54.8
max. jet mass	$135 > M_{j,max} > 40$	34911.1	13375.9	60.9
Durham minus	$Y_{12} > 0.05$	32837.3	13318.7	62.0
BDT	BDT > -0.02	3103.2	10478.6	89.9
LOI Study		11092.0	9543.0	66.4

Fit Function

$$\frac{\sigma^{SM}(ZH)}{\sigma(ZH)} N_{ijk}^{Data} = \frac{BR(h \to bb)}{BR^{SM}(h \to bb)} \cdot N_{ijk}^{Zh \to bb}$$

$$+ \frac{BR(h \to cc)}{BR^{SM}(h \to cc)} \cdot N_{ijk}^{Zh \to cc} \dot{\zeta}$$

$$+ \frac{BR(h \to gg)}{BR^{SM}(h \to gg)} \cdot N_{ijk}^{Zh \to gg}$$

$$+ \frac{BR(h \to oth)}{BR^{SM}(h \to oth)} \cdot N_{ijk}^{Zh \to oth}$$

$$+ \frac{\sigma^{SM}(ZH)}{\sigma(ZH)} \frac{\sigma(WWH)}{\sigma^{SM}(WWH)} \cdot \frac{BR(h \to bb)}{BR^{SM}(h \to bb)} \cdot N_{ijk}^{WWh \to bb}$$

$$+ \frac{\sigma^{SM}(ZH)}{\sigma(ZH)} \frac{\sigma(WWH)}{\sigma^{SM}(WWH)} \cdot \frac{BR(h \to cc)}{BR^{SM}(h \to cc)} \cdot N_{ijk}^{WWh \to cc}$$

$$+ \frac{\sigma^{SM}(ZH)}{\sigma(ZH)} \frac{\sigma(WWH)}{\sigma^{SM}(WWH)} \cdot \frac{BR(h \to gg)}{BR^{SM}(h \to gg)} \cdot N_{ijk}^{WWh \to gg}$$

$$+ \frac{\sigma^{SM}(ZH)}{\sigma(ZH)} \frac{\sigma(WWH)}{\sigma^{SM}(WWH)} \cdot \frac{BR(h \to gg)}{BR^{SM}(h \to gg)} \cdot N_{ijk}^{WWh \to oth}$$

$$+ \frac{\sigma^{SM}(ZH)}{\sigma(ZH)} \frac{\sigma(WWH)}{\sigma^{SM}(WWH)} \cdot \frac{BR(h \to oth)}{BR^{SM}(h \to oth)} \cdot N_{ijk}^{WWh \to oth}$$

$$+ \frac{\sigma^{SM}(ZH)}{\sigma(ZH)} N_{ijk}^{bkg}$$
Felix Müller | 07.10.2014 | Page 21

Event Preselection

- The expected behavior is visible in the missing mass distribution
 - A peak at the Z mass from the Higgs strahlung events
 - A sharp cutoff at 350 GeV- M_µ from the WW fusion events
- > Access in the missing mass distribution above 250 GeV
- \gt The access in the missing mass distribution comes from H \rightarrow WW, TT
 - Leptonic decays cause the problem
 - Use Isolated lepton finder to remove these events

Old 3-D Template Fit

Different Flavor Likeness Definitions

Simple mean tag value gives better results than the standard likeness definition

h->	Standard likeness (x ₁ +x ₂)/2
bb	1.148+-0.013 1.135+-0.013
СС	15.35+-0.16 14.56+-0.16
gg	4.758+-0.052 4.694+-0.049

