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Abstract. We consider D-term inflation for small couplings of the inflaton to matter fields.
Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the
Planck mass. During the subsequent waterfall transition the inflaton continues its slow-
roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond
the decoherence time, the waterfall field becomes classical and approaches a time-dependent
minimum, which is determined by the value of the inflaton field and the self-interaction of the
waterfall field. During the final stage of inflation, the effective inflaton potential is essentially
quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates
how the decay of a false vacuum of GUT-scale energy density can end in a period of ‘chaotic
inflation’.
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1 Introduction

Chaotic inflation [1] and hybrid inflation [2, 3] are two theoretically appealing frameworks for
the description of the very early universe. They are also the prototypes of the two different
versions of inflation: large-field and small-field inflation, respectively. In their simplest form,
both are not favoured by the Planck data on the cosmic microwave background (CMB) [4],
but both are consistent with the CMB data at the 20 level. The recently released BICEP2
results [5] provide evidence for primordial gravitational waves and a correspondingly large
tensor-to-scalar ratio r, favouring chaotic inflation and a GUT-scale energy density during
inflation. Although presently under intense scrutiny [6, 7], these results indicate that current
and upcoming experiments have now reached the sensitivity to probe inflation models which
yield sizeable tensor modes.

In supersymmetric D-term hybrid inflation [8, 9], the inflaton field can take large, trans-
planckian values if the coupling of the inflaton to the waterfall fields is small. In principle, this
offers the possibility for a significant amplitude of primordial gravitational waves. In stan-
dard hybrid inflation, however, the scalar-to-tensor ratio is small since the inflaton potential
is very flat.

In this paper we study the phase of tachyonic preheating [10, 11] which follows standard
hybrid inflation when the inflaton passes the critical value beyond which the waterfall field
starts to grow by quantum fluctuations. This is a complicated nonequilibrium process, which
has been studied numerically neglecting the Hubble expansion [10-12]. In the following, we
discuss this process taking both the Hubble expansion and the motion of the inflaton field
into account. The onset of tachyonic preheating can then be treated analytically [13]. Due to
the rapid growth of quantum fluctuations, the waterfall field reaches a classical regime within
a few Hubble times, during which backreactions can be neglected. In this way one obtains the
initial conditions for the subsequent classical evolution of the waterfall and inflaton fields,
where backreaction effects can be accounted for approximately by means of the nonlinear
classical field equations. As the waterfall field approaches the global minimum of the scalar
potential, its expectation value provides an effective mass term for the inflaton and the
system reaches a regime of ‘chaotic inflation’. As we shall show, a successful description of
the observational data can then be obtained for typical parameters of the model.



Inflation during the waterfall transition has been studied before, however for a very
different parameter regime. In refs. [14-17], a small-field version of inflation has been consid-
ered, where the inflaton field stays close to the critical value and inflation proceeds essentially
along a trajectory in the direction of the waterfall field. This can account for a sufficient
number of e-folds and a red-tilted spectrum, yet the tensor-to-scalar ratio is very small. In
the parameter regime considered in this paper, a regime of chaotic inflation emerges far away
from a transplanckian critical point in a region of field space where inflation proceeds mainly
in inflaton direction.

The paper is organized as follows. In section 2, we recall essential elements of D-term
hybrid inflation. The main part of the paper is section 3, where the dynamics of tachyonic
preheating is discussed taking into account Hubble expansion and inflaton motion. Section 4
deals with the emerging regime of chaotic inflation and in section 5 some aspects of cosmic
string production are discussed. We conclude in section 6.

2 D-term hybrid inflation

Let us start by briefly reviewing the setup of D-term hybrid inflation [8, 9]. Its main in-
gredients are a U(1) gauge symmetry featuring a Fayet-Iliopoulos (FI) term as well as an
R-invariant superpotential,

W =X¢pSyS_, (2.1)

where the singlet ¢ contains the inflaton field and the waterfall fields S+ carry charge +1
under the U(1) symmetry. A is a dimensionless coupling constant, which w.l.o.g. we can take
to be positive. Furthermore, we work in a supergravity framework employing a canonical
Kahler potential, which respects a shift symmetry, R symmetry as well as a discrete Zo
symmetry [18],

K= % (p+¢)°+ 5.5, +5.5_, (2.2)

so as to retain a sufficiently flat potential even for the large values of the inflaton field
expected from recent indications of a sizable tensor-to-scalar ratio [5].! The introduction of
an Fl-term in supergravity is a subtle issue [19-21]; it can however be achieved employing
strong dynamics in a field theory setup [22].2

At large field values for the inflaton ¢ = +/2Im(¢), the fields Sy are stabilized at
zero and the tree-level potential for the inflaton is flat with the vacuum contribution being
provided by the FI-term, Vj = %g2§2. Here, g denotes the associated U(1) gauge coupling
constant. The Coleman-Weinberg one-loop potential, obtained by integrating out the heavy
waterfall multiplets, lifts the flatness of the potential, so that above the critical point the
total scalar potential is given by

g2

Vie) =V (1 + 162 (= — D2In(z — 1)+ (z +1)?In(z + 1) — 22%Inz — In 16)) , (2.3)
7r
with o = A2p?/(2¢g%¢). The critical point ¢, where the U(1) symmetry breaking field s =

V2|5, | becomes tachyonic is determined by x = 1,

oo =5 V2. (2.4)

'We thank Tsutomu Yanagida for pointing out this possibility of realizing D-term hybrid inflation with
transplanckian field excursions in supergravity.
?For a recent discussion of field-dependent FI-terms for anomalous U(1) symmetries, see [23].




Below ., the scalar potential depends non-trivially on both the inflaton and the waterfall
field. Neglecting the higher-dimensional inflaton-waterfall couplings induced by supergravity,
we have?

V( _972 2_22 )‘7222 042 2.5
p,5) = g (s* =26 + 577+ 0(s"¢P), (2.5)

until in the true vacuum at ¢ = 0 and s = sy = /2 supersymmetry is restored. The
dynamics after the critical point is usually assumed to proceed very fast, i.e. the waterfall
field undergoes a phase of tachyonic preheating, ensuring that s rapidly reaches its true
minimum, whereas the homogeneous inflaton field quickly transitions to its true vacuum.
In the next section, we show that for small values of the coupling constant,* /g < 1, and
taking the Hubble expansion into account, the picture is actually quite different: after passing
through the critical point, tachyonic preheating indeed proceeds rapidly within a few e-folds,
but the subsequent dynamics of the homogeneous fields generate a large amount of e-folds,
dramatically changing the predictions for the CMB observables.

3 Tachyonic growth of quantum fluctuations

At the critical point the waterfall field becomes tachyonic, which leads to a rapid growth of
the low-momentum (k < k) quantum fluctuations and hence of the variance (s%(t)). Neglect-
ing the Hubble rate, the variance becomes comparable to the global minimum at a spinodal
time [24] tsp ~ O(1/m), where —m? is the tachyonic mass squared of the waterfall field in
the quench approximation. The phase transition is found to be completed after a ‘single
oscillation’ [10, 11]. The root mean square value of the waterfall field can then be inter-
preted as a homogeneous background field, s(t) ~ (s%(t))!/? within a patch of the size ~ k; 1.
During this phase transition, topological defects are generically formed, which are separated
by the coherence length k;'. The growth of the fluctuations is terminated by backreac-
tion, i.e. by the self-interaction of the waterfall field, as the different modes scatter off each
other. Tachyonic preheating is a complicated nonequilibrium process, which has been stud-
ied numerically for hybrid inflation-type models, neglecting the Hubble expansion [10-12].
For previous work on the effect of the Hubble expansion during preheating, cf. refs. [25, 26].

In the case under consideration, the Hubble expansion and the (slow) motion ¢ of the
inflaton field are of crucial importance. In particular, tachyonic preheating ends at a ‘local
spinodal time’ té‘;f ~ O(1/H), when the quantum fluctuations become comparable with the
instantaneous, inflaton-dependent minimum. Near the critical point ¢., the inflaton motion
is approximately linear in time. For this case, the onset of tachyonic preheating has been
studied analytically [13]. It has been shown that quantum fluctuations grow with time faster
than exponentially and that the phase transition is completed within a few Hubble times, if
backreaction effects are small. In the case of D-term inflation, the strength of the backreaction
is given by the gauge coupling, and hence strong. In the following we will therefore use the
method of ref. [13] to compute the growth of the waterfall field up to the decoherence time
tgec, Where the field becomes classical and where the backreaction is still small. For later
times we shall take the backreaction approximately into account by means of the nonlinear
classical field equations.

We are interested in a parameter regime where the dynamics of the homogeneous inflaton
field is slow compared to tachyonic preheating, i.e. where the velocity ¢, of the inflaton field

3Here and in the following, we work in units of the reduced Planck mass, Mp; = (871'G)*1/2 =1.
4 As the shift symmetry for Im(¢) is restored for A — 0, a small value of X is natural in the sense of ’t Hooft.



when crossing the critical point is small and thus the quench approximation is inapplicable.
In particular, we will find ¢, ~ H? with H denoting the Hubble parameter. Hence, contrary
to the situation in ref. [12], the Hubble expansion affects the dynamics during preheating
and cannot be neglected.

Close to the critical point (¢, = 0), the potential for the waterfall field can be expressed
as, cf. eq. (2.5),

1 1
Vis;t) ~ 59252 - §D3t s+ 0% sh), (3.1)

where D3 = \/2€g\|¢.| and we have used

(t) ~ e+ @ct . (3.2)

The inflaton velocity is obtained from the slow-roll equation of motion for the inflaton in the
scalar potential (2.3),

. 0,V g*A1In2
Ye=—7"—| =-— . 3.3
3H Pe 4\/57_‘_2 \/g ( )

For a typical parameter choice, which will yield the correct amplitude of the primordial power
spectrum, g% = 1/2, A =5 x 107* and /€ = 2.8 x 10'® GeV, this implies

H.=H(p:) =9.1x10" GeV, ¢.~—-21H?, D=~15H,. (3.4)

Note that within a Hubble time the inflaton field changes only by ¢./H. ~ 10™%¢..
To study the growth of the quantum fluctuations of the waterfall field around the critical
point, we decompose the waterfall field into its momentum eigenfunctions,

3 3 . .
s(t,@) = e 3H! / (;fr)’; 3 (0:(R)sk(DE™ + al (R)si (e ) (3.5)

Here as(k) and al(k) denote the annihilation and creation operators, s (t) is the amplitude
of the mode with fixed comoving momentum k. The time dependence of s (t) is determined
in linear approximation by the mode equation [13],

9

There are two regions of momenta, which are separated by the boundary condition k = ky(¢),
defined by

=0. (3.7)

<k26—2Ht _ gHQ _ D3t>
4 K=k (t)

Modes with k > ky(t) oscillate in time whereas modes with k < ky(t) show tachyonic growth.
For large times the latter are given by the Airy functions Ai and Bi,

su(t) ~ i\/g Ai(Dt) + \/g Bi(Dt) . (3.8)

Oscillating modes with k > ky(t) are given by Hankel functions.



The growth of the waterfall field after the critical point due to quantum fluctuations is
given by the variance

(s%(1)) = (*(t))us — (s*(0))us (3.9)

. o). . . 5
where the index ‘us’ marks the unsubstracted quantities before renormalization,”

o) 2
(2(t))us = /0 dkz’“?e*ffctysk(t)ﬁ. (3.10)

Note that the variance (s%(t)) is both ultraviolet and infrared finite. Approximating s; above
and below kj by Hankel and Airy functions, respectively, one obtains for Dt > 1 the analytic
estimate [29],

2 kb(t) kQ 3H.t 2
(2(1)) = / dk 2 et g (1))
0

272

32312 (%) 2 3 4
~ .~ \3/ /2 = 3/2
~ o P D (D exp ( 5 (D) +Ht> . (3.11)

For times Dt > 1 one has D3t > H2, and therefore py(t) = ky(t) exp (—H.t) ~ (D3t)'/? > H,.
One easily verifies that the integral (3.11) is dominated by physical momenta O(pp), i.e. by
modes inside the horizon 1/H..

For small backreaction, an estimate of the spinodal time is obtained from

(s°(tsp)) = 2¢€. (3.12)

In the case of the above parameter example one finds, cf. figure la, ts, ~ 5.0/H,, i.e. the
tachyonic growth would be completed within Ny, ~ 5 e-folds if the backreaction could be
neglected. This can be compared with the local spinodal time needed to reach the inflaton-
dependent minimum obtained from the potential (2.5),

)\2
Silin(gp) = ‘93 - ?¢2a S0 = vV 2 ) (313)

which is sensitive to the self-interaction of the waterfall field and which is relevant in our
case, as discussed below. From figure 1a one reads off a value t;‘ff ~ 3.1/H..

The tachyonic growth described above is very similar to the standard picture of tachyonic
preheating [10, 11, 30, 31]. In the simplest case where a constant tachyonic mass m is turned
on at ¢ = 0 and the Hubble parameter can be neglected, the variance is also given by the
integral (3.11) with k, = m and H, = 0. It is well known that in this case the false vacuum
energy is rapidly converted into potential, kinetic and gradient energy of the waterfall field
and, if the motion of the inflaton field is taken into account, also into gradient energy of the
inflaton field [31]. In order to determine the various contributions to the energy density, one
has to take the couplings of all modes of the inflaton and waterfall field into account [32].

®Calculating this quantity numerically we introduce a comoving IR-cutoff at k = H. and a physical UV-
cutoff at k/a = 10H,, cf. also refs. [27, 28]. As expected, our results are numerically independent of the
choice of the UV-cutoff. The IR-cutoff corresponds to the k-resolution of the system, which is determined by
H.. Since the dispersion is dominated by momenta k > H. (see comment below eq. (3.11)) the choice of the
IR-cutoff introduces a theoretical uncertainty of at most a few percent, which will not affect the main results
of this paper.
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Figure 1. Left (a): growth of the waterfall field during tachyonic preheating due to quantum
fluctuations, comparison with inflaton-dependent minimum $,;, in the linear approximation (3.2)
(dashed thick blue) and global minimum sy (dashed thin blue) ignoring backreaction effects. Here,
we determined the variance <s2 (t)>1 ? numerically, i.e. by explicitly solving the mode equation for the
waterfall field in the relevant k range. Right (b): classical evolution of the homogeneous waterfall field
s(t) after the decoherence time (solid red), comparison with inflaton-dependent minimum including
backreaction effects via classical field equations (dashed green). Note that the initial conditions for the
. . . . 1/2 . o
evolution of s(t) in the right panel correspond to the numerical values of <32(t)> and its derivative
at t = tqec in the left panel. Here and in the following figures, the parameter values are: g*> = 1/2,
A=5x10"%and /& = 2.8 x 1016 GeV.

For couplings O(1), all these energy densities are O(v*), where v is the symmetry breaking
vacuum expectation value. Hence, the equation of state changes and inflation ends. In
particular the model of ref. [31] is very similar to case of D-term inflation considered in this
paper, except for one crucial difference. In ref. [31], the self-coupling of the waterfall field
and the coupling of the waterfall field to the inflaton have equal strength, \/g = 2 (cf. (2.5)).
As a consequence, in ref. [31] it is found that waterfall field and inflaton field both rapidly
approach the ground state, performing together coherent oscillations. In this paper, on the
contrary, \/g ~ 7 x 10~%. Hence, the inflaton motion is much less affected by the growth of
the waterfall field which in turn approches an inflaton-dependent minimum s?nin(gp).

In order to estimate the effect of self-interaction of the waterfall field we first determine
the decoherence time tge. where the waterfall field becomes classical. This occurs if the
product of s and the canonically conjugate momentum 7y is much larger than h/2, the
minimal value for an oscillating mode [33]. Demanding that |sk(tgec)Tsk(tdec)| = Rdec > h =
1, one finds for soft modes k < ky,

173 2/3
tdec ~ 5 |:4 IH(ZRdeC):| . (314)

For the parameter values above and Rge. = 100, one obtains tge. ~ 1.7/H,.. As expected,
one has for times t > tgec,
$ H,
—_ > 7’
H. 27
i.e. the classical growth dominates over the quantum growth. In particular, for the parameter
example above, we find $/H, ~ 3 x 107° and H./(27) ~ 6 x 1076 at t = t4ec.
At the decoherence time tge., the classical waterfall field can be approximated by
5(tgec) = (5%(taec))'/?. Tts initial value and its velocity can then be read off from figure la.

(3.15)
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Figure 2. Classical field evolution of the waterfall (left) and inflaton (right) field.

With these initial values one can solve the classical field equations

1
G+ 3Hp+ 5/\252@ =0, (3.16)
)\2 92
§+3Hs— <g2§— 2<p2) s+?53 =0. (3.17)

The result is shown in figure 1b. In contrast to our estimate for the variance (s*(t)) in
figure la, the solution of eq. (3.17) is affected by the quartic self-interaction of the waterfall
field, which is reflected in s(t) growing significantly more slowly than <s2(t)> after t = tgec.
At t ~ 3.4/H,, the waterfall field reaches for the first time the inflaton-dependent minimum.
Initially, it overshoots the minimum; but after only one oscillation it basically becomes sta-
bilized at s(t) = Smin (¢(t)). The tachyonic growth of the waterfall field modes leads to
kinetic and gradient energy. Since the dominant momenta are larger than the Hubble scale,
this process can be expected to proceed analogous to tachyonic preheating, i.e. the corre-
sponding energy densities are O(s%. ). Since at té%c the expectation of the waterfall field is
<s2(té%c)>1/ 2 ~ 107250, one finds that these energy densities are suppressed by 8 orders of
magnitude compared to the dominant vacuum energy Vy = ¢2¢2/2 = 9283 /8. Hence, con-
trary to standard tachyonic preheating, inflation continues despite the tachyonic growth of
the waterfall field.

At later times, the waterfall field then simply follows the position of the local minimum
adiabatically. The global minimum is reached much later around ¢t ~ 720/H.. The time
evolution of the inflaton-waterfall system is depicted in figure 2. After the waterfall field has
reached its global minimum, the inflaton performs small oscillations around its minimum,
leading to standard reheating.

4 An emerging regime of chaotic inflation

After a short initial period of tachyonic preheating, the waterfall field tracks the inflaton-
dependent minimum syiy(t), cf. eq. (3.13), and both, inflaton and waterfall field perform
a coupled slow-roll motion towards the ground state. The corresponding trajectory in field



space is shown in figure 3a. Along almost the entire trajectory, we find

PV PV PV

4.1
0s2 > Dpds > 0p?’ (41)
0%V 0%V
—_— H? — . 4.2
0s2 > He > 0p? (4.2)

Hence, one essentially has a one-field model of inflation, and the curvature perturbations are
dominated by the quantum fluctuations of the field .

The effective inflaton potential is obtained by inserting the instantaneous minimum of
the waterfall field (3.13)% in the potential (2.5),

Lo, o 1o?
V(. smin(9) = A% (1 - wg) . (43)
Here we have neglected the loop-suppressed radiative corrections due to the interaction be-
tween the inflaton and the waterfall fields. Note that ratio the A/g, which determines the
position of ¢, in figure 3b, also determines the ratio of the semi-axes of the ellipse shown in
figure 3a, cf. eq. (3.13). A small value of this ratio and hence transplanckian value for ¢, is
crucial for our scenario: it ensures sufficient slow-roll inflation along the inflaton direction af-
ter the critical point. Remarkably enough, for small field values, p < . = g/AV/2¢, eq. (4.3)
closely resembles the potential of the simplest example of chaotic inflation, V(¢) ~ m%ch /2,
with m? = A%¢, cf. figure 3b. We shall now calculate our predictions for the inflationary ob-
servables based on eq. (4.3) and demonstrate how these reduce to the well-known expressions
for chaotic inflation in the limit A\/g < 1, i.e. for large critical inflaton values, ¢, > 1.
The scalar spectral amplitude Ag, the scalar spectral index ng and the tensor-to-scalar
ratio r can all be expressed in terms of the slow-roll parameters € and 7,

1 (V’>2 8(p2—¢%)° 2 2

e=—|—) =L~ = =
2\V /) @222 -¢?)? ¥ ¢ (4.4)
vroo2 0 2 5

77 = — Y — — .
Vo9 20— 9 gl
Inflation ends when the slow-roll parameters approach one, i.e. at o= =max {¢., ¢, },
where ¢, and ¢, are defined such that e(p.) = 1 and 7(¢;,) = 1, respectively. We have

8 36\? 10

4 2 2
905:2_;%7 (Pn:6+90c

c c C

so that ¢, is always larger than ¢, and hence ¢ = .. Solving the slow-roll equation yields
the inflaton value ¢(N,) as a function of Ne, the number of e-folds before the end of inflation,

e(Ne) 1/ B )
/@ rdp=Ne = ¢(No)=¢? [1 ~Wo (A e BNS/“’C)} , (4.6)
f

Here, A =1 — cp?c /p? and Wy denotes the principal branch of the Lambert W function or

Wo(

product logarithm, which can take values Wy > —1 and which satisfies z = Wy(z) e %) s0

5Note that S_ plays the role of the stabilizer field in supersymmetric chaotic inflation, for a which a quartic
term in the K&hler potential is generated by integrating out the massive vector field, which is consistent near
the global minimum [23].



Time t[1/Hc]

800 700 600 500 O
D 15 N
= Z
EE Time t[1/H,] §
. O
— 10 2 1 0 1100 <
) = o
@ = S
= | = 1200 ©
03 E
8 0.0 . . |- 3 =)
g o 22.714 22.715 22.716 ;500 Z
¢ [Mp] ‘ ) H
0 5 10 15 20
Inflaton field ¢ [Mp]
Number of e—folds N
0 10 20 50 100 200
_10/ | v Z ]
> ! ! !
> 0.8} i : i ]
S 06! ; —
& ! ! !
Roa | -
o ! ! !
T 0.2} ! | i ]
n i i i
0.07‘ . ‘ ‘:‘ ‘ . ‘ ‘i‘ L ‘i‘ L ‘i

-5 0 5 10 15 20 25
Inflaton field ¢ [Mp]

Figure 3. Effective scalar potential during the second stage of inflation. Upper (a): classical tra-
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that Wy (ze”) = x. For large ¢, we obtain the familiar expression from chaotic inflation to
leading order,

F2(N,) ~ (AN, +2) — ;12 (N2 N, +1) . (4.7)

C

The inflationary observables at ¢,, IV, ~ 60 e-folds before the end of inflation, are given by

)\4 4,2 1 2 8 1 2 32 2
Aszﬂ 1422 , ng~1—— 1- % , T~ — 1- %) (4.8)
1927292 22 03 492 03 o?
Again, the leading terms are the usual expressions known from chaotic inflation. In the limit

of chaotic inflation, the effective inflaton mass is fixed by the measured amplitude of the
power spectrum [4],

96 72

O3

m2 ~ A%~ (1.4 x 101 GeV)? | A%~ 2.2 x 1077, (4.9)
where we employed the expression for A in eq. (4.8) as well as the relation ¢, = g/A\/2€. This
condition can also be used to derive an upper bound on the coupling A. For larger values
of A, the separation between . and ¢, becomes increasingly smaller, until . eventually
reaches a minimal value ™" and ¢, ~ ¢. = ™" The difference between our result for
¢« in eq. (4.7) and @, vanishes for p, — 2" ~ (2N, + 1)1/2 ~ 11. In order to realize N,
e-folds of inflation after the critical point, we must therefore require

19272g? i 1272 i
A< (,gﬁAng> ~1x107%, /€2 (,2A2b5> ~ 2 x 10 GeV, (4.10)
(o2m) g% (™)

where we have used eqgs. (4.8) and (4.9) and with ¢g? and N, being set to 1/2 and 60,
respectively. On the other hand, for very small values of A the discussion of this paper is
no longer applicable. A rough lower bound on A can be obtained by requiring that the
local minimum of the waterfall field at tq.. lies outside the quantum uncertainty of the false
vacuum at the origin, smin(tgec) > He/(27),

A>1x107%, /E<2x 107 GeV. (4.11)

Approaching these values, the time scales of tachyonic preheating are stretched to O(100)
Hubble times. A consistent description of the phase transition in this regime requires further
investigation. In any case, the bounds (4.10) and (4.11) show that a regime of chaotic
inflation can indeed be obtained. The allowed ranges for A and £ are basically found to
cover one order of magnitude, respectively. Remarkably enough, this regime coincides with
an initial GUT-scale energy density!

From figure 3b we note that, for the parameter point discussed in this paper (g% = 1/2,
A =5x107%), there is a sizable deviation from the quadratic potential at ¢ = .. Using the
above expressions based on the exact potential, we find

px =145 Mpy, ng=0.963, r=0.083. (4.12)

Here, the value of /€ = 2.8 x 10'6 GeV has been fixed to obtain the correct amplitude,
cf. eq. (4.9). These results can be compared with the predictions in the purely quadratic

~10 -



approximation, which corresponds to the limit ¢. — oo for fixed effective inflaton mass mj.
In this approximation, we find ¢, ~ 15.5 Mp;, A, ~ 2.0 x 1077, n, ~ 0.967 and r ~ 0.133.
Hence the quadratic approximation provides quite good results in the parameter range under
study. Our explicit calculation based on the full potential however shows that in particular the
tensor-to-scalar ratio ends up being somewhat smaller than in the quadratic approximation.
This is evident from the expression for 7 in eq. (4.8).

5 Cosmic strings

In the usual formulation of D-term hybrid inflation, cosmic strings produced during the
phase transition at the end of inflation impose serious constraints. For typical GUT-scale
values, /€ > 10'6 GeV, the model is ruled out by the non-observation of cosmic strings in the
CMB [34]. The new inflationary regime identified in section 4 radically changes this picture.
Cosmic strings are formed during tachyonic preheating with an average distance of

o~ ) =0 (1) 6.1)
which implies that after ~ 60 e-folds of inflation they have been ‘inflated away’ to unob-
servably large scales. In particular for the parameter example discussed in sections 3 and 4,
many e-folds occur between string formation at the critical point ¢. and the onset of the last
60 e-folds at ¢,. In this case, cosmic strings cannot produce any observable effects.”

Extending the parameter space beyond eq. (4.10) to larger values of A, 60 e-folds of
inflation no longer ‘fit’ into the time interval after the phase transition. Instead, one might
picture a situation where the final N, e-folds of inflation are split between the Coleman-
Weinberg regime before the phase transition and the chaotic regime after the phase transition
and where cosmic string production occurs during inflation. This is similar to the situation
considered in [35] where cosmic strings are produced during a dominantly chaotic phase of
inflation. In this case, a sufficient amount of inflation after the phase transition relaxes the
cosmic string problem as cosmic string signatures would be absent on small scales. However,
observable effects in the CMB, the gravitational wave spectrum or the large scale galaxy
distribution may still be present and require a more detailed analysis, cf. refs. [36, 37].

6 Conclusion and outlook

Standard hybrid inflation ends in a waterfall transition at a critical value ¢, of the inflaton
field. Due to the rapid growth of quantum fluctuations, the waterfall field reaches a classical
regime within a few Hubble times where, due to backreaction effects, it settles at an inflaton-
dependent, instantaneous minimum Sy, (¢). This initial stage of tachyonic preheating is
followed by a coupled slow-roll motion of the inflaton-waterfall system towards the ground
state. For sufficiently small values of the inflaton coupling to the waterfall field, this post-
critical period of inflation can last longer than 60 e-folds. As the waterfall field approaches
its ground state, it generates an effective mass term for the inflaton field, leading to the
standard predictions of chaotic inflation.

"For accordingly tuned parameters (relatively large A close to the bound in eq. (4.10)), one could obtain
P« >~ . In this case, cosmic strings would be just on the boundary of our observable universe. One might
speculate if the anomalies observed in the CMB at very low multipoles could be consistent with such a scenario.
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This emerging regime of chaotic inflation has several remarkable features. First, it starts
from a constant energy density close to the scale of grand unification. If a sizeable amplitude
of primordial gravitational waves should be indeed confirmed by further measurements in the
near future, pointing to inflation at the GUT scale, this setup would provide a quite unique
possibility of explaining the appearance of this scale at transplanckian field values. Second,
since the relevant phase of inflation takes place after symmetry breaking, there is no cosmic
string problem. Finally, compared to the simplest example of chaotic inflation based on a
quadratic potential, a somewhat smaller tensor-to-scalar ratio is predicted whereas the scalar
spectral index is identical.

The crucial parameter which governs the existence of this new regime is the ratio of
the superpotential and the gauge coupling, A\/g < 1. The smaller this value, the more
the time-scales relevant for the phase transition are stretched out. This implies that the
inflaton velocity and the Hubble expansion play a crucial role in the tachyonic preheating
process, while simultaneously enabling a phase of single-field slow-roll inflation in the inflaton
direction after passing the critical value .. Note that this is not possible for F-term hybrid
inflation, where the self-interaction of the waterfall field and its coupling to the inflaton field
are determined by the same coupling constant.
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