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Abstract

Sigma models on coset superspaces, such as odd dimensional superspheres, play an important
role in physics and in particular the AdS/CFT correspondence. In this work we apply recent
general results on the spectrum of coset space models and on supergroup WZNW models to
study the conformal sigma model with target space S3|2. We construct its vertex operators
and provide explicit formulas for their anomalous dimensions, at least to leading order in the
sigma model coupling. The results are used to revisit a non-perturbative duality between the
supersphere and the OSP(4|2) Gross-Neveu model that was conjectured by Candu and Saleur.
With the help of powerful all-loop results for 1

2BPS operators in the Gross-Neveu model we are
able to recover the entire zero mode spectrum of the sigma model at a certain finite value of the
Gross-Neveu coupling. In addition, we argue that the sigma model constraints and equations
of motion are implemented correctly in the dual Gross-Neveu description. On the other hand,
high(er) gradient operators of the sigma model are not all accounted for. It is possible that this
discrepancy is related to an instability from high gradient operators that has previously been
observed in the context of Anderson localization.
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1 Introduction

Non-linear sigma-models (NLSM) play an important role in physics and mathematics. When

placed on a 2-dimensional world-sheet, they give rise to renormalizable quantum field theories

[1, 2, 3]. Initially, 2d NLSMs were mostly studied as toy models of 4d gauge theories, for

example in order to learn about non-perturbative features and the effect of θ-terms etc., see e.g.

[4]. But over the last decades, numerous direct applications were discovered. In string theory,

for example, sigma-models on a 2d world-sheet are the central ingredient of the perturbative

definition.

The properties of sigma models depend on the choice of the target space M and hence on

the particular problem that is addressed. Homogeneous target spaces are particularly relevant.

In these cases, the target (super)manifold M admits the transitive action of a continuous Lie

(super)group G. Consequently,M can be represented as the coset spaceM = G/H where H is

the stabilizing (super)subgroup H ⊂ G of a point on M. Homogeneous (super)spaces G/H for

which one can find an automorphism γ : G→ G of order two that leaves all elements in H ⊂ G

1



fixed are referred to as symmetric. Supercosets G/H in which the subgroup H is fixed by an

automorphism of order four play an important role in the AdS/CFT correspondence, see [5] and

references therein. While we believe that most of the ideas we are going to develop below apply

to a wide class of sigma models on such generalized symmetric superspaces, our presentation

and analysis will focus on the coset superspace OSP(4|2)/OSP(3|2) for which the analysis can

be made very explicit.

Understanding sigma models at strong coupling, or equivalently for strongly curved target

spaces, is of central importance. In the context of the AdS/CFT correspondence, for example,

the strongly curved regime of the string theory is where the dual gauge theory becomes weakly

coupled. So, if we had direct control over properties of sigma models on AdSd+1 targets at strong

coupling, it would be possible to compare with perturbative gauge theory. Such a comparison

could provide deep new insights into the very working of gauge/string dualities, even without

the support from supersymmetry and/or integrability. On the other hand, while we proceed to

smaller values of the radius R, the original background geometry dissolves and we enter a regime

that is difficult to analyse.

Nevertheless, there are a few cases in which we indeed understand sigma models for small

values of the radius. The first one that comes to mind is the free boson compactified to a

circle of radius R which possesses a description involving free fermions when R = 1. This

can be understood through bosonization and is known as Coleman-Mandelstam duality [6, 7].

Sigma models on complete intersection Calabi-Yau target spaces provide a more intricate family

of examples. For many of these models one can find so-called Gepner points, i.e. values of

the sigma model coupling at which the theory possesses an exactly solvable description through

certain Wess-Zumino-Novikov-Witten (WZNW) models. This duality has been understood most

systematically through the use of linear sigma models, see [8].

In this work we present a case study for the sigma model on the supersphere S3|2. With this

choice of the target supermanifold, the sigma model coupling turns out to possess vanishing β

function so that we obtain a continuous family of 2-dimensional conformal field theories with

Virasoro central charge c = 1. We parametrize the coupling through the radius R of the bosonic

base S3. We shall discuss the construction of vertex operators and the computation of anomalous

dimensions to leading order in 1/R in great detail below, thereby exemplifying constructions and

results from [9]. A dual description of this supersphere sigma model has been proposed a few

years ago by Candu and Saleur [10, 11]. It involves a Gross-Neveu-like deformation of a free

field theory whose fundamental field multiplet transforms in the fundamental representation

of OSP(4|2), with four components being fermionic and two bosonic. The free field theory

corresponds to the value R = 1 of the radius in the supersphere sigma model. Extensive tests,
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mostly based on numerical studies of a lattice discretization, have been performed to support

this proposal [10, 11], see also [12].

The OSP(4|2) Gross-Neveu model admits an interpretation as a current-current deformation

of an OSP(4|2) Wess-Zumino-Novikov-Witten (WZNW) model at level k = 1. Hence, we can

exploit all-loop results from [13] on anomalous dimensions of a certain subset of fields in special

truly marginal perturbations of WZNW models. The fields in question are 1
2BPS with respect

to the target space symmetry, or, in more mathematical terms, they transform in maximally

atypical representations. We can apply these results to 1
2BPS fields in the OSP(4|2) Gross-Neveu

model. For some special value of the deformation parameter, we are able to identify the low lying

spectrum of the supersphere sigma model. The identification includes the one-loop corrections

to the conformal dimensions of the supersphere sigma model. For sigma model fields with more

than two derivatives the match between the two models is not as convincing and we will uncover

a few discrepancies. These would have the potential to disprove the duality conjecture of Candu

and Saleur if it were not for some features of the perturbative results on anomalous dimensions

that seem to restrict their applicability. The issue will not be settled in this work and merits a

deeper investigation.

The relation between a WZNW model at small level and a superspace sigma model we

are about to describe illustrates several features that were anticipated by Polyakov in [14]. In

particular, we shall see how singular vectors of the WZNW model are related to the sigma

model constraint and equation of motion etc. The idea to use precision data on deformed

WZNW models in order to test non-perturbative dualities has been put forward previously,

mostly in the context of boundary spectra, see [12, 15, 16]. Our work is the first one in which

it is applied to bulk spectra. This is made possible mostly by the technical advances in [9, 13].

Let us also point out that conformal sigma models are not that rare when the target space is a

supermanifold, see e.g. [17, 18, 19, 20, 21, 22] and references therein. In this sense, the ideas we

put forward below should apply to a much wider class of examples.

The plan of the paper is as follows. In the next section we shall review the results of

[9] on the construction of vertex operators and their one-loop anomalous dimensions in coset

space sigma models. These are then worked out explicitly for the supersphere model with

target space S3|2. For vertex operators involving a small number of derivatives we compare our

general prescriptions with more conventional constructions of vertex operators in terms of the

fundamental field multiplet. The comparison illustrates how advantageous the new approach is

in enumerating physical fields, though once the dust settles both approaches certainly give the

same results. In section 4 we then turn to the proposed dual Gross-Neveu model, describe its

field content and the deformation away from the free field theory. After a brief review of results
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from [13] we analyse the low lying 1
2BPS spectrum for the value of the Gross-Neveu coupling

that is conjectured to correspond to the weakly coupled sigma model. We shall find intriguing

agreements, but also some discrepancies. These are briefly discussed in the concluding section

along with a number of interesting open problems.

2 The spectrum of coset sigma models

The aim of this section is to review some results from [9] concerning the spectrum of sigma models

on symmetric superspaces. After a bit of introduction we shall build a basis of fields in sigma

models on coset (super-)spaces G/H. At least when G/H is symmetric our basis diagonalizes the

one-loop dilation operator and we can give a very simple formula for the spectrum of one-loop

anomalous dimensions. The material of this section has been split into three different subsections

of decreasing generality. While the construction of field operators in the first subsection holds for

all coset models G/H, our discussion of the zero modes is limited to compact G. Results on the

one-loop spectrum have only been obtained for symmetric (super-)spaces, though an extension

to generalized symmetric spaces is under investigation.

2.1 Prologue: Vertex operators for flat targets

Before we can review what is known about the spectrum of weights we need to recall the

construction of vertex operators from [9]. Let us motivate the prescription given there with a

few comments on the usual vertex operators of a free boson, i.e. a sigma model on the coset

space S1 = SO(2)/SO(1) with trivial denominator group H = SO(1) = {e}. As is well known,

the space of such operators is spanned by

Φk;p,p(z, z̄) = eikθ(z,z̄)pm(j, ∂j, . . . )pm(, ∂̄, . . . ) . (1)

Here, j = j(z) is the current j = i∂θ and  is of the same form but with a derivative ∂̄ instead

of ∂, i.e.  = i∂̄θ. The object pm denotes the monomial

pm(j, ∂j, . . . ) = jm1(∂j)m2 · · ·

in j and its derivatives. The powers mi are components of the multi-index m = (m1,m2, . . . )

we have placed on p. Of course, the definition of p is similar, but with derivatives ∂̄ instead of

∂. Note that the multi-index m is independent of m.

The operators exp(ikθ) are associated to the zero modes of the free boson, i.e. there is one

such operator for each function on the target space. For m = 0 = m we obtain the usual

tachyon vertex operators. The choice m = (1, 0, 0, . . . ) = m corresponds to the vertex operators

for massless states etc.
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2.2 Vertex operators for G/H

In generalizing this discussion to non-trivial coset models G/H we must address how to replace

currents j and , the tail monomials p and p and the zero mode contributions exp(ikX).

Let us begin with the fields j and . One could imagine to simply take derivatives of coor-

dinate fields θJ that are associated with some choice of coordinates on G/H. While this works

just fine for a flat target space, it is not the smartest choice for curved backgrounds. Instead,

we shall adopt the definition

jα := EJα(θ)∂θJ , α := EJα(θ)∂̄θJ (2)

where EJα is the vielbein for our coset space. Equivalently, if we think of the points on G/H as

being parametrized by orbits of group elements g ∈ G under the right action of H, we can also

construct j and  as

jα =
(
g−1∂g, tα

)
, α =

(
g−1∂̄g, tα

)
. (3)

Here, tα runs through a basis in the quotient space m = g/h. The space m carries an action

of the denominator Lie (super-)algebra h. Its dimension coincides with the dimension of G/H.

Note that there is one crucial difference with respect to the flat target S1, namely our fields j

and  transform non-trivially under the action of the denominator algebra. Of course, physical

fields of the coset model must be invariant. Hence, it will be important to keep track of how the

composite fields we are about to construct transform under h.

A field can contain arbitrary products of jα and α and their derivatives, just as for flat

targets. Since the multiplets (jα) and (α) transform in the representation m of h, we can build

tails in any subrepresentation [µ] that appears in some tensor power of m. More precisely, we

can pick two multi-indices m and m as in our discussion of the compactified free boson and then

choose two intertwiners

Pµ,m :
⊗
i

m�mi → [µ] , Pµ,m :
⊗
i

m�m̄i → [µ] . (4)

Here, we used m�m to denote the m-fold (graded) symmetric tensor power of m. Given any such

intertwiner, we construct the tail factor

Pµ,m(j, ∂j, . . . ) = Pµ,m

[
j⊗

m1 ⊗ (∂j)⊗
m2 ⊗ · · ·

]
(5)

and similarly for the second contribution that involves  and its derivatives with respect to ∂̄.

We have used tensor products and powers instead of ordinary ones to remind us that j is a

multi-component object. Note that there is a finite number of intertwiners Pµ,m and Pµ,m for

any given choice of m and m. This finite choice has no analogue in a flat background.
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Having discussed the tail of our vertex operators, we also need to address the zero mode

factors. In the compactified free boson the zero mode contribution was a function on the target

space. Functions on the coset space G/H can be thought of as H-invariant functions on the

group G. But since our tail factors transform non-trivially under H, it seems natural to admit

zero mode contributions whose transformation behavior under the right action of H on G is

non-trivial as well. More precisely, for any given representation Sλ of H on the carrier space Sλ
let us consider the following space of Sλ-valued functions on G,

Γλ = Γλ(G/H) = {F ∈ L2(G)⊗ Sλ : F (gh) = Sλ(h−1)F (g) ∀h ∈ H} . (6)

Elements of the linear space Γλ may be considered as sections in a homogeneous vector bundle

on G/H [23]. We will analyse the structure of these vector bundles in the next subsection.

At this point we have discussed three ingredients of our vertex operators, namely the tail

factors Pµ,m and Pµ,m along with the zero mode contribution V ∈ Γλ. These transform in the

representations µ, µ and λ of the denominator algebra h. Obviously, a physical field in the coset

model must be h invariant. Hence, we must glue our three ingredients with an intertwiner

Cλµµ : [λ]⊗ [µ]⊗ [µ] → C (7)

from the triple tensor product between the representations [λ], [µ] and [µ] of the denominator

algebra h to the complex numbers. Fields of the coset model now take the form

ΦΛ,λ,µ,µ(z, z̄) = VΛλ(z, z̄)Pµ;m(j, ∂j, . . . )Pµ;m(, ∂̄, . . . )Cλµµ , (8)

where VΛλ ∈ Γλ is a section that transforms in the representation Λ of the numerator algebra

g. By construction, these fields are invariant under the action of the denominator group H. On

the other hand, the action of the numerator group G is non-trivial. It is determined by the way

the section VΛλ transforms. The label Λ is the curved space analogue of the linear momentum

k in a circular target S1.

The labels (Λ, λ, µ, µ) we have placed on the symbol Φ do not keep track of all the freedom

we have in the construction of vertex operators. In order to count all possible fields of the coset

model one needs to count the intertwiners P,P and C that were introduced in eqs. (4) and (7),

respectively. In addition, there is often some freedom in the choice of the section VΛλ ∈ Γλ.

While the number of intertwiners may be determined straightforwardly from the fusion rules of

the Lie (super-)algebra h, the space of sections in homogeneous vector bundles requires input

from harmonic analysis. We will analyse the space Γλ in the next subsection. For O(N) vector

models, i.e. the coset sigma models with target space O(N)/O(N − 1), the space of fields has

been counted in [9] and the result was shown to agree with other descriptions of the field space

for these models.
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2.3 Homogeneous vector bundles on G/H

As we explained in the previous subsection, a good control over vertex operators of coset models

requires some knowledge about sections in homogeneous vector bundles over G/H and their

transformation behavior under the (left) action of G. Our main goal in this subsection is to

explain the decomposition

Γλ ∼=
∑
Λ

nΛλ [Λ] . (9)

Here, the linear space Γλ is considered as a representation of the numerator Lie (super-)algebra

g. The summation on the right hand side runs over irreducible representations [Λ] of this algebra.

Let us stress that for Lie superalgebras, the sum is not direct, at least not in general. We will

return to this issue below.

In the expansion (9), each summand [Λ] appears with some multiplicity nΛλ. Following

standard mathematical notation, we shall also write

nΛλ = [Γλ : SΛ] (10)

for the number of times a given irreducible representation SΛ of g appears in (the decomposition

series of) the space Γλ of sections. It is a central result from harmonic analysis of compact

supergroups that

[ Γλ : SΛ ] = [PΛ|h : Pλ ] . (11)

The objects PΛ and Pλ denote representations of the Lie superalgebras g and h, respectively.

These particular representations are called projective covers, see e.g. [24, 25] for a precise

definition and more background. They coincide with the irreducible representations SΛ and Sλ
when no shorting conditions are satisfied, i.e. when both Λ and λ are non-BPS. The case of BPS

(or atypical) multiplets will be discussed in more detail below. After restriction to h ⊂ g, the

representation PΛ gives rise to a representation PΛ|h of h. The number on the right hand side of

equation (11) denotes the number of times the representation Pλ appears in the representation

PΛ|h.

All this might seem a bit abstract at first. So, let us briefly illustrate the content of eq.

(11) for the coset space S2 = SU(2)/U(1). In this case, there exists an infinite set of complex

line bundles which are parametrized by the monopole number k ∈ Z. This number and hence

the associated bundles are in one-to-one correspondence with irreducible representations Sk of

the denominator group H = U(1). For monopole number k = 0 we are dealing with the trivial

line bundle, i.e. with functions on S2. Of course we know very well how the space of functions

decomposes under the action of su(2): Each integer spin representation appears with multiplicity

one. We may recover this fact from our formula (11) as follows. The space of functions on S2 is
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associated to the label λ = 0. We want to know how many times an irreducible representation

SΛ = Sj of su(2) appears in the decomposition of Γ0. According to eq. (11), this number is

given by

[Γ0 : Sj ] = [Sj |U(1) : S0] =

{
1 for j ∈ N

0 for j ∈ N + 1
2

. (12)

Here S0 denotes the trivial representation of h. For bosonic Lie groups, we do not have to

distinguish between projective covers Pj and irreducibles, i.e. Sj = Pj . The second equality

follows from the fact that the spin j representation Sj contains exactly one state on which the

generator J3 of the u(1) ⊂ su(2) has zero eigenvalue if and only if j is integer. For non-trivial

monopole line bundles, the evaluation proceeds along the same lines. In this case the space Γk

of sections contains each integer spin representation Sj satisfying j ≥ k with multiplicity one.

The only additional complication we have to deal with in applying eq. (11) to superspaces

comes from the distinction between irreducibles and projective covers. For typical (long) mul-

tiplets SΛ of a Lie superalgebra g, the projective cover PΛ agrees with SΛ = PΛ. But if SΛ

is an atypical (short) multiplet then PΛ 6= SΛ is an indecomposable representation. It should

be considered as a very specific ‘composite’ representation that is built from several short mul-

tiplets. For the Lie superalgebra g = osp(4|2) the projective covers are discussed explicitly in

appendix A. Of course, short representations of the denominator algebra h can also be combined

into projective covers, see appendix B where the projective covers for osp(3|2) are discussed. Let

us finally mention that upon restriction from g to the subalgebra h ⊂ g, a projective cover PΛ

decomposes into a direct sum of projective covers Pλ. Hence, the numbers on the right hand

side of eq. (11) are well defined. We shall compute them for homogeneous vector bundles on the

supersphere S3|2 later on.

Let us briefly mention one simple example that can be used to illustrate how important the

distinction between irreducibles and projective covers is. To this end we consider the homoge-

neous vector bundle Γad on the supersphere S3|2 that is associated with the adjoint representation

of the denominator algebra osp(3|2). It turns out that this bundle contains two multiplets of

sections which transform in the adjoint representation SAd of the numerator algebra osp(4|2),

i.e. [Γad : SAd] = 2. On the other hand, the adjoint representation of osp(4|2) is 17-dimensional

and that of osp(3|2) is 12-dimensional. Hence, for dimensional reasons, the restriction of SAd to

osp(3|2) contains Sad only once,

2 = [PAd|h,Pad] 6= [SAd|h,Sad] = 1. (13)

This example demonstrates that harmonic analysis on superspaces requires a bit of extra care

precisely because of the existence of BPS representations.
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Before we conclude this subsection let us stress once more that formula (11) is restricted

to compact (super-)algebras. This does not mean that similar control of homogeneous vector

bundles can not be achieved when G is non-compact. As long as H is compact, one can continue

to derive results on the decomposition of homogeneous vector bundles from the harmonic analysis

of G. So, if the latter is understood, homogeneous vector bundles pose no additional problems.

When H in non-compact, however, normalizable sections of on G/H are no longer obtained

from normalizable functions on G and hence cosets with non-compact denominator require an

independent analysis. Nevertheless, the decomposition of homogeneous vector bundles is known

in many concrete examples.

2.4 One-loop anomalous dimensions

While our construction of vertex operators in coset sigma models was completely general and

the property (11) holds for all homogeneous vector bundles on quotients G/H of a compact Lie

(super-)groupG, the following results on the one-loop corrections to the spectrum of coset models

have only been derived for symmetric (super-)spaces, although work on so-called generalized

symmetric spaces, including those relevant for the AdS/CFT correspondence, is in progress.

The computations carried out in [9] show that the one-loop anomalous dimensions depend

only on the representation labels Λ, λ, µ, µ and not on the intertwiners P,P and C that enter the

construction of fields (8) in the coset model. This is why we labeled our fields Φ by a subscript

that makes no reference to the precise choice of intertwiners.

At zero sigma model coupling, i.e. for R = ∞, the sigma model fields possess their naive

dimensions (h∞, h̄∞) that are given by the number of derivatives,

h∞ =
∑
j=1

j mj , h̄∞ =
∑
j=1

j mj . (14)

Once we turn on the interaction, these scaling weights are shifted by the so called anomalous

dimension δRh, i.e. at some finite value of the coupling R the scaling weights have the form

(
h(R), h̄(R)

)
= (h∞ + δRh, h̄∞ + δRh) . (15)

According to [9], the leading contribution to the anomalous dimension takes the form

δ
(1)
R h =

1

2R2

(
Casg(Λ)−Cash(µ)−Cash(µ)

)
. (16)

In the derivation the result actually emerges as a sum of two different pieces that are associated

with the zero mode factor and the tail of the vertex operator, respectively. Recall that the zero

mode factor VΛλ is a section in a homogeneous vector bundle Γλ. Such sections are acted upon
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by the Lichnerowicz Laplacian ∆L, whose eigenvalues were expressed through the quadratic

Casimir operators of g and h in [26],

∆LVΛλ(θ) =
(
Casg(Λ)−Cash(λ)

)
VΛλ(θ) . (17)

The contribution of the tail factors to the annomalous dimension can be written as a spin-spin

interaction between fields j and . It leads to a term of the form Cash(λ)−Cash(µ)−Cash(µ).

Note that the first term in this combination cancels the constant shift Cash(λ) in the eigenvalues

of the Lichnerowicz Laplacian so that we end up with the expression given in eq. (16).

Formula (16) is actually very general. It holds for all sigma models on symmetric superspaces

with vanishing beta function. When properly interpreted, see [9], it can also be used for models

with world-sheet supersymmetry, such as e.g. the N = 2 worldsheet supersymmetric sigma

model on complex projective superspace CP3|4 etc. In applications to non-conformal theories,

such as e.g. the usual O(N) models, the formula for δ(1)h requires a simple additional term,

δ
(1)
R h =

1

2R2

(
Casg(Λ)−Cash(µ)−Cash(µ) + Cash(m)

∑
i

(mi +mi)
)
. (18)

Since vanishing of the one-loop beta function requires that Cash(m) = 0 we recover the formula

(16) for conformal sigma models. Our simple formula (16) or rather its generalization (18)

summarizes and extends the results of many papers in which anomalous dimensions, mostly

dealing with g-invariant fields, have been studied model by model, see e.g. [27, 28, 29, 30, 31,

32, 33]. That all these computations may be captured by a single universal formula (18) is quite

remarkable. Of course, this success is intimately tied to the construction (8) of vertex operators.

We now see how well this construction was adapted to the computation of 1-loop anomalous

dimensions.

Much of the previous work on anomalous dimensions of (high-)gradient operators in sigma

models was motivated by a somewhat puzzling instability that has first been observed in O(N)

vector models [27] and later understood to be a rather generic feature of sigma model perturba-

tion theory, see [38] and references therein. This instability arises because of the negative sign in

front of the terms Cash(µ) and Cash(µ). Naively one might think that high gradient operators,

i.e. operators (8) for which
∑
j j(mj + mj) = h∞ + h̄∞ is large, are highly irrelevant. But it

turns out that some of these operators acquire a very large negative anomalous dimension. More

precisely, one can show that for every choice of the sigma model coupling R−2, no matter how

small, one can find a g-invariant high gradient operator O = Φ0,λ,µ,µ such that

h∞(O) + h̄∞(O)− 1

R2

(
Cash(µ) + Cash(µ)

)
< 2 . (19)

This is because Cash(µ) grows quadratically with the weights of the representation µ and the

maximal weight grows linearly with the number of currents j in the tail. On the other hand,
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the positive contribution h∞(O) only grows linearly in the number of js. The argument shows

that (infinitely many) high gradient operators become relevant for arbitrarily small sigma model

coupling. One could have hoped that higher orders in perturbation theory correct the issue,

but they turn out to make things even worse [34]. We would be ready to conclude that sigma

models are inherently unstable if it were not for the many independent studies, e.g. through

lattice discretizations, that display no pathologies. As far as we know, the problem has never

been resolved but it is something to be kept in mind as we proceed.

3 The spectrum of the supersphere S3|2

The aim of this section is twofold. Partly, we would like to illustrate the general results we

have reviewed in the previous section through the simplest nontrivial example of an interacting

conformal sigma model, namely the theory with target space S3|2. This supersphere can be

considered as a quotient G/H of the compact supergroup G = OSP(4|2) by the subgroup

H = OSP(3|2). Since the latter is fixed by an order two automorphism of the former, the

supersphere S3|2 is a compact symmetric superspace. Hence, all the results we outlined in the

previous section apply to this case. Our task is to work them out explicitly. This will require

some input from the representation theory of osp(4|2) and osp(3|2) which can be found in several

appendices. The second purpose of this section is to gather some data about the supersphere

sigma model that we can later use to test the conjectured duality with the OSP(4|2) Gross-Neveu

model.

We will begin by describing several equivalent formulations of the supersphere sigma model.

Concrete results on low gradient operators and their anomalous dimensions are worked out in

the second subsection. In the third subsection we describe the more conventional construction of

(low gradient) vertex operators in terms of the fundamental field of the non-linear sigma model.

While this turns out to be significantly more cumbersome than the approach advocated in the

previous subsection, it will allow us to understand the impact of symmetries and equations of

motion.

3.1 The supersphere sigma model

The most basic description of the supersphere S3|2 is as a co-dimension one supermanifold in

the flat superspace R4|2 defined by the equation

X ·X :=

4∑
j=1

x2
j + 2η1η2 = 1 . (20)

11



Here, xj , j = 1, . . . , 4, and η1, η2, are the bosonic and fermionic coordinates of R4|2, respectively.

We shall often combine these coordinates into a multiplet of supercoordinates X = (XA) =

(xj , η1, η2). For a pair X and Y is such multiplets the inner product · is defined as

X · Y =
∑
j

xjyj + η1ξ2 − η2ξ1 . (21)

Here, we have denoted the fermionic coordinates of Y by ξ1 and ξ2. We can now write the action

of the associated sigma model as

SSM[X, ρ] =
R2

2π

∫
d2z (∂X · ∂X − ρX ·X) . (22)

Here ρ is a Lagrange multiplier that implements the supersphere constraint (20). The parameter

R can be interpreted as the radius of the supersphere. In the regime where R is large, the sigma

model is weakly coupled and perturbation theory should give reliable results. The equations of

motion for the field multiplet X read

∂∂̄X = (∂X · ∂̄X)X . (23)

From our description of the supersphere through equation (20) it is evident that S3|2 comes

equipped with an osp(4|2) action. In fact, the Lie superalgebra osp(4|2) acts on the embedding

space R4|2 through its fundamental representation. By the very definition of osp(4|2) this ac-

tion respects the constraint (20). The supersphere S3|2 can be obtained from the supergroup

OSP(4|2) by taking the following quotient

S3|2 = OSP(4|2)/OSP(3|2) (24)

with respect to the right action of the subsupergroup OSP(3|2) ⊂ OSP(4|2). The latter appears

as the stabilizer of a point X = (XA) = (1, 0, 0, . . . ) on the supersphere. Since this stabilizer is

left invariant by the reflection of the first coordinate, the quotient (24) is a symmetric superspace.

In conclusion, we have shown that the sigma model (22) possesses all the properties that we

assumed in the previous section.

In order to get a better feeling for how non-trivial the supersphere sigma model really is,

we solve the constraint (20) explicitly. To this end, we parametrize S3|2 through three angular

coordinates ϑj and 2 fermionic variables ηb. The line element takes the following form

ds2 = 2(1− η1η2)dη1dη2 + (1− 2η1η2)dΩ3 (25)

where

dΩ3 = dϑ2
1 + cos2 ϑ1 dϑ

2
2 + sin2 ϑ1 dϑ

2
3

12



is the usual line element of the 3-dimensional unit sphere. In the sigma model, the coordinates

are promoted to fields and the action reads

SSM[ϑ, η] =
R2

2π

∫
d2z
(
2(1− η1η2)(∂η1∂̄η2 − ∂η2∂̄η1)

+ (1− 2η1η2)(∂ϑ1∂̄ϑ1 + cos2 ϑ1 ∂ϑ2∂̄ϑ2 + sin2 ϑ1 ∂ϑ3∂̄ϑ3)
)
.

(26)

For the sigma model on the purely bosonic 3-sphere the coupling R runs and in order for the flow

to end in a non-trivial fixed-point one must add a Wess-Zumino term [35]. But the presence of

the two fermionic directions changes the situation profoundly. As shown in [19], the β-function

of the sigma model on S3|2 is the same as for a bosonic sigma model on a sphere Sd whose

dimension d = 3− 2 = 1 is given by the difference between the number of bosonic and fermionic

coordinates. Consequently, the β-function vanishes for the sigma model on S3|2, i.e. the model

(26), defines a family of non-unitary interacting conformal field theories at central charge c = 1

with continuously varying exponents.

Before we apply the results reviewed in the previous section to this model let us note that

the action (26) can be written very compactly if we factorize the metric with the help of the

super-Vielbeins EJα(ϑ, η),

gIJ(ϑ, η) := καβEIα(ϑ, η)EJβ (ϑ, η)(−1)|β|(|I|+|α|) (27)

where κ is the invariant form of osp(4|2) and the indices α, β run over directions along the

quotient m = osp(4|2)/osp(3|2). We can now combine the Vielbeins with the derivatives of the

coordinate fields (θJ) = (ϑj , ηa) as in eq. (2) to obtain

SSM[θ] =
R2

2π

∫
d2z gIJ(ϑ, η) ∂θI ∂̄θJ =

R2

2π

∫
d2z καβjα(z, z̄)β(z, z̄) . (28)

Of course, all the non-linearity of the action (26) is just hidden in the complicated structure

of the fields j and . Note that the latter transform in the fundamental representation of the

stabilizer subgroup OSP(3|2). In the action the corresponding index α is contracted with the β

so as to give an invariant.

Unlike the sigma model on S1 = U(1), the theory defined by the action (26) is not free. For

large radiusR, the model is weakly coupled and its properties may by studied perturbatively. But

as we pass to a more strongly curved background, computing quantities as a function of the radius

R may seem like a very daunting task. This is even more so because there is very little symmetry

to work with. As a conformal field theory, the sigma model on the supersphere possesses the

usual chiral Virasoro symmetries. But for a model with multiple bosonic coordinates the two

sets of chiral Virasoro generators are not sufficient to make the theory rational. Since there are
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no efficient tools to construct the theory at generic values of the radius parameter R, finding a

dual description whose perturbative regime describes a strongly curved supersphere is of obvious

interest.

3.2 Vertex operators and anomalous dimensions

Before we can begin constructing vertex operators for the supersphere sigma model we need

a little bit of background on representations of both osp(4|2) and osp(3|2). A much more

comprehensive discussion can be found in the appendices. It is heavily based on two papers by

van der Jeugt [36, 37].

The Lie superalgebra osp(4|2) possesses the bosonic subalgebra so(4)⊕ sp(2). Since this has

rank r = 3, generic representations are labeled by triples of weights [j1, j2, j3]. Atypical (or

BPS) representations satisfy a single shortening condition. The possible conditions are listed in

eq. (70). With one such condition relating the three weights ji, atypical representations Λl,k

are labeled by two integers l ≥ 0 and k. The precise relation between l, k and the weights ji are

given in eqs. (72) and (73). Let us only note that the label of the trivial representation is Λ0,0

while that of the 17-dimensional adjoint is Λ0,1. The representations Λl,0 on the other hand are

associated with (graded) symmetric traceless tensors of osp(4|2).

In the atypical representation Λl,k, the quadratic Casimir element Casg takes the value

Casg(Λl,k) = l2 . (29)

We conclude that the Casimir element Casg is insensitive to the second label k of Λl,k. Atypical

representations with the same value of the Casimir element are said to belong to the same block.

Representations from the same block may appear within larger indecomposables, in particular

they make up the projective covers PΛl,k
. The composition series of these indecomposables are

given in eqs. (79)-(82).

Let us turn our attention to the Lie superalgebra osp(3|2). In this case, the bosonic subalgebra

so(3)⊕sp(2) has rank two and hence generic representations are labeled by a pair [q, p] of weights.

The atypicals λ0 and λq = [q, 2q − 1], q ≥ 1/2, form a 1-parameter family of representations

that satisfy a single shortening condition. The label λ0 is reserved for the trivial representation,

λ1/2 is the 5-dimensional fundamental. In the case of osp(3|2), the adjoint is not atypical. Its

label is λad = [1, 0].

In the representation [q, p] the quadratic Casimir element Cash of osp(3|2) takes the values

Cash
(
[q, p]

)
= (p+ 2q)(p− 2q + 1) . (30)

We see that it vanishes for atypicals λq. All these atypicals belong to the unique single block
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from which indecomposables can be built. Once again, the most relevant indecomposables are

the projective covers Pλq of atypicals. Their composition series are displayed in eqs. (79)-(82).

With these notations set up we can begin to construct vertex operators. Our goal is to find

all vertex operators with up to two derivatives that transform in 1
2BPS representations Λl,k of

osp(4|2). Let us start with the zero modes. By definition, these fields have vanishing scaling

dimension at R = ∞ so they cannot contain any currents j or . Consequently, the osp(3|2)

representations µ, µ and λ that label our vertex operators (8) are all trivial. Thus, the head

must be taken from

Γ0 = Γλ0
=

∞⊕
l=0

Λl,0 , (31)

where Λl,0 = 1
2 [l + 1, l − 1,−l − 1] for l > 0 and Λ0,0 is the trivial representation. In order

to find the decomposition displayed on the right hand side, we employed the decomposition

formulas (102)-(104) along with the fundamental results (11). The summation is over all those

representations Λ of osp(4|2) for which the restriction of PΛ to the subalgebra osp(3|2) contains

Pλ0 . Our formulas in appendix C only list the decompositions for atypical representations

Λ = Λl,k but it is not difficult to see that typical (long) multiplets never contain Pλ0
in their

decomposition. Hence, the formula (31) is exact, i.e. it accounts for all elements of Γ0 not just

for those that transform in 1
2BPS representations. Of course, the space Γ0 is nothing but the

space of functions on the supersphere S3|2. Aside from the trivial representation Λ0,0 of osp(4|2),

which has vanishing Casimir, all other operators acquire a non-zero anomalous dimension,

δ
(1)
R h(VΛl,0,λ0

) =
1

2R2
Casg(Λl,0) =

l2

2R2
. (32)

The next set of operators we would like to look at are the operators of weight (h∞, h̄∞) = (1, 0).

Such operators contain a current j and hence have µ = λ = λ 1
2

while µ = λ0 is trivial. Hence,

the head of the operators must be taken from sections in the bundle

Γλ 1
2

= Λ0,1 +

∞∑
l=1

Λl,0 + typicals . (33)

The decomposition on the right hand side is obtained from the formulas in appendix C, just

as in the previous example. We see that one 1
2BPS section in the bundle of the fundamental

representation λ 1
2

of osp(3|2) is the adjoint multiplet of osp(4|2). The corresponding fields are

the Noether currents. According to our result (16) their one-loop anomalous dimension vanishes

since both the Casimir of the fundamental λ 1
2

and the Casimir of the adjoint Λ0,1 vanish. The

remaining 1
2BPS fields are derivatives of the zero modes. Their anomalous dimension is the same

as for the zero modes themselves.

The 1
2BPS spectrum of operators of weight (h∞, h̄∞) = (1, 1) is a bit richer. In this case, our

operators must contain j and  so that µ = λ 1
2

= µ. In the tensor product of the two fundamental
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representations µ and µ we find λ = λ0, [1, 0], [ 1
2 , 1]. Hence, the zero mode contributions can

come from 3 different bundles. The decomposition of the bundle Γ0 was described in eq. (31)

already. So it remains to describe the two bundles

Γ[1,0] = 2Λ0,1 + Λ0,2 + typicals (34)

and

Γ[ 1
2 ,1] =

∞∑
l=2

(2Λl,0 + Λl,1 + Λl,−1) + typicals . (35)

If we sum up all the contributions from the three possible bundles, we find that the spectrum

of operators of weight (h∞, h̄∞) = (1, 1) decomposes into

Γλ 1
2
⊗λ 1

2

∼= Λ0,0 + 2Λ0,1 + Λ0,2 + Λ1,0 +

∞∑
l=2

(3Λl,0 + Λl,1 + Λl,−1) + typicals (36)

The one-loop anomalous dimension of the corresponding operators is determined by the first

label of the representation,

δ
(1)
R h =

1

2R2
Casg(Λl,k) =

l2

2R2
. (37)

We see in particular that our sigma model contains 145 operators with vanishing one-loop

anomalous dimension. These sit in four different representations of osp(4|2). There is one state

in the trivial representation Λ0,0. This is the sigma model interaction that remains marginal at

one-loop. It actually remains marginal at all loops. In addition, there are two adjoint multi-

plets Λ0,1 of dimension 17 each. The multiplicity two is actually a signature of the distinction

between projective covers and irreducibles. As we explained above, one could have expected

that the multiplicity of the adjoint osp(4|2) section in the bundle associated to the adjoint rep-

resentation [1, 0] of osp(3|2) is given by the number of times the 12-dimensional [1, 0] appears

in the decomposition of the 17-dimensional Λ0,1. Clearly, this multiplicity is one which is not

the correct answer for the number of Λ0,1 multiplets in Γ[1,0]. So indeed the example illustrates

nicely how important it is to determine the multiplicity of short operators using decompositions

of projective covers rather than irreducibles.

3.3 An alternative construction of vertex operators

In order to fully appreciate the results of the previous subsection and the elegance of their

derivation, we would like to compare our findings with more conventional constructions of vertex

operators from the fundamental field multiplet X. In doing so, we will have to struggle a little

bit with the implications of the constraint (20) and the equations of motion (23) on counting

coset fields. As a reward, we will understand e.g. that the number 145 of operators with
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vanishing one-loop anomalous dimension contains non-trivial information about the dynamics

of the supersphere sigma model.

In building coset fields from the fundamental field multiplet X we shall start with the zero

modes. For h∞ = h̄∞ = 0 the relevant fields contain no derivatives and they are given by

monomials Fl,0(X) of order l = 0, 1, 2, . . . in the components of X. Once we implement the

constraint X2 = 1 the components of Fl,0(X) transform in the traceless symmetric tensor

representations Λl,0. This agrees with our formula (31) above.

Let us now proceed to fields of weight (h∞, h̄∞) = (1, 0). These must be of the form

Fl,0(X) ∂X (38)

for l = 0, 1, 2, . . . . The space of such objects transforms in the tensor product Γ0 ⊗ Λ1,0 of

symmetric traceless tensors with the fundamental Λ1,0. But not all these fields are non-zero. In

fact, by taking a derivative of the constraint X2 = 1 we obtain

X · ∂X = Xa∂X
a = 0 (39)

Consequently any field of the form Fl,0X · ∂X vanishes. Such fields transform in the represen-

tation Γ0. If we remove them from the list (38) we end up with a space of fields transforming in

Γ0 ⊗ Λ1,0 − Γ0 = Λ0,1 +

∞∑
l=1

Λl,0 + typicals = Γλ 1
2

. (40)

This agrees with our result (33). We have already interpreted the corresponding fields as the

Noether currents and derivatives of the zero modes.

Let us now turn to the most interesting set of fields, those with weights h = 1 = h̄. In this

case, the counting will be affected by the equations of motion. The relevant fields can all be

written in either of the following forms

Fl,0(X) ∂∂̄X , Fl,0(X) ∂X∂̄X . (41)

Our analysis of the space of these operators will proceed in two steps. First we shall fully

implement the constraint X2 = 1 and then we consider the equations of motion. By taking

derivatives of the constraint X2 = 1 we obtain the two equations

X · ∂X = 0 = X · ∂̄X . (42)

We can multiply each of these two equations with one of the previously found operators of

dimension (h∞, h̄∞) = (1, 0) or (h∞, h̄∞) = (0, 1), respectively. All such operators vanish. As

we discussed above, they transform in 2Γλ 1
2

. Additionally, we also need to remove all operators
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created from the zero modes by multiplication with the operator X ·∂XX · ∂̄X. These transform

in Γ0. This is not quite the end of story. In fact, there is another family of operators that vanishes

because of the constraint X2 = 1. To see this, we differentiate the constraint X2 = 1 by ∂∂̄ and

obtain

∂X · ∂̄X = −X · ∂∂̄X . (43)

This constraint allows us to remove all the operators of the form Fl,0∂X ·∂̄X. In other words when

considering the second family in eq. (41), we can restrict to those operators for which ∂X∂̄X

transforms wither in the representation Λ2,0 (symmetric traceless) or in Λ1,0 (antisymmetric).

Putting all this together we find

Γ0 ⊗ Λ1,0 + Γ0 ⊗ (Λ2,0 + Λ0,1)− 2Γλ 1
2

− Γ0

= Λ0 + 3Λ0,1 + Λ0,2 + 2Λ1,0 +
∞∑
l=2

(4Λl,0 + Λl,1 + Λl,−1)

= Γλ 1
2
⊗λ 1

2

+ Λ0,1 +

∞∑
l=1

Λl,0.

A quick glance at eq. (36) shows that we obtained more than we expected. The reason is

simple. While we have correctly implemented the constraint X2 = 1, operators of weight

(h∞, h̄∞) = (1, 1) are the first ones to be sensitive to the equations of motion. The latter

precisely remove the unwanted multiplets. In the block of the zero, for example, the operators

XI∂∂̄XJ −XJ∂∂̄XI (44)

contribute one of the three Λ0,1 in the decomposition we have listed. Once we insert the equations

of motion, however, these operators are set to zero

XI∂∂̄XJ −XJ∂∂̄XI = ∂X · ∂̄X (XIXJ −XJXI) = 0 . (45)

Hence, the fact that we found 145 operators of weight (h∞, h̄∞) = (1, 1) with vanishing one-loop

anomalous dimension is sensitive to the equations of motion. Without them there would be 17

additional such operators.

4 Duality with osp(4|2) Gross-Neveu Model

One lesson which has been learned through past studies of sigma models is that they should not

be considered as an isolated research topic. There exist other important constructions of 2D

(conformal) field theories which are intimately tied to sigma models and sometimes can provide

intriguing insights into the non-perturbative features of sigma models. We have already alluded
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to the example of sigma models on Calabi-Yau spaces which possess a dual description in terms

of (products of) WZNW coset models. Another, more elementary, example is the compactified

free boson which admits a dual description in terms of two Majorana fermions. The proposed

duality between the sigma model on S3|2 and the osp(4|2) Gross-Neveu model that we described

in the introduction is quite similar to the Coleman-Mandelstam duality between bosons and

fermions only that the abelian symmetry u(1) = so(2) is replaced by the non-abelian osp(4|2).

In the first subsection we shall describe the osp(4|2) Gross-Neveu model and some of its most

basic features. Then we review a central all-loop result from [13] on the (target space) 1
2BPS

spectrum of perturbed supergroup WZNW models and explain how it applies to the osp(4|2)

Gross-Neveu model. In the third subsection we try to match the 1
2BPS spectrum of the Gross-

Neveu model for a certain value of the Gross-Neveu coupling to the one-loop spectrum of the

supersphere sigma models. We will find perfect agreement for low lying states, but also some

discrepancies that involve fields with more derivatives. The discussion of these findings is mostly

deferred to the final section.

4.1 The osp(4|2) Gross-Neveu model

The fundamental field multiplet Ψ = (ΨA) = (ψj , γa) of the osp(4|2) Gross-Neveu model consists

of four Majorana fermions ψj , j = 1, . . . , 4, and a bosonic βγ-system whose fields we shall denote

by γ1 = γ and γ2 = β. In addition, there is a second multiplet Ψ = (ψj , γa) of opposite chirality.

All these six fields in Ψ possess conformal weight h = 1/2 and transform in the fundamental

representations Λ1,0 of osp(4|2). The same applies to Ψ. In terms of these field multiplets, the

action of the Gross-Neveu model reads

SGN[ψ, γ, ψ, γ] =
1

2π

∫
d2z

[∑
j

(
ψj ∂̄ψj + ψ̄j∂ψ̄j

)
+
(
γ2∂̄γ1 + γ̄2∂γ̄1

)]

+
g2

2π

∫
d2z

[∑
j
ψjψ̄j + (γ1γ̄2 − γ2γ̄1)

]2

.

(46)

The osp(4|2) invariance of this action is manifest since all indices are contracted with the osp(4|2)

invariant metric. When written in terms of Ψ and Ψ, rather than its components, the action

takes the same form as that of the massless Thirring model with its characteristic fourth order

interaction term. When the coupling constant g is set to zero the model is free and scale

invariant. It possesses a Virasoro symmetry with central charge c = 1. The latter receives a

contribution cj = 1/2 from each of the fermions ψj and ca = −1/2 from the two components of

the βγ-system. Switching on the coupling g introduces a very non-trivial action but it turns out

to preserve conformal symmetry. In fact, the β-function for the coupling g is proportional to the

dual Coxeter number h∨ = Casg(Λ0,1) and hence vanishes for osp(4|2). Therefore, the osp(4|2)
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Gross-Neveu model defines a one-parameter family of interacting conformal field theories with

central charge c = 1.

While the interaction in the osp(4|2) Gross-Neveu model preserves the Virasoro and a global

osp(4|2) symmetry, the free field theory possesses additional current algebra symmetries that

are broken when g 6= 0. In order to describe these symmetries, we recall that the components

of the field multiplet Ψ obey the following operator product expansions

ψi(z)ψj(w) ∼ δij
z − w

+ . . . , γ2(z)γ1(w) ∼ δab
z − w

. (47)

Using these operator product expansions between the fundamental constituents it is standard

to show that the following quadratic combinations

JAB = ΨAΨB where (ΨA) = (ψi, γb) (48)

obey the algebraic relations of an osp(4|2) current algebra at level k = 1. Let us stress once

again that this current algebra symmetry is broken as soon as we switch on the coupling.

The current algebra symmetry suggests interpreting the free theory at g = 0 as a Wess-

Zumino-Novikov-Witten (WZNW) model. In addition, it is not difficult to verify that the fourth

order interaction term of the Gross-Neveu model can be expressed in terms of the currents (48)

as
g2

2π

∫
d2z

[∑
i
ψiψ̄i + γ1γ2 − γ2γ̄1

]2
=

g2

2π

∫
d2z

∑
AB

JAB(z)J̄AB(z̄) . (49)

Putting all this together we have shown that the Gross-Neveu model can be thought of as a

deformed WZNW model at level k = 1,

SGN = SWZNW
k=1 +

g2

2π

∫
d2z

∑
AB

JAB(z)J̄AB(z̄) (50)

with the deformation being generated by an exactly marginal current-current interaction. This

reformulation of the osp(4|2) Gross-Neveu model will become important when we apply the

powerful results of [13] to the Gross-Neveu model.

4.2 An all-loop result for deformed WZNW models

In [13], current-current deformations of supergroup WZNW models were studied. In particular

it was argued that the deformation by the operator

Ω(z, z̄) = Jµ(z)J̄µ(z̄) . (51)

is truly marginal, provided that the Lie supergroup possesses vanishing dual Coxeter number,

i.e. that G = PSL(N |N), OSP(2N + 2|2N), D(2, 1;α). In the definition of Ω the sum runs over
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all directions µ in the Lie superalgebra g. The deformation breaks the affine symmetry. Since

it does not even commute with the zero modes of the chiral currents, it also breaks the left and

right g symmetries. On the other hand, the sum of left and right zero modes does commute

with the perturbing operator so that the deformed theory preserves the diagonal g action.

Of course, under the perturbation with the operator (51) the conformal weight of fields can

change, i.e. fields may develop an anomalous dimension. In general, this anomalous dimension

is difficult to compute, at least beyond the leading order in perturbation theory. Remarkably,

for a special subset of fields, the authors of [13] managed to obtain an all order expression. In

physics terminology, the fields for which this was possible are those that transform in maximally

atypical, or 1
2BPS, representations of the target space symmetry g. More precisely, the formulas

of [13] hold for all indecomposable field multiplets of g which contain a subrepresentation of

non-zero superdimension. For such fields, the anomalous dimension reads

δ(∞)
g hBPS =

g

2(1− k2g2)

[
CasDg (ΛBPS)− (1− kg)

(
CasLg +CasRg

)]
. (52)

Here CasL/Rg refers to the value of the quadratic Casimirs on the left and right representations

in the unperturbed model, respectively. The superscript D means that the Casimir element is

evaluated with respect to the diagonal action. We have placed the subscript ’BPS’ on both sides

of the equation to remind us that this formula should only be applied to fields that transform

in maximally atypical representations Λ under the diagonal action. On the other hand, their

transformation law with respect to left or right action in the WZNW model is not constrained.

Let us now specialize this very general result to the osp(4|2) Gross-Neveu model or, equiva-

lently, to the current-current deformation of the osp(4|2) WZNW model at level k = 1. In this

case our formula can be applied to all fields that transform in one of the atypical representations

Λl,k or any indecomposable composites formed from these. Let us recall that the value of the

quadratic Casimir element assumes the value Casg(Λl,k) = l2 on such atypicals. Hence, our

general formula (52) becomes

δ(∞)
g hBPS =

gl2

2 (1− g2)
− g

2 (1 + g)

(
CasLg +CasRg

)
. (53)

for fields transforming in Λ = Λl,k with respect to the diagonal action of g. Note that the

function δ
(∞)
g h develops a singularity at g = −1, at least for a large number of states. This

simple observation motivates the identification of the point g = −1 with the R → ∞ limit of

the S3|2 sigma model. In fact, in the sigma model one expects that all winding states develop

infinite energy when R → ∞. So, if we want the sigma model to be dual to the Gross-Neveu

model, we are forced to identify g = −1 with the infinite radius limit. The precise relation
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between the coupling g and the radius R reads [13] 1

g =
4−R2

4 +R2
. (54)

For a state to remain in the spectrum at the point g = −1, the anomalous dimension (53) has

to remain finite. This is the case if

CasLg +CasRg =
l2

2
. (55)

We call eq. (55) the no-winding condition. For states that satisfy this condition, the anomalous

dimension (53) simplifies to

δ(∞)
g hBPS =

1

4

gl2

1− g
= − l

2

8
+

l2

2R2
. (56)

Here we also inserted eq. (54) so that the anomalous dimension of the Gross-Neveu model fields

is finally written in terms of the radius parameter R on the sigma model. We have now gathered

all the ingredients we need in order to perform our first tests of the duality. Eq. (55) tells us

which states of the free field theory make it into the spectrum at g = −1 and eq. (56) allows

us to compute the corresponding conformal weight. We will now start to compare the resulting

spectrum at g = −1 with the free supersphere sigma model.

In our discussion of the one-loop anomalous dimensions for coset sigma models we briefly

commented on a puzzling instability that arises from high gradient operators. The same type of

instabilities also appears in perturbed WZNW models, at least for generic choices of the target

group and the level. To leading order in perturbation theory this was observed by Ryu et al. in

[38]. With the help of formula (52) one may show that these instabilities persist to any order in

perturbation theory. The authors of [38] also observed that no instabilities occur for psu(N |N)

WZNW models at level k = 1. This observation, however, does not carry over to our osp(4|2)

WZNW model at level k = 1. In fact, one can show that this theory contains instabilities

arbitrarily close to the free field theory, much as it is the case for sigma models. For now, we

shall close an eye on these issues.

4.3 Checking the proposed duality

We want to apply the results on the deformation of the 1
2BPS spectrum in deformed supergroup

WZNW models in order to test the proposed duality between the osp(4|2) Gross-Neveu model

and the supersphere sigma model. In the first subsection we shall show that the zero mode

spectrum of the sigma model is recovered along with its 1-loop deformation. This is a remarkable

1The cohomological methods developed in [39] imply that the relation is identical to the one that appears in
the duality between a compactified free boson and the massless Thirring model.

22



example of an emergent geometry. In the WZNW model, the fields that are associated with

spherical harmonics of the supersphere possess very large scaling dimensions. These come down

until they become zero modes, i.e. fields with vanishing scaling weight, in the sigma model limit.

Let us anticipate that the singular vectors of the osp(4|2) WZNW model at level k = 1 play an

important role for this identification with the zero mode spectrum of the sigma model to work

out. Then we turn to derivative fields of the sigma model. We will argue that the agreement

continues to hold for fields of conformal weight (h∞, h̄∞) = (1, 0), (0, 1) in the sigma model. This

may not come as a big surprise. Things become more interesting for the fields with conformal

weight (h∞, h̄∞) = (1, 1) since these are sensitive to the equations of motion in the sigma model.

Recall that in the sigma model we found 145 states with vanishing 1-loop scaling dimension.

This will be exactly matched by the deformed WZNW model. In the WZNW model, the scaling

dimension of the corresponding 145 states is independent of the coupling so that the conjectured

duality makes an interesting prediction: All higher loop corrections to the scaling weight of the

145 states are actually zero. The match between the deformed WZNW model and the sigma

model extends to many other fields with (h∞, h̄∞) = (1, 1). On the other hand, we will also find

sigma model fields that cannot be reproduced within the deformed WZNW model.

4.3.1 Ground state spectrum

One key piece of evidence in support of the proposed duality is the observation that we can

actually recover all the zero modes of the sigma model. Under the action of the global osp(4|2)

symmetry the space Γ0 of functions on the supersphere decomposes into a sum of irreducible

multiplets Λl,0, see eq. (31). Each of these multiplets appears with multiplicity one. Other

atypical representations Λl,k, k 6= 0 do not occur.

As we have explained before, the states of the Gross-Neveu model are constructed from a

chiral multiplet Ψ = ΨL that transforms in a 6-dimensional representation of osp(4|2). The

osp(4|2) representation matrices are those known from the usual fundamental representation,

but the grading rules are reversed so that the fermionic subspace is 4-dimensional while the

bosonic has dimension 2. It is a remarkable fact that the conformal dimension h of all chiral

operators OL in the undeformed case is bounded from below by

h0

(
OL[Λ]

)
≥ 1

2
CasLg (Λ) . (57)

for all OL that transform in the representation [Λ] with respect to the left osp(4|2) action. Of

course, the corresponding statement holds for all operators OR that are constructed from the

components of Ψ = ΨR and their derivatives. It is actually possible to establish the stronger
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lower bound

h0

(
OL[Λ]

)
≥ j1 + j2(j2 + 1) + j3(j3 + 1) + |j2 − j3| ≥

1

2
CasLg (Λ) (58)

which shows that the inequality (57) can only be saturated by very special multiplets, when

j1 = 0, 1
2 . It turns out that for each integer l = 0, 1, 2, . . . there is a unique field multiplet OLl

such that

h0(OLl ) =
l2

2
. (59)

The multiplet OLl is obtained as a graded symmetric component in the l-fold tensor product of

the fundamental. Since our generating field multiplet Ψ is fermionic, i.e. its grading is reversed

in comparison to the grading of the fundamental, the multiplet OLl must contain l(l − 1)/2

derivatives. Hence, its conformal dimension h(OLl ) = l/2 + l(l − 1)/2 = l2/2.

Let us illustrate the construction of OLl with a few explicit examples. Of course, the operator

OL0 is just the identity field while OL1 is the fundamental multiplet Ψ. The next multiplet OL2
appears at h(OL2 ) = 2,

OL2 =
(
ψA∂ψB + (−1)|A||B|ψB∂ψA

)
. (60)

When we multiply the multiplet OLl with its anti-holomorphic partner ORl we obtain a set of

bulk fields which transform in the product Λl,0⊗Λl,0. The only component that can satisfy the

no-winding condition is the one in the representation Λ2l,0. Indeed,

Casg(Λ2l,0) = 4l2 = 2
(
CasLg (Λl,0) + CasRg (Λl,0)

)
. (61)

Let us denote the this component of the product by V2l = V2l(z, z̄). To summarize, we have now

constructed a field multiplet V2l in the WZNW model that transforms in the representation Λl,0

with respect to both the left and the right action of osp(4|2) and in the representations Λ2l,0

with respect to the diagonal action. In the WZNW model, i.e. the free Gross-Neveu model, this

field possesses weights
(
h0(V2l), h̄0(V2l)

)
= (l2/2, l2/2).

Since the field V2l transforms on the 1
2BPS representation Λ2l,0 of osp(4|2), we can apply the

results of the previous subsection to compute its dimension for any value of the coupling g and

in particular at the point g = −1. With the help of the leading term in eq. (56) we obtain

h(V2l)g=−1 = h0(V2l)−
1

8
4l2 = 0. (62)

Hence, we obtain precisely the spectrum provided by the spherical harmonics Λ2l,0 in the sigma

model, i.e. at least one half of the zero modes of the supersphere sigma model. 2 Remarkably,

2One would expect to obtain the missing zero modes V2l+1 from other sectors of the Gross-Neveu model.

Without the inclusion of additional states, the Gross-Neveu model is related to an orbifold theory S3|2/Z2 rather
than the supersphere sigma model.
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this identification is also consistent with what we know about the 1-loop anomalous dimensions

in the sigma model. In fact, if we keep the next to leading term in eq. (56) we find

h(V2l)g =
l2

2
+

gl2

1− g
=

2l2

R2
. (63)

This should be compared with the result (32) for the one loop anomalous dimension of the sigma

model vertex operators VΛ2l,0,λ0 . We see that also the 1-loop corrections to the scaling law agree.

In the deformed WZNW model, the formula (56) is actually exact, i.e. there are no further

corrections by terms involving higher powers of the sigma model coupling 1/R2. The duality

therefore predicts that the anomalous dimensions of zero mode fields in the sigma model are

1-loop exact. It should not be too difficult to check this prediction through a direct computation

along the lines of [40, 41], where anomalous dimensions of tachyonic vertex operators in bosonic

O(N) models were computed up to four loops. The general structure of Wegner’s results suggest

that higher order corrections indeed vanish for the conformal supersphere models, but we have

not yet completed an honest derivation.

Since our fields OL/Rl are the only ones satisfying the bound (57) and the bulk field V2l the

only fields we could build from them that solve the no-winding condition (55), the deformed

WZNW model contains no further field of weight (h∞, h̄∞) = (0, 0) at g = −1. Moreover,

because of the bound (57), all other WZNW fields that solve the no-winding condition end up

with h∞ + h̄∞ > 0 for g = −1. In the free sigma model, the conformal weights are determined

by the number of derivatives and hence they are certainly non-negative. So, our results are in

beautiful agreement with the proposed duality.

Let stress that the match of zero modes only works for the WZNW model at k = 1, i.e. it

does make crucial use of the exact position of singular vectors. In order to illustrate this point

let us consider the space of states H(l)
k of conformal weight h = 2 (h̄ = 0). For an osp(4|2)

WZNW model with k > 1, these transform in

H(2) ∼= Λ0,1 + Λ0,1 � Λ0,1 = Λ0,0 + Λ0,1 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0] . (64)

The term Λ0,1 originates from the action of the modes JAB−2 while the term Λ0,1 �Λ0,1 contains

the contributions of JAB−1 J
CD
−1 |0〉. A formula for the symmetric tensor product � of the adjoint

Λ0,1 can be found at the end of appendix A. Note that there appear four different multiplets

in which the Casimir element has the maximal value Casg(Λ) = 4, namely the multiplets

Λ = Λ2,k, k = 0,±1. At level k = 1, the first singular vectors appear at h = 2 and these reduce

the spectrum to

H(2)
k=1
∼= Λ0,0 + Λ0,1 + Λ2,0 + [2, 0, 0] (65)

so that the representations with maximal Casimir are reduced to a single one, namely Λ2,0. This

is the unique multiplet in H(2)
k=1 that is used to build a zero mode at g = −1. WZNW models
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with level k > 1 contain many more zero modes and hence cannot be dual to the supersphere

sigma model.

4.3.2 Spectrum of gradient operators

After our success in matching the zero modes of the sigma model with fields in the deformed

WZNW theory, we want to move on to gradient fields in the sigma model. Some of them

are very easy to find. This applies in particular to the operators of weight (h∞, h̄∞) = (1, 0).

Their spectrum was described in eq. (33). Most of these fields emerge from the WZNW model

derivative operators ∂V2l with l = 1, 2, . . . . The fields V2l were constructed in the previous

subsection. The bulk operators ∂V2l have conformal weight (h0, h̄0) = (l2/2 + 1, l2/2) and they

transform in the representation Λ2l,0. By the same reasoning as above we obtain a family of fields

with weight (h∞, h̄∞) = (1, 0) at the point g = −1 which transform in the Λ2l,0 representations

of osp(4|2). Their 1-loop anomalous dimension coincides with that of the corresponding zero

modes. Of course, the match with the operators of weight (h∞, h̄∞) = (1, 0) is not surprising

since they are obtained as derivatives in both the WZNW and the sigma model description.

There is one more set of operators at (h∞, h̄∞) = (1, 0), namely the Noether currents of the

sigma model that sit in the representation Λ0,1. It is obvious that these arise from the chiral

currents JAB in the WZNW model. In fact, the currents of the WZNW model transform in the

representation ΛL = Λ0,1 and ΛR = Λ0,0 with respect to the left and right action of osp(4|2),

respectively. Under the diagonal action, the transformation law is described by the tensor

product ΛD = Λ0,1⊗Λ0,0 = Λ0,1. Since all these representations possess vanishing Casimir, the

no-winding condition (55) is satisfied and the anomalous contribution to the conformal weight

vanishes. Hence, we can identify the deformation of the WZNW currents with the Noether

currents of the sigma model.

Let us now turn to the operators of conformal weight (h∞, h̄∞) = (1, 1) in the sigma model.

Their spectrum in the sigma model is given by eq. (36). Obviously, we can obtain some of these

from the operators ∂∂̄V2l, l = 1, 2, . . . in the WZNW model. But these fields are not even close

to exhausting content of eq. (36). In particular, the sigma model contains these 145 marginal

fields with vanishing 1-loop anomalous dimension that we discussed extensively in section 3 and

so far we have not seen any of them.

These 145 fields belong to mutiplets Λ0,0 + 2Λ0,1 + Λ0,2, all of which have vanishing Casimir.

Hence, in the WZNW model they must appear with (h0, h̄0) = (1, 1). So, let us count the fields

in the WZNW model that have weights (h0, h̄0) = (1, 1) and vanishing Casimir. All of these

fields must arise among JAJ̄B , i.e. sit in the tensor product of the adjoint representation of
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osp(4|2) with itself. This tensor product is given by

Λ0,1 ⊗ Λ0,1
∼= Λ0,0 + 2Λ0,1 + Λ0,2 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0] . (66)

Indeed, this contains exactly 145 fields in representations from the block of the trivial represen-

tations for which the anomalous dimension vanishes to all orders in the coupling and hence also

around g = −1, in perfect agreement with the sigma model results. Since the space of marginal

fields in the sigma model is truncated by the equations of motion, the deformed WZNW model

has the sigma model equations of motion built in!

This is a remarkable agreement. On the other hand, looking back at the sigma model

spectrum (36) we realize that the content of what looks like PΛ2l,0
, l = 1, 2, . . . is still missing.

Additional fields in these representations that acquire weights (h∞, h̄∞) = (1, 1) at g = −1 do

exist in the WZNW, but these turn out not to match the 1-loop data near g = −1. This is the

first discrepancy between the Gross-Neveu and the sigma model. We shall discuss this and other

discrepancies in more detail in the concluding section.

Before we do so, let us point out that, once again, the singular vectors are absolutely crucial

in order for the WZNW model to respect the sigma model equations of motion. As an example

let us look at the operators of the form ∂∂̄V4. These give rise to a single marginal sigma model

field in the representation Λ4,0. If it was not for the singular vectors of conformal weight h = 2,

the WZNW model would give many more marginal fields in the same block. In fact, the tensor

product

(2Λ2,0 +Λ2,1 +Λ2,−1)⊗ (2Λ2,0 +Λ2,1 +Λ2,−1) ∼= Λ4,−2 +4Λ4,−1 +6Λ4,0 +4Λ4,1 +Λ4,2 + . . . (67)

where + . . . stand for multiplets Λ with Casg(Λ) < 16, none of which satisfy the no-winding

condition. But those that do clearly outnumber the spectrum of marginal sigma model fields.

5 Conclusions

In this work we have reviewed recent results on the spectrum of coset sigma models and applied

them to the conformal supersphere sigma model with target space S3|2. The example shows

very clearly that the construction of vertex operators designed in [9] provides easy access to the

spectrum of sigma models, at least to leading order in the sigma model coupling. We have then

used the results to test a conjectured dual description of the sigma model on S3|2 which becomes

weakly coupled deep in the strongly curved regime of the sigma model. The dual theory may be

regarded as an osp(4|2) Gross-Neveu model or, equivalently, a deformed osp(4|2) WZNW model

at level k = 1. With the help of all-loop results from [13] we were able to recover the zero mode

27



spectrum of the sigma model along with a number of gradient fields. In particular, we argued

that the sigma model equations of motion are implemented in the deformed WZNW model.

There are quite a few open problems associated with both the perturbative results we re-

viewed and with the duality. We have already explained the issue of perturbative instabilities

from high gradient operators in sigma models, see the final remarks in section 2. These remain

puzzling and there is a wide range of proposals on how they could be interpreted, including

e.g. the suggestion that they might be cured by non-perturbative effects [34], or that they in-

dicate the existence of higher fixed points [14]. High gradient instabilities are not limited to

sigma models. In fact, they have also been observed to occur in perturbed WZNW models [38].

The authors of that work also noticed that high gradient instabilities are avoided for deformed

psu(N |N) WZNW models at level k = 1 since in this case singular vectors remove the unstable

operators. This is not true for osp(2N + 2|2N), however, which is plagued by high gradient

instabilities, even at level k = 1. Since the phenomenon appears to be so omnipresent, it seems

mandatory to uncover its (ir)relevance.

The duality between the Gross-Neveu and the sigma model we studied in section 4 also

leaves us with a number of interesting open questions. To begin with, let us observe that for

all states in the sigma model that are dual to no-winding states of the WZNW model, the 1-

loop anomalous dimension must be exact, i.e. it should not receive any higher loop corrections.

We have actually stressed before that our formula (56) is exact, i.e. in its derivation we did

not drop any terms of higher order in 1/R2. The only R-dependent correction term agrees

exactly with the 1-loop result in eq. (16), assuming that Cash(µ) + Cash(µ) = 0 and inserting

Casg(Λl,k) = l2. It would be very interesting to verify this consequence of the duality through

a 2-loop computation. Some 2-loop computations for high gradient operators in sigma models

were performed previously in [34]. Of course, designing an argument that establishes 1-loop

exactness for the relevant subsector in the sigma model would be even more remarkable.

In the last section we have also found some sigma model fields that do not seem to pos-

sess a counterpart in the deformed WZNW model, namely a large number of fields at weight

(h∞, h̄∞) = (1, 1). These are not the only sigma model fields that cannot be matched. In fact,

the comparison of eqs. (16) and (56) shows that fields for which the sum Cash(µ)+Cash(µ) 6= 0

cannot possess a counterpart in the Gross-Neveu model, at least not in the sense we outlined.

On the other hand, there exist intriguing further coincidences between the spectra of the two

theories which we were not able to incorporate into the above analysis. In particular, the authors

of [12] uncovered some miraculous character identities that establish a correspondence between

all chiral fields in the sigma model, no matter how large h∞ or h̄∞, and fields in the deformed

WZNW model. Unfortunately, the one-loop data in the sigma model spoil this match. Of course,
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it is possible that these discrepancies simply disprove the duality. On the other hand, it seems

somewhat tempting to speculate that the discrepancies might have the same origin as the high

gradient instabilities described above. Very much in the spirit of [38] one might hope that the

duality could even offer new insights into the instabilities, but so far we have not been able to

make this more concrete.

On a more technological level, our work demonstrates that existing results on the spectrum

of superspace sigma and WZNW models can provide very powerful tools to test dualities and to

develop an efficient description of sigma models deep in the strongly coupled regime. There are

many other models to which these ideas might apply. In particular, a similar duality between

conformal sigma models on complex projective superspace and psu(N |N) WZNW models has

been proposed at various places in the literature, see [42]. It should also be possible to extend

the perturbative computations in superspace sigma models to those target spaces that appear

in the context of the AdS/CFT correspondence. This requires two generalizations of the present

setup. Whereas the 1-loop results we have reviewed above are restricted to symmetric spaces

G/H in which H ⊂ G is fixed by an automorphism of order two, the description of strings in

AdS backgrounds involves subgroups H ⊂ G which are held fixed by an automorphism of order

four. The extension to such generalized symmetric spaces is a bit cumbersome but should not

meet any fundamental difficulty. Another fundamental aspect of AdS backgrounds is that they

are non-compact. This has implications on the way we construct normalizable sections, at least

when the denominator group H is non-compact as well. For AdS2 backgrounds, on the other

hand, the construction of vertex operators reviewed above remains unaltered. We will address

such compactifications in future research.
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A Representation theory of osp(4|2)

In the following we give a very basic introduction to the Lie superalgebra osp(4|2) and (some of)

its finite dimensional representations. The complex superalgebra g := osp(4|2) may be realized
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as the set of supermatrices,

osp(4|2) =

{(
A B

J2B
t D

)
: At = −A and DtJ2 = −J2D

}
. (68)

Here A is a 4× 4 matrix, D is a 2× 2 matrix and B is rectangular of size 4× 2. In addition, we

introduced the 2× 2 matrix J2 =
(

0 −1
1 0

)
. As usual, the Lie superalgebra g decomposes into an

even, or bosonic, subalgebra g0̄ = so(4)⊕ sp(2) ∼= sl(2)⊕ sl(2)⊕ sl(2) and an odd, or fermionic,

subspace g1̄.

Our review of representations focuses on finite dimensional representations. As usual for

superalgebras, irreducible representations fall into two different categories. On the one hand,

there are the generic long multiplets. These are also known as typical representations in the

more mathematical literature. On the other hand, a superalgebra also possesses short or BPS

multiplets which mathematicians refer to as atypical representations. BPS multiplets can be

put together into indecomposable representations. We will only work with one class of such

indecomposables, namely the projective covers of atypical representations.

In order to make all this more precise, we note that an integral dominant highest weight

Λ = (j1, j2, j3) of g0̄ is also one for the full superalgebra g if it obeys the consistency conditions

j1 = 0⇒ j2 = j3 = 0 , j1 =
1

2
⇒ j2 = j3 . (69)

The ordering of our the spins ji ∈ 1
2Z is such that the the first spin is related to the symplectic

subalgebra sp(2) while the two others are associated with the orthogonal one. This is a bit

unfortunate but agrees with conventions in earlier literature. We shall use the label [Λ] =

[j1, j2, j3] to denote finite dimensional irreducibles.

With these labels introduced we can now spell out the shortening conditions we have men-

tioned above. A representation [j1, j2, j3] is atypical provided the spins satisfy any one of the

following conditions

2j1 = −j2 − j3 ,

2j1 = j2 + j3 + 2 ,

2j1 = ±(j2 − j3) + 1 .

(70)

Otherwise the representation [j1, j2, j3] is typical. The eigenvalue of the quadratic Casimir

element in the irreducible representation [Λ] is given by

Casg(Λ) = −4j1(j1 − 1) + 2j2(j2 + 1) + 2j3(j3 + 1) . (71)

If the spins satisfy one of the shortening conditions (70) the value of the quadratic Casimir

element is a square, i.e. Casg(Λ) = l2 with l ∈ N. The atypical weights Λ = (j1, j2, j3), i.e.
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those weights that satisfy one of the shortening conditions, can be divided into blocks βl that

contain all those representations Λ ∈ βl for which Casg(Λ) = l2. The corresponding atypical

labels can be listed explicitly [24],

β0 =

{
Λ0,0 = (0, 0, 0) , Λ0,k =

1

2
(k + 1, k − 1, k − 1) , k ≥ 1

}
βl = {Λl,k , k ∈ Z}

(72)

where

Λl,k =



1
2 (−k + 2,−k − l,−k + l) if k ≤ −l
1
2 (−k + 1, k + l − 1,−k + l − 1) if − l + 1 ≤ k ≤ 0

1
2 (k + 1, k + l − 1,−k + l − 1) if 0 ≤ k ≤ l − 1

1
2 (k + 2, k + l, k − l) if l ≤ k

. (73)

One sees easily, that the weights Λl,−k for l ≥ 1 may be obtained from Λl,k by simply exchanging

the second and the third Dynkin label. Furthermore, it is possible to distinguish the weights

Λl,k according to the atypicality condition (70) they obey. The only weight to fulfill the first

condition is Λ0,0. The weights belonging to the second condition are Λ0,k for k ≥ 1 and Λl,±k

for k ≥ l. Finally, those the satisfy the last atypicality relation are the Λl,±k for k < l. In any

case, each of the weights fulfills at most one of the shortening conditions. This means that all

atypical representations of osp(4|2) possess the same degree of atypicality, i.e. they are all what

mathematicians refer to as maximally atypical and physicists call 1
2BPS.

We can decompose all irreducible representations [j1, j2, j3] in terms of irreducible subrepre-

sentations of the bosonic subalgebra g0̄. For typical representation one finds

[j1, j2, j3]g0̄

∼= (j1, j2, j3)
⊕

α,β=± 1
2

(j1 −
1

2
, j2 + α, j3 + β)

⊕
α=±1

[
(j1 − 1, j2 + α, j3)⊕ (j1 − 1, j2, j3 + α)

]
⊕ 2(j1 − 1, j2, j3)

⊕
⊕

α,β=± 1
2

(j1 −
3

2
, j2 + α, j3 + β)⊕ (j1 − 2, j2, j3) .

(74)

There are a few special cases for which the decomposition is not generic. If j1 ≤ 2, j2 ≤ 1 or

j3 ≤ 1 then the above decomposition formula must be truncated at the point where one or more

of the labels become negative. Moreover, there are two cases for which the multiplicity of the

(j1 − 1, j2, j3) submodule has to be changed. If j1 = 1, j2 > 0, j3 > 0 or j1 > 1, j2 = 0, j3 > 0

or j1 > 1, j2 > 0, j3 = 0, then this block will appear only once and if both j2 and j3 are null

or j1 = 1 and at least one between j2 and j3 is null, then it will not be present at all. From

the decomposition into representations of the bosonic algebra we can determine the dimension
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of typical representations

dim[j1, j2, j3] = 16(2j1 − 1)(2j2 + 1)(2j3 + 1) . (75)

The decomposition (74) for j1 ≥ 1, is valid for the indecomposable Kac modules that emerge

when the spins ji satisfy one of the shortening conditions (70). These Kac modules are compos-

ites of irreducibles. More precisely, one finds

KΛ0,2 : [Λ0,2] −→ [Λ0,0]⊕ [Λ0,1]

KΛ0,k
: [Λ0,k] −→ [Λ0,k−1] for k ≥ 3

KΛl,k
: [Λl,k] −→ [Λl,k−1] for k ≥ 1

KΛl,k
: [Λl,k] −→ [Λl,k+1] for k ≤ −1 .

(76)

The arrows mean that fermionic generators can take us from the representation on the left to

the one on the right but not vice versa. Put differently, the representation on the right hand

side of the arrows is a subrepresentation of the Kac module. If we quotient the Kac module by

this subrepresentation, the corresponding factor representation is the one on the left hand side.

The representations with j1 = 1
2 are somewhat special. In fact, when j1 = 1

2 , the Kac module is

irreducible and we obtain

Λl+1,2|g0̄
=

[
1

2
,
l

2
,
l

2

]
g0̄

∼=
(

1

2
,
l

2
,
l

2

)
⊕
(

0,
l + 1

2
,
l + 1

2

)
⊕
(

0,
l − 1

2
,
l − 1

2

)
. (77)

From our description of the Kac modules it is possible to determine the dimensions of irreducible

atypicals,

dim[Λ0,0] = 1 , dim[Λ0,1] = 17 , dim[Λl,0] = 4l2 + 2

dim[Λ0,k] = (2k + 1)
[
(2k + 1)2 − 3

]
for k ≥ 2

dim[Λl,k] = (2k + 1)
[
4(l2 − 1)− (2k + 1)2 + 7

]
for k ≤ l − 1

dim[Λl,k] = (2k + 3)
[
(2k + 3)2 − 4(l2 − 1)− 7

]
for k ≥ l .

(78)

We are finally prepared to describe the projective covers that feature so prominently in the

construction of homogeneous vector bundles. While typical irreducibles [Λ] coincide with their

projective cover PΛ = [Λ], the projective cover of an atypical representations is an indecompos-

able composite of atypicals. Its precise structure can be read off from the following diagrams

PΛ0,0 : Λ0,0 → Λ0,2 → Λ0,0 (79)

PΛ0,1
: Λ0,1 → Λ0,2 → Λ0,1 (80)

PΛ0,2
: Λ0,2 → Λ0,3 ⊕ Λ0,1 ⊕ Λ0,0 → Λ0,2 (81)

PΛl,k
: Λl,k → Λl,k+1 ⊕ Λl,k−1 → Λl,k otherwise (82)
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The meaning of the arrows was explained in our discussion of Kac modules above. Note that all

the atypicals that appear in any given projective cover belong to the same block β. It is actually

not possible to build indecomposables from representations within different blocks.

Before we conclude this brief overview over representations of the Lie superalgebra osp(4|2)

we want to spell out a few tensor product decompositions between irreducible atypicals. These

are used in our discussion of the low lying spectrum in the osp(4|2) Gross-Neveu model.

Λ0,1 ⊗ Λ0,1 = Λ0,0 + 2Λ0,1 + Λ0,2 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0]

Λ0,1 � Λ0,1 = Λ0,0 + Λ2,−1 + 2Λ2,0 + Λ2,1 + [2, 0, 0]

Λ0,1 ⊗ Λ0,2 = Λ0,0 + Λ0,1 + 3Λ0,2 + Λ0,3+

+ [1, 1, 1] + [ 3
2 ,

1
2 ,

3
2 ] + [ 3

2 ,
3
2 ,

1
2 ] + [2, 0, 1] + [2, 1, 0] + [ 5

2 ,
1
2 ,

1
2 ]

Λ0,2 ⊗ Λ0,2 = 2Λ0,0 + 4Λ0,1 + 4Λ0,2 + 4Λ0,3 + Λ0,4+

+ Λ2,−2 + 3Λ2,−1 + 4Λ2,0 + 3Λ2,1 + Λ2,2+

+ Λ4,−1 + 2Λ4,0 + Λ4,1+

+ [1, 0, 2] + 2[1, 1, 1] + [1, 2, 0] + 2[ 3
2 ,

1
2 ,

3
2 ] + 2[ 3

2 ,
3
2 ,

1
2 ] + 2[ 3

2 ,
3
2 ,

3
2 ]+

+ 2[2, 0, 0] + 2[2, 0, 1] + 2[2, 1, 0] + [2, 1, 2] + [2, 2, 1]+

+ 2[ 5
2 ,

1
2 ,

1
2 ] + 2[ 5

2 ,
1
2 ,

3
2 ] + 2[ 5

2 ,
3
2 ,

1
2 ] + [3, 0, 0] + [3, 0, 1] + [3, 1, 0] + [3, 1, 1]

Λ1,0 ⊗ Λ1,0 = Λ0,0 + Λ0,1 + Λ2,0

Λ2,0 ⊗ Λ2,0 = Λ0,0 + Λ0,1 + Λ2,−1 + 2Λ2,0 + Λ2,1 + Λ4,0 + [1, 1, 1]

(83)

The + on the right hand side requires a short comment. As we have stated above, atypical

irreducibles can be combined to form larger indecomposables. This happens for many of the

atypical representations that appear in the above tensor product decompositions. Hence, many

of the atypicals are not direct summands. This is why we did not use ⊕. On the other hand,

the sum is direct for all projective modules, i.e. for typicals and projective covers of atypicals.

The symbol � is used to denote the symmetric part of the tensor product.

B Representation theory of osp(3|2)

In this appendix we provide some background material on the Lie superalgebra osp(3|2) and its

finite dimensional representations. The basic definition of osp(3|2) resembles the definition (68)

we gave for osp(4|2) only that now A is a 3 × 3 matrix and B is rectangular of size 3 × 2. In

the case of h = osp(3|2), the bosonic subalgebra is h0̄ = so(3) ⊕ sp(2). Since h0̄ has rank two,

highest weights are labeled by two numbers λ = (q, p). In our conventions, the so(3) spin p

runs over non-negative integers while q is a non-negative half-integer. Note that once again, the

order of the two labels is a bit unfortunate. As in the case of osp(4|2), there is an additional

33



constraint on the weights (q, p) that must be satisfied in order for (q, p) to label a representation

of osp(3|2), namely

q = 0 ⇒ p = 0 .

Once more we shall use the bracket notation [λ] = [q, p] to denote the associated irreducible

representation of osp(3|2). The representation [q, p] is typical (long) unless the labels q, p satisfy

one of the following two shortening conditions

p+ 2q = 0 , p− 2q + 1 = 0 . (84)

These conditions are mutually exclusive. While the first one is only satisfied for the trivial

representation q = p = 0, the latter singles out a one parameter family of (maximally) atypical

(or 1
2BPS) representations.

The eigenvalue of the quadratic Casimir element in an irreducible representation [λ] = [q, p]

is given by

Cash([q, p]) = (p+ 2q)(p− 2q + 1) . (85)

In particular, we conclude that the quadratic Casimir element vanishes for all atypical represen-

tations of osp(3|2). This suggests that all atypicals belong to one and the same block, which is

indeed the case. Representations in this unique block are given by

λ0 = [0, 0] , λq = [q, 2q − 1] . (86)

Let us also mention in passing that the Lie superalgebra osp(3|2) possesses a fourth order Casimir

element whose eigenvalues are given by

Cas
(4)
h (λ) =

1

4
Cash(λ)[3p(3p+ 1) + 2(q + 1)(2q − 3)] (87)

The fourth order Casimir element does not show up in the 1-loop anomalous dimensions but

could enter starting from 2 loops.

As in the case of osp(4|2) it is useful to know how the irreducible representations decompose

with respect to the bosonic subalgebra. For typical representations, this decomposition is given

by

[q, p]h0̄
∼= (q, p)⊕

⊕
α=0,±1

[
(q − 1

2 , p+ α)⊕ (q − 1, p+ α)
]
⊕ (q − 3

2 , p) . (88)

Truncations are present whenever one or both labels on the right hand side become negative.

When q = 1
2 or p = 0 the term (q − 1

2 , p) does not appear. For the adjoint representation the

decomposition reads

[1, 0]h0̄
∼= (1, 0)⊕ ( 1

2 , 1)⊕ (0, 1) . (89)
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Note that in the case of osp(3|2) the adjoint representation is typical. Atypical representations

with q ≥ 1 possess the following decomposition

[λq]h0̄
∼= (q, 2q − 1)⊕ (q − 1

2 , 2q − 1)⊕ (q − 1
2 , 2q)⊕ (q − 1, 2q) . (90)

The atypical trivial representation λ0 and the fundamental λ 1
2

are special. While the decompo-

sition of λ0 is trivial, the fundamental representation gives

[λ 1
2
]h0̄
∼= ( 1

2 , 0)⊕ (0, 1) . (91)

For completeness we also state the dimension of the these representations. In the case of typical

long multiplets we have

dim
(
[q, p]

)
= 4(2p+ 1)(4p− 1) (92)

while the dimension of atypicals is given by

dim[λ0] = 1 dim[λ 1
2
] = 5

dim[λq] = −2 + 32q2 .
(93)

As for any Lie superalgebra, atypical representations can be combined into larger indecompos-

ables. For our analysis, the projective covers of atypicals are of particular importance. Their

structure is given by

Pλ0 : λ0 → λ1 → λ0 (94)

Pλ 1
2

: λ 1
2
→ λ1 → λ 1

2
(95)

Pλ1
: λ1 → λ 3

2
⊕ λ 1

2
⊕ λ0 → λ1 (96)

Pλq : λq → λ
q+

1
2
⊕ λ

q− 1
2
→ λq otherwise (97)

The meaning of the arrows was explained in appendix A. The structure we display here is

consistent with the fact that all atypical irreducibles λq of osp(3|2) belong to the same block.

In our construction of coset vertex operators (8), and in particular in the analysis of the tail

factors, we need some input about tensor products of osp(3|2) representations. The first few

powers of the fundamental representation λ 1
2

are given by

λ⊗2
1
2

= [1, 0] + [ 1
2 , 1] + λ0 (98)

λ�2
1
2

= [ 1
2 , 1] + λ0 (99)

λ�3
1
2

= [ 1
2 , 2] + λ 1

2
(100)

Here, we use the symbol � to denote the graded symmetric part of the tensor product. The

formulas we displayed are relevant e.g. for products such as j∂j, j2 and j3, respectively. Let us
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also list a few additional tensor products of low dimensional representations,

[1, 0]⊗ λ 1
2

= [ 3
2 , 0] + 2λ 1

2
+ λ1

[ 1
2 , 1]⊗ λ 1

2
= [ 1

2 , 2] + 2λ 1
2

+ λ1

[ 1
2 , 1]⊗ [ 1

2 , 1] = [1, 2] + [1, 0] + [ 1
2 , 3] + [ 1

2 , 1] + 2λ0 + λ1

[ 1
2 , 2]⊗ λ 1

2
= [1, 2] + [ 1

2 , 3] + [ 1
2 , 1]

[ 1
2 , 2]⊗ [ 1

2 , 1] = [1, 3] + [1, 2] + [ 1
2 , 4] + [ 1

2 , 2] + 2λ 1
2

+ λ1

[ 1
2 , 2]⊗ [ 1

2 , 2] = [1, 4] + [1, 3] + [1, 2] + [1, 0] + [ 1
2 , 5] + [ 1

2 , 3]

+ [ 1
2 , 2] + [ 1

2 , 1] + 2λ0 + λ1

[ 1
2 , 1]⊗ [1, 0] = [3

2 , 1] + [1, 0] + [1, 2] + [ 1
2 , 1]

[ 1
2 , 2]⊗ [1, 0] = [1, 3] + [ 1

2 , 2] + λ0 + λ 1
2

+ 2λ1 + λ 3
2

[1, 0]⊗ [1, 0] = [2, 0] + [ 3
2 , 1] + [1, 0] + [ 1

2 , 1] + 2λ0 + λ1

(101)

These are useful in order to carry the construction of vertex operators to higher gradient oper-

ators. Note that while it is not relevant for our discussion, the atypical representations in (101)

always combine into projectives, while all other sums are direkt.

C Restriction of osp(4|2) representations to osp(3|2)

As we explained in section 2.3, a key ingredient in constructing vertex operators on coset super-

spaces is the decomposition (9) of sections in homogeneous vector bundles into multiplets of the

symmetry. According to the central formula, the multiplicity nΛλ of a g multiplet Λ in a bundle

Γλ is given by eqn (11). It implies that nΛλ can be computed through the decomposition

PΛ|h =
⊕
λ

nΛλ Pλ =
⊕
λ

[PΛ|h : Pλ] Pλ .

Given what we know about the projective covers of both osp(4|2) and osp(3|2) it is not too

difficult to work out the multiplicities nΛλ. We only need the results for atypical labels Λ = Λl,k.

For representations Λ0,k in the block of the trivial representation one finds

PΛ0,0
|osp(3|2) = Pλ0

⊕ [ 3
2 , 0]⊕ [ 3

2 , 1]

PΛ0,1 |osp(3|2) = Pλ 1
2

⊕ [ 3
2 , 0]⊕ [ 3

2 , 1]

PΛ0,k
|osp(3|2) = Pλ k

2

⊕ 2

k−1⊕
n=0

[k+1
2 , n]⊕

k⊕
n=0

[k+2
2 , n]⊕

k−2⊕
n=0

[k2 , n] , for all k ≥ 2 .

(102)

36



Similarly one can decompose the projective covers of the symmetric traceless tensor representa-

tions Λl,0,

PΛ1,0 |osp(3|2) = Pλ0 ⊕ Pλ 1
2

⊕ 2[ 3
2 , 1]

PΛ2,0 |osp(3|2) = Pλ0 ⊕ Pλ 1
2

⊕ 2[ 1
2 , 1]

PΛl,0
|osp(3|2) = Pλ0 ⊕ Pλ 1

2

⊕ 2

l−1⊕
n=1

[ 1
2 , n]⊕ 2

l−1⊕
n=2

[1, n] , when l ≥ 2 .

(103)

Finally, generic projective covers possess the following decomposition into projectives of osp(3|2),

PΛl,k
|osp(3|2) = Pλ |k|+1

2

⊕
l−1⊕
n=|k|

[ |k|2 , n]⊕ 2

l−1⊕
n=|k|+1

[ |k|+1
2 , n]⊕

|k|−1⊕
n=l

[ |k|+1
2 , n]

⊕ 2

|k|⊕
n=l

[ |k|+2
2 , n]⊕

l−1⊕
n=|k|+2

[ |k|+2
2 , n]⊕

|k|+1⊕
n=l

[ |k|+3
2 , n] .

(104)

This last formula holds whenever l ≥ 1 and |k| ≥ 1. Formulas (102)-(104) provide the main

input for the construction of vertex operators in section 3.2. Let us note that in these formulas

all sums are direct since the restriction of projective modules is a direct sum of projectives and

projectives cannot appear as pieces of larger indecomposibles.

In order to derive these decomposition formulas one starts from the following decomposition

formula for representations of the bosonic subalgebra g0̄ into representations of h0̄,

(j1, j2, j3)h0̄
∼=

j2+j3⊕
p=|j2−j3|

(j1, p) (105)

In a second step these decomposition formulas are exploited to determine how atypical irre-

ducibles of osp(4|2) decompose upon restriction to osp(3|2). The results read,

Λ0,0|osp(3|2) = λ0

Λ0,k|osp(3|2) = λ l
2
⊕
k−1⊕
n=0

[k+1
2 , n], l > 0

Λl,0|osp(3|2) =

l−1⊕
n=0

[ 1
2 , n]⊕ λ0, l > 0

Λl,k|osp(3|2) =

l−1⊕
n=|k|

[ |k|+1
2 , n], 0 < |k| ≤ l − 1

Λl,k|osp(3|2) =

|k|⊕
n=l

[ |k|2 + 1, n]⊕ λ |k|+1
2
, 0 < l ≤ |k|

(106)

Since we know how projective covers are built from atypicals, it is now straightforward to verify

the decomposition formulas (102)-(104).
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