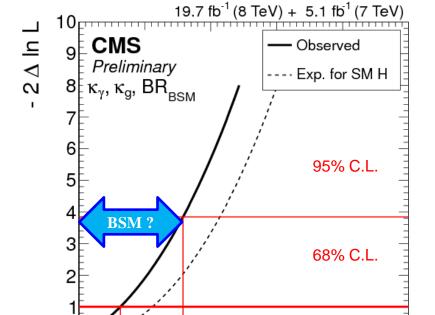


Rainer Mankel
Deutsches Elektronen-Synchrotron (DESY)
for the CMS Collaboration

3rd International Conference on New Frontiers in Physics Orthodox Academy of Crete, Kolymbari, 2 August 2014

Photo: Eleni Ntomari



H(125) = Standard Model Higgs?

- Most relevant question after discovery of a Higgs boson at ~125 GeV:
 - <u>structure</u> of the Higgs sector
 - are there additional Higgs bosons?
- At the level of current measurements, the observed state is compatible with the Standard Model Higgs
 - but SM features quadratically divergent self-energy corrections at high energies (Hierarchy problem)
 - many other open questions: dark matter,
 CP violation in early universe, ...
 - SM very likely incomplete
- Concluding from the Higgs couplings analysis, there is still plenty of room for non-SM decays of the H(125)
 - BR_{BSM}<32% at 95% CL
 - assuming no modification at tree-level

0.4

0.6

8.0

 $\mathsf{BR}_{\mathsf{BSM}}$

CMS PAS HIG-14-009

0.2

Fingerprints of Extended Higgs Sectors

Charged Higgs
H⁺ → cs

(N)MSSM

(N)MSSM

Invisible Higgs Decays
ZH and VBF

WED*

SUSY

Lepton-Flavor Violating Higgs Decays H → μτ

2HDM

Resonant Higgs Pair Production $X \rightarrow H H \rightarrow (\gamma \gamma)bb$

(N)MSSM

WED*

*Warped Extra Dimensions

(N)MSSM Higgs Sectors

- Supersymmetry presents an elegant solution to the quadratic divergences in the Higgs mass corrections → cancellation by super partners
 - requires additional Higgs bosons
- Minimal supersymmetric extension (MSSM) features two complex Higgs doublets
 - Five physical Higgs bosons
 - three neutral: h, H, A

 CP-even CP-odd

 denoted Φ

Usually identify $h \equiv H(125)$

- two charged: H[±]
- two tree-level parameters: m_A and tan β
- Next-to-Minimal Supersymmetric Model (NMSSM):
 two complex Higgs doublets + additional scalar field
 - seven physical Higgs states, which are mixtures:

$$h_1, h_2, h_3, a_1, a_2, h^{\pm}$$

CP-even CP-odd

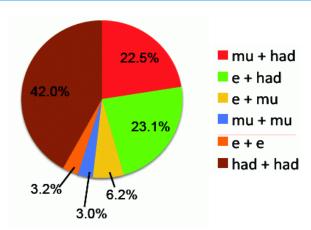
 $h_1 \text{ or } h_2 \equiv H(125) ?$

Other Models

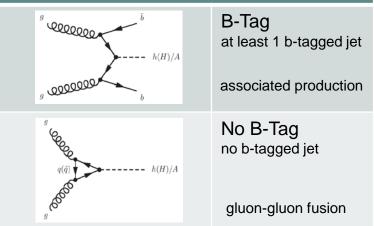
- Two-Higgs Doublet Models (2HDM)
 - effective theory; extension of SM by adding a second complex Higgs doublet
 - five Higgs bosons: h, H, A, H[±]
 - flavor conservation can be enforced via symmetries
 - four types of 2HDM, depending on the way the Higgs doublets couple

2HDM with natural flavor conservation:

Model	u_R^i	d_R^i	e_R^i
Type I Type II Lepton-specific Flipped	$egin{array}{c} \Phi_2 \ \Phi_2 \ \Phi_2 \end{array}$	$egin{array}{l} oldsymbol{\phi}_2 \ oldsymbol{\phi}_1 \ oldsymbol{\phi}_2 \ oldsymbol{\phi}_1 \end{array}$	$egin{array}{c} \Phi_2 \ \Phi_1 \ \Phi_1 \ \Phi_2 \end{array}$

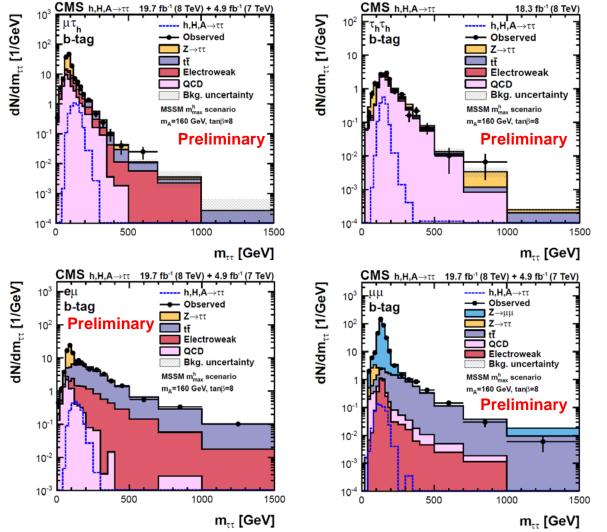

G.C. Branco et al., Phys. Rep. 516 (2012) 1

- MSSM Higgs structure corresponds to a Type II 2HDM
- flavor-changing Yukawa couplings are in principle possible (Type III models)
- Models inspired by Warped Extra Dimensions (WED, Randall-Sundrum model)
 - predict new heavy particles (m_X>2m_H) that can decay to a pair of Higgs bosons
 - Examples:
 - radion (spin 0)
 - first Kaluza-Klein excitation of the graviton (spin2)



Heavy Neutral Φ → ττ

Production mechanisms & event categories

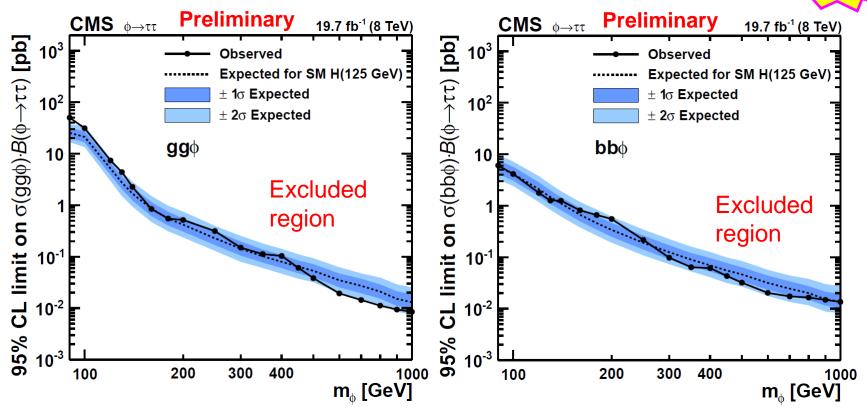


- Good compromise between relatively large BR and manageable backgrounds
- Analysis covers five of six possible ττ decay patterns: e+μ, e+had, μ+had, had+had, μ+μ
- Production: gg fusion + b-associated
- Mass of τ pair is reconstructed from visible τ decay products and missing E_T
 - maximum likelihood technique
- Main backgrounds (in broad strokes may differ from channel to channel):
 - $Z \rightarrow \tau \tau$:
 - embedding technique: take Z→μμ from data, replace μ's by simulated τ decays
 - Z→μμ: suppress using the distance of closest approach (DCA)
 - $t\bar{t}$ and di-boson
 - QCD multijet, W+jets

Φ → ττ: Mass Distributions (B-tag Category)

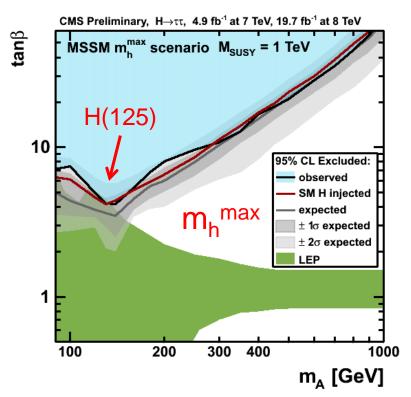
CMS PAS HIG-13-021

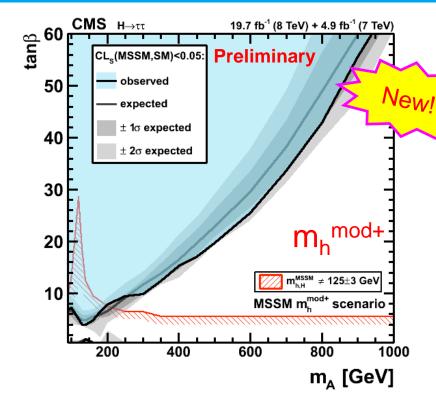
- Background compositions differ significantly across the various decay channels
- → All distributions well described by background hypothesis


R. Mankel; Higgs Bosons Beyond the Standard Model

Φ → ττ: Cross Section Limits

N_{ew!}



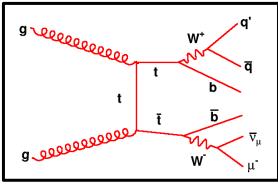

- Separate for the two production mechanisms
- Expected limits take a SM H(125) into account

Φ → ττ: MSSM Interpretation

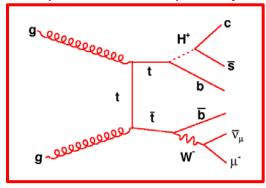
- → Very low tan β upper limits (tan β < 5 for m_A<250 GeV!)
 - touching the LEP constraint at low m_A. Presence of H(125) weakens the MSSM limits
- → Latest interpretation (right) takes implications of H(125) explicitly into account
- → m_h^{mod} scenario [1]: better suited for known mass of H(125), than m_h^{max} scenario

[1] M. Carena et al., Eur.Phys.J. C73, 2552 (2013)

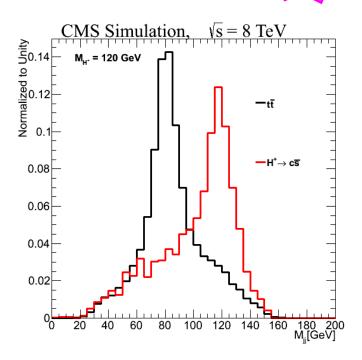
Charged Higgs (H+ $\rightarrow c\bar{s}$)



CMS PAS HIG-13-035

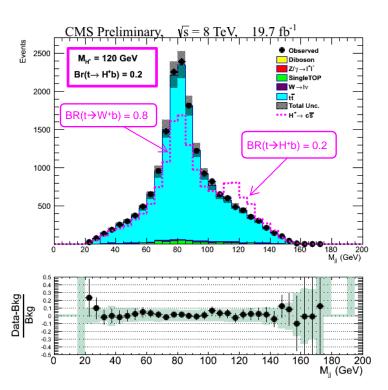

New!

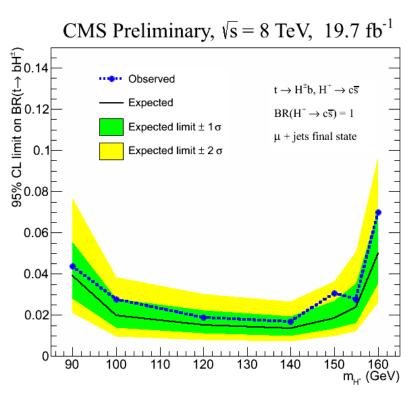
- H⁺ $\rightarrow c\bar{s}$ dominant decay mode for tan β <1 and m(H⁺)<m_t
- Same topology as $t\bar{t}$ decays in lepton + jets channel
 - Search for second peak in the di-jet mass distribution


Standard $t\bar{t}$ semi-leptonic

H⁺ production in top decays

- Event selection:
 - isolated muon, ≥ 4 jets (≥2 b-tagged)
 - E_T^{miss} > 20 GeV → suppress QCD, Z+jets
- M_{jj}: invariant mass of non-b-tagged jets
- Kinematic fit → both top candidates m=172.5 GeV
 - improves mass resolution of $c\bar{s}$ candidate
- Backgrounds: $t\bar{t}$, W/Z+jets, di-bosons, QCD

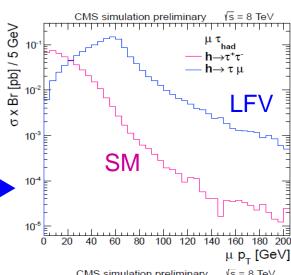


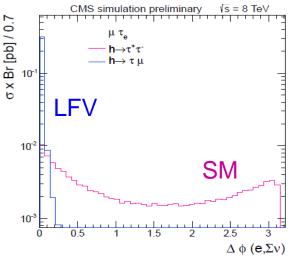

$H^+ \rightarrow c\bar{s}$ (cont'd)

CMS PAS HIG-13-035

M_{ii} distribution after kinematic fit → no signal

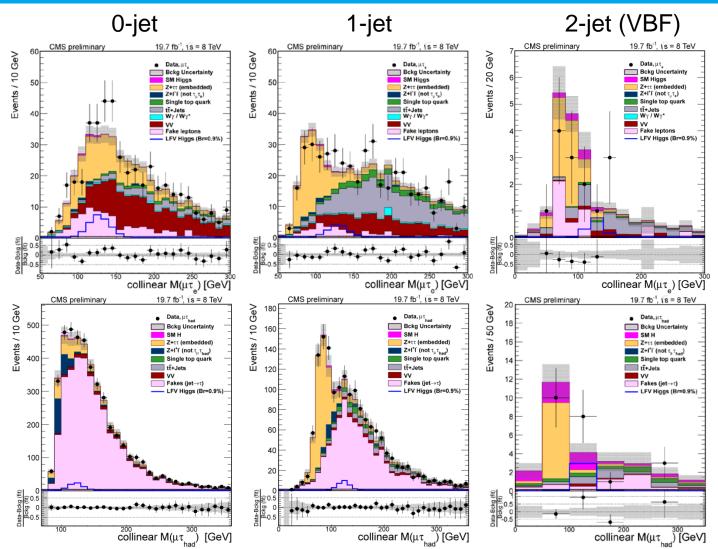
- Determine BR(t \rightarrow bH $^+$) assuming BR(H $^+ \rightarrow c\bar{s}$)=100%
 - observed upper limit of 2-3% in the range 100-150 GeV
 - applies to any BSM resonance with the corresponding production & decay topology



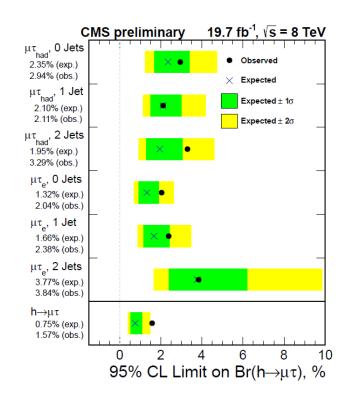

Lepton-Flavor Violating Higgs Decays

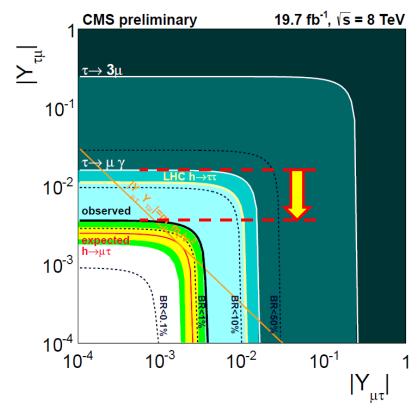
CMS PAS HIG-14-005

- Forbidden in the SM, but in principle possible in general 2HDM, composite Higgs and Randall-Sundrum models
 - this search focuses on H→μτ
 - <u>direct</u> search in $\mu \tau_e$ and $\mu \tau_{had}$ decay modes
 - signatures similar to H→ττ searches, but kinematics differ
- Selection:
 - isolated muon + isolated electron ($\mu\tau_e$) or hadronic tau candidate ($\mu\tau_{had}$)
 - categorize according to #jets
- Signal variable: "collinear mass", reconstructed from visible decay products



LFV H→μτ Mass Distributions

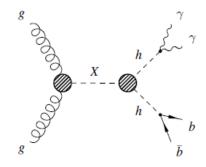

 $\mu \tau_e$

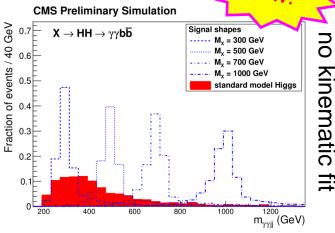

 $\mu\tau_{\text{had}}$

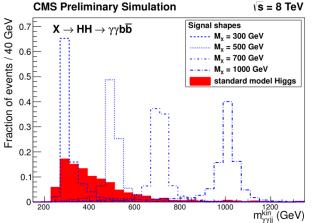
Limits on BR & Yukawa Coupling

- BR(H $\rightarrow \mu \tau$) < 1.57% observed (0.75% exp'td)
 - best fit: BR(H \rightarrow $\mu\tau$) = $(0.89^{+0.40}_{-0.37})\%$
- → We observe a mild excess of ~2.5 σ
 - still compatible with Standard Model

- → Significant improvement (4.4x) wrt. existing indirect measurements
- Best limits on τ anomalous
 Yukawa couplings to date

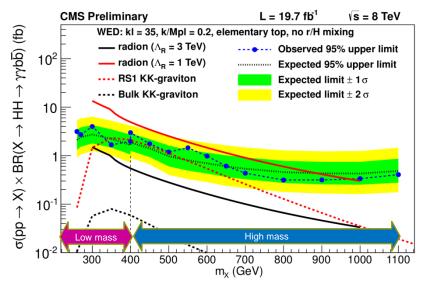

Search for $X \rightarrow HH \rightarrow (bb)(\gamma\gamma)$


CMS PAS HIG-13-032


N_{ew!}

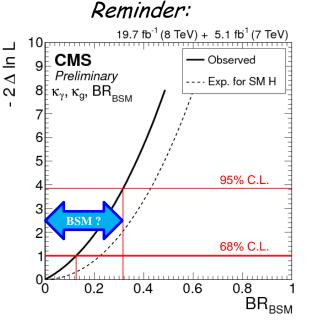
- In the SM, rate of Higgs pair production is very small
- But resonant pair production, motivated by BSM physics, can already be probed with existing dataset

- heavy (N)MSSM Higgs decaying to pair of H(125)
- Radion or Kaluza-Klein excitation of graviton (Warped Extra Dimensions)
- Combine H(125) decay channels $b\bar{b}$ (large BR) and $\gamma\gamma$ (good mass resolution)
 - → selections similar to SM analyses
- Mass-constraint fit on $b\bar{b}$ candidate, using known H(125) mass
 - → significant improvement of m_x resolution
 - essential to suppress the SM H→γγ background

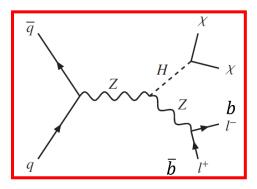

$X \rightarrow HH \rightarrow (bb)(\gamma\gamma)$

(cont'd)

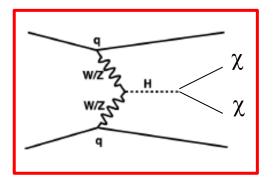
- Signal searched in m_{γγ} distribution for low m_χ (260—400 GeV), and in m_{γγjj}^{kin} for high m_χ (400—1100 GeV)
 - beyond 1100 GeV, increased merging of $b\bar{b}$ pair into single fat jet
- Medium and High Purity selections
 - b-tagging on one or both legs of the di-jet candidate
 - 85 < m_{ii} <155 GeV
 - QCD background low due to required γ's
- ➤ Exclude radions with m<970 GeV for the radion scale Λ_R=1 TeV
- → Exclude RS1 KK-graviton in mass range 340—400 GeV.



Invisible Higgs Decays

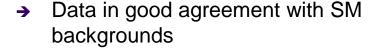


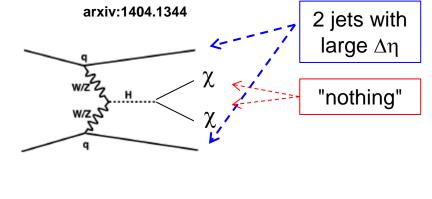
Invisible Higgs decay modes may be possible through

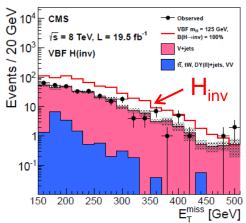

- decays to neutralinos (in supersymmetric models)
- via graviscalars (in models with extra dimensions)
- Analysis of couplings only constrain invisible modes at best to ≤ 32% (assumptions-dependent)
- Can we directly search for invisible Higgs decays?
- Yes, if the Higgs is accompanied by something visible!

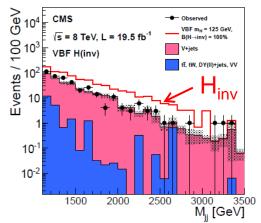
Vector boson-associated production (VH):

Vector boson fusion (VBF):

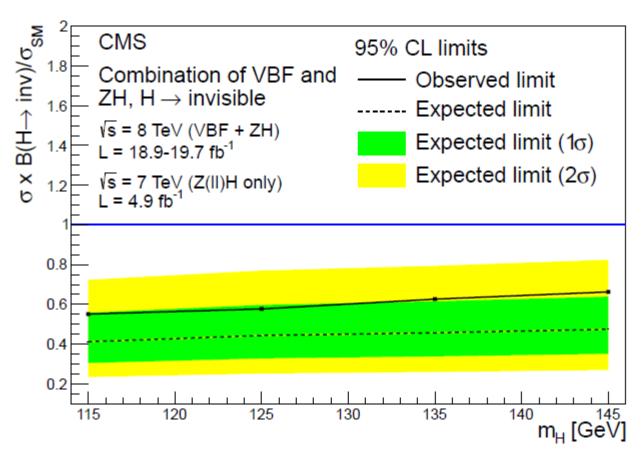





Invisible Higgs (VBF)

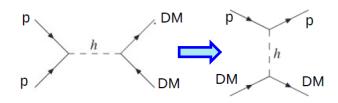


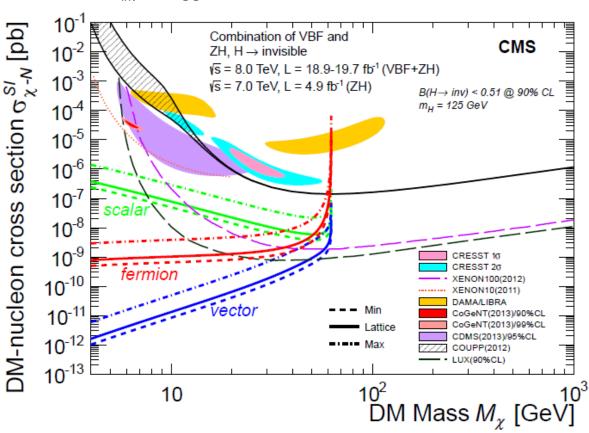
- Cross section in VBF higher than in ZH production
 - signature: two jets + large missing energy
 - central jet veto
- Main background: V+jets, where the vector boson is not seen
 - e.g. Z→νν
 - estimated by selecting Z+jets events in visible decay modes, and removing the Z decay products from the event
- Signal analyzed in variables missing E_T and di-jet mass



Invisible Higgs Combination

arxiv:1404.1344


- Invisible BR_{inv}<58% observed (44% expected) for a SM Higgs @ 125 GeV (95% C.L.)
- → Significant improvement relative to earlier direct searches


Dark Matter Interpretation

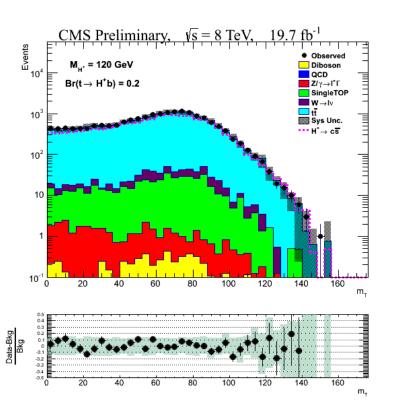
- Higgs-portal model of DM interactions → hidden sector with stable DM particles
 - if mass below $m_H/2$, might contribute to Γ_{inv} of Higgs boson
- Complementary to direct DM-detection, sensitive to DM-nucleon cross section

- Convert BR_{inv} to DMnucleon cross section, assuming Γ_{SM} for total Higgs boson decay width
 - three spin assumptions for DM
- Attractive limits up to m_H/2

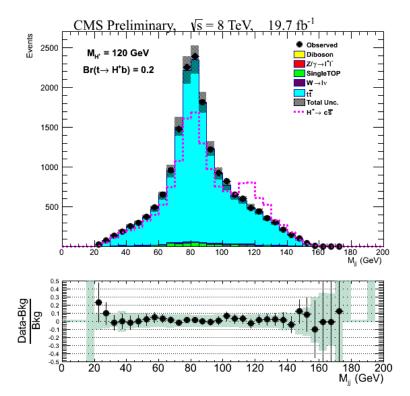
Summary

- Addressing the fundamental question whether the observed H(125) is just one member of an extended Higgs sector → potential window into New Physics
- Many new results on key signatures:
 - neutral heavy Higgs (H→ττ): closing the lower m_A mass range
 - large m_A and tan β still possible. New interpretation takes H(125) into account
 - charged Higgs (t \rightarrow bH⁺): results in H⁺ $\rightarrow c\bar{s}$ channel complements H⁺ $\rightarrow \tau \nu_{\tau}$ searches
 - lepton flavor violation (H→μτ): considerably improved limits on anomalous Yukawa couplings
 - resonant Higgs pair production $(X \rightarrow HH \rightarrow (b\bar{b})(\gamma\gamma))$: excludes significant parameter range for radion models
 - invisible Higgs search: new combination gives improved upper limits
 - also interpreted in Higgs-portal model of Dark Matter
- 13 TeV running will further extend the reach, especially towards higher masses, and scrutinize further the properties of the H(125)

Backup



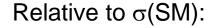
$H^+ \rightarrow c\bar{s}$ (cont'd)

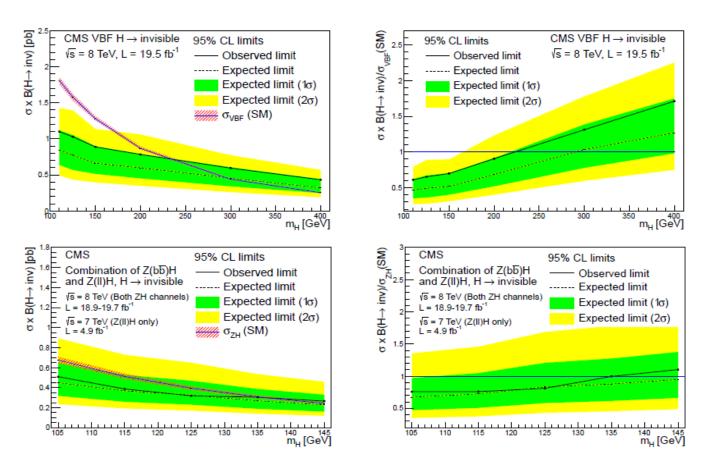


CMS PAS HIG-13-035

- Control distribution: m_T (μ+ E_T^{miss})
 - good description of BG

- M_{ii} distribution after kinematic fit
 - no indication for H⁺ signal




Invisible Higgs (VBF+ZH)

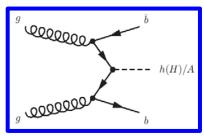
arxiv:1404.1344

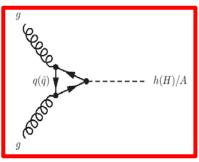
 σ x BR (absolute):

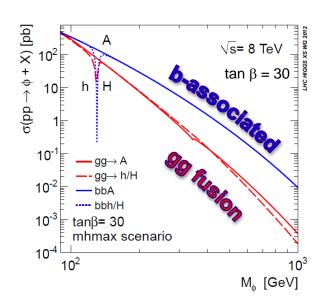
	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$			
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
ξ_h^ℓ	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$
ξ_H^u	$\sin \alpha / \sin \beta$			
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
ξ_H^ℓ	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$
ξ_A^u	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
ξ_A^d	$-\cot \beta$	$\tan \beta$	$-\cot \beta$	$\tan \beta$
ξ_A^ℓ	$-\cot \beta$	$\tan \beta$	$\tan \beta$	$-\cot \beta$

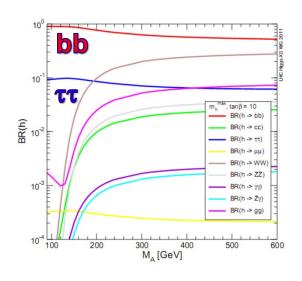
 G.C. Branco et al, "Theory and phenomenology of two-Higgs-doublet models", arXiv:1106.0034

Φ → ττ: Categories & Channels


- "No B-Tag" category has slightly higher sensitivity
- Combination of all channels and categories leads to best sensitivity

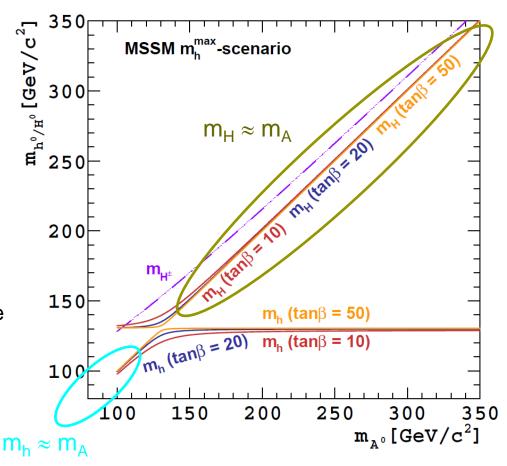



MSSM Higgs: Production & Decay



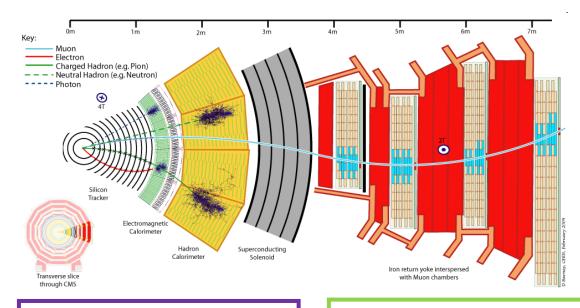
- Of three neutral MSSM Higgs bosons, must identify one as the "observed" H(125)
 - usually assign the lightest neutral boson: h
 - ~Standard-Model-like properties
- → Look for additional, heavy Higgs bosons H and A
- Cross sections enhanced with increasing tan β
 - Main decay modes: bb (~ 90%) and $\tau\tau$ (~ 10%) for moderately large tan β
 - in contrast to SM Higgs, these decay modes dominate even at large masses

2-August-2014


R. Mankel; Higgs Bosons Beyond the Standard Model

Higgs Masses in the MSSM

- The mass of the CP-odd Higgs boson A is usually ~degenerate with one of the CP-even bosons
 - $m_A \approx m_H \text{ for } m_A >> m_h^{max}$
 - $m_A \approx m_h$ for $m_A \ll m_h^{max}$
- With the exception of the μμ channel, this degeneracy cannot be resolved within the mass resolution
 - visible cross section effectively doubles
- Together with the effect of the Higgs coupling to b quarks, visible cross sections in b-associated production are typically enhanced by a factor of $\approx 2 \tan^2 \beta$



Reconstruction of Physics Objects

- Particle flow technique for optimized reconstruction of all particles in the event
 - extensive combination of all CMS detector systems
- Muon: matching tracks in inner tracker & muon chambers
- Electron: EM cluster with associated track
- Photon: EM cluster without associated track

- Jet: anti-k_T algorithm applied to particle flow objects
- Tau lepton (had): narrow jet ("hadron + strips" algorithm)

- b-Tagging: combined secondary vertex algorithm (CSV), discriminant based on
 - track impact parameters
 - secondary vertices inside jets

MSSM Benchmark Scenarios

 m_h^{max}: Designed to yield the maximum value of the light MSSM Higgs mass, m_h

•
$$M_{SUSY} = 1 \text{ TeV}$$

common soft-SUSY-breaking squark mass of 3rd generation

$$X_t = 2M_{SUSY}$$

stop mixing parameter

•
$$\mu = 200 \text{ GeV}$$

higgsino mass parameter

• $M_{gluino} = 1500 \text{ GeV};$

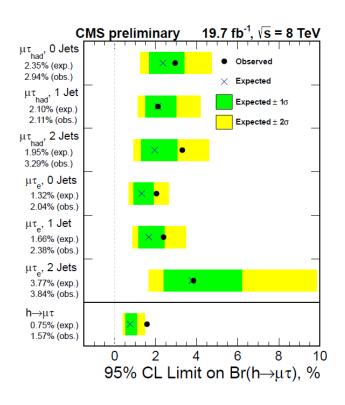
• $M_2 = 200 \text{ GeV}$

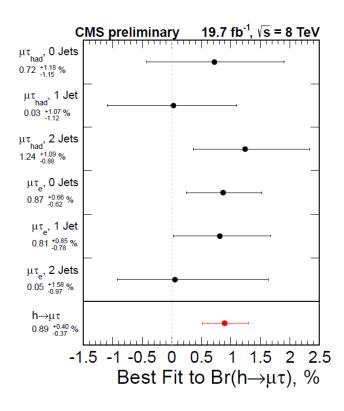
gaugino mass parameter

 $\bullet \quad A_b = A_t = A_\tau$

tri-linear couplings

• $M_3 = 1000 \text{ GeV}$


• m_h^{mod+} : reduced stop mixing parameter to X_T = 1.5 M_{SUSY} in view of measured H(125), compatible with muon g-2


Proposed by Carena et al., Eur.Phys.J.C73, 2552 (2013)

Limits on the BR

- Expected limit for H→μτ: 0.75% (95% C.L.)
 - observed limit: 1.57%
- We observe a mild excess at ~2.5 σ