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Abstract

We revisit the definition of thé;j symbols from the modular double &f,(s((2,R)), referred
to as b6j symbols. Our new results are (i) the identification of patady natural normal-
ization conditions, and (ii) new integral representatiforsthis object. This is used to briefly
discuss possible applications to quantum hyperbolic gaégmand to the study of certain
supersymmetric gauge theories. We show, in particulat, theb6; symbol has leading
semiclassical asymptotics given by the volume of a nontitkteahedron. We furthermore
observe a close relation with the problem to quantize neReeboux coordinates for moduli
spaces of flat connections on Riemann surfaces related tBahehel-Nielsen coordinates.
Our new integral representations finally indicate a possiblerpretation of the 65 sym-
bols as partition functions of non-abelian three-dimemaiodV" = 2 supersymmetric gauge
theories.

1. Introduction

Analogs of the Racah-Wignérj-symbols coming from the study of a non-compact quantum
group have been introduced In [ET1]. The quantum group istipreis related té/,(s((2, R))

and is often referred to as the modular doublé/gk((2, R)). The6j-symbols of this quantum
group, which will be called l#5 symbols, play an important role for the harmonic analysitef
modular double [PT?2], quantum Liouville theoty [T01] andagium Teichmuller theory [T03].
The terminology 65 symbol is partly motivated by the fact that it is useful tograeterize the
deformation parameterof 14, (s[(2,R)) in terms of a parametérasq = ¢’

However, the precise definition of thetj-depends on the normalization of the Clebsch-
Gordan maps. Similar normalization issues arise in Lideviheory and in quantum Teich-
mduller theory. In the case of Liouville theory it is relatémlthe issue to fix normalizations
for bases in the space of conformal blocks. In quantum Teidlemtheory it is related to the
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precise definition of the representations in which a maxicoaimuting set of geodesic length
operators is diagonal. The normalizations chosen in tlegeates above were somewhat adhoc.
One of our first goals in this paper is to discuss natural way tthis issue.

We will show that there exist very natural normalizationsahtalso appear to be very natural
from the point of view of Liouville- and the quantum Teichheii theory. In the latter context,
one of the normalizations defining ouréh-symbols will be shown to define a quantization of
the Fenchel-Nielsen coordinates. Somewhat strikinglywillefind that the b6; symbols de-
fined in this way exactly reproduce the hyperbolic volume nba-ideal tetrahedron with given
dihedral angles in the classical lindit— 0. This strongly suggests that Turaev-Viro type [TuVi]
state-sum models built from thedy-symbols are related to three-dimensional quantum gravity
with negative cosmological constant, which can be seen amalog of earlier observations
for the cases of zerd [PR] and positive cosmological cotstiiT], respectively. The I
symbols are also natural building blocks for combinatoajgproaches to the quantization of
SL(2,R)-Chern-Simons theory or of its complexification.

One of our main technical results will be new integral repreations for the 65 symbols.
One of them strongly resembles the formulae for the usypalymbols. The new integral rep-
resentations will be obtained from the formula for thé josymbols obtained in [PT2] by a
sequence of nontrivial integral transformations thatdiwlfrom an identity satisfied by Spiri-
donov’s elliptic hypergeometric integrals [S01, $03] (foreview see [S08]) in certain limits.
We will point out that one of these integral representatiadisiits an interpretation as a parti-
tion function for a non-abelian three-dimensional supenrsyetric gauge theory. This, and the
relations to three-dimensional Chern-Simons theoriestimaed above suggest that thes p-
symbols could play a key role in the currently investigatembpam to identify correspondences
between three-dimensional supersymmetric gauge theamrgbaoncompact Chern-Simons the-
ories on suitable three-manifolds [TY, DiGu, DiGG].

2. Racah-Wigner 6] symbols for the modular double

2.1 Self-dual representations o#f,(sl(2, R)) and the modular double

We will be considering the Hopf-algebtg (sl(2, R)) which has generatois, F' andK” subject
to the usual relations. This algebra has a one-parametdyfafmepresentation®,

Ea = Wa(E) = 6-i-7rb>< cosh 71-b(p B S) 6-|-7rbx

Y

sin mb?

Ko = 7o (K) = 7P 2.1
_ o-rinCoshTh(p + 5) o =Ta(K)=e"", 0 (21)

—7bx
Y

sin b2
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wherep andx are operators acting on functiofiér) aspf(z) = (27i) =& f(z) andxf(z) =

zf(z), respectively. In the definition5 (2.1) we are parametegiziasq = ¢™*", and write the
parameter asa = Q/2 + is. There is a maximal dense subspaec L*(R) on which all
polynomials formed out ok, F, andK, are well-defined [BT2, Appendix B].

These representations are distinguished by a remarkablgusdity property: They are au-
tomatically representations of the quantum grégps((2, R)), whereg = e/ if g = ™,
These representations are generated from opeﬂ:a;ol:'@ andK,, which are defined by formu-
lae obtained from those if (2.1) by replacihg+ b—!. The subspac®, is simultaneously a
maximal domain for the polynomial functions Bf, F,, andK, [BT2, Appendix B].

This phenomenon was observed independently In[[PT1] arida8][ It is closely related to
the fact thatt,,, F, andK, arepositiveself-adjoint generators which allows one to construct
E.,F, andK, asEY” FY/Y KYY [BT1].

It was proposed in [PT1, BT1] to construct a noncompact guargroup which has asom-
pleteset of tempered representations the self-dual repregamé,,. It's gradually becoming
clear how to realize this suggestion precisely. Relevasyissin this direction were taken in
[BT1] by defining co-product, R-operator and Haar-meastisioh a quantum group. Further
important progress in this direction was recently madépi [Following [F99], we will in the
following call this noncompact quantum group the modulautzle oft/, (s((2, R)).

2.2 Normalized Clebsch-Gordan coefficients for the moduladouble

The Clebsch-Gordan mag§? ,, : P, ® Pa, — Pa, Were constructed in [PT2]. The defining
intertwining property is

Co  (Tay @ Ty )(A(X)) = Ty - C2 (2.2)

a2,01 a2,01

In [PT2] it was found that th€%2 = can be represented as integral operators of the form

2,01

(Ctant)an) = [ dodrs (351822), 0(on). @3)
R2

The intertwining property[(212) will be satisfied if we takgs | 22 21) = (23|22 @)™ with

T2 T1 z3 lx2 1 /)p !

an - .Aa _Aoz _Aoz 2 . 1 Qs
(gs §22 311) —e 7r|( 3 1 2)/ D—%(a1+a2+a3—Q) (.’,UQ — 1 — |%) (24)

)(ZEQ — T3 — |%)D

b

. . — —jQ2
% D_%(Q"'a?_a?)_al —5(Q+a1—az—a2) <x3 T =15 ) )

In (2.4) we are using the notatiods, = o(Q — o) withQ = b+ b~! and

S(Q/2— iz +a)
Dialz) = Sy (Q/2— iz —a)

(2.5)
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Sy(x) is the so-called double Sine-function which is closelytesiao the functions called quan-
tum dilogarithm in [FK2] hyperbolic gamma function in [Ruw@nd quantum exponential func-
tion in [Wq]. Definition and relevant properties are recdlie AppendixX’A.

One should note, however, that our definition of 3hieoefficients[(2.4) is not canonical, we
. as |l as ar) .
might equally well usg 32 | 22 2), in (2.3), with

3 1 T2 21

an

(Ot:s 042041);:: M(Oég,OéQ,Oél)(a:’ 042041)1) )

3 T2 1 3 T2 T1

(2.6)

This will satisfy (2.2) for arbitrary functions/ (s, as, ;). A natural choice folM (s, as, o)
can be determined by requiring the Weyl-invariance of theb€th-Gordan maps. In order to
formulate this requirement, we will need the intertwiningeoatorR,, : P, — Pg_, Which can
be represented explicitly as integral operator [PT2]

Rof)(o) 1= 53(20) [ da’ Dosale = ) f(0). 2.7)

R

We may now require that

Cat (18 Rga,) = €3

az,01 az,Q—a1 a _ Qa3
. Ras ’ Ca3 a1 Ca a1 (28)
Cg;,og . (RQ—OQ ® 1) = CQS—ag,ozl ) o o
We claim that[(2.B) is satisfied if we choo&€(«s, as, o) as
M(Oég,ag,al) = (29)

1

= (Sb(2Q — Q] — Qg — Oég)Sb(Q — 1 — Q9 + Oég)Sb(Oél + N3 — OéQ)Sb(OéQ + 3 — al))_§.

To prove this claim let us consider, for example, the firsthaf equations in(218), which
would follow from the identity

Sp(2a1) /R dry (§319250), Daiay (0] —a0) = (83| 2250), (2.10)

where we use abbreviatien= @) — o and{ = Sy(as + ag — 1) S(2Q — a; — ap — ). This
identity can easily be rewritten in the form [BT1, Equati@n34)] in which it is recognized as
the famous star-triangle relation, see e.g. [BMS1]. Proafsbe found in [K2, V]. It can also
be derived easily from the so-called elliptic beta-intéff@1] following the strategy discussed
in AppendixB.

We will denote the Clebsch-Gordan coefficients defined ) (@ith functionM (a3, as, aq)
given in [2.9) ag( 23 |22 41),. We would like to stress that bottfs |2 21) ™ and (22|22 91),

T2 T1 2 X1/b xr3 1 T2 X1

have their virtues. While( a3 | a2 O‘1)b has more natural symmetry properties, the virtue of

3 1 T2 21

(QS a2 al)ém is to have nice analytic properties in all of its variables.

xr3 1 T2 X1 /p



2.3 Normalized b-6j symbols for the modular double

The composition of Clebsch-Gordan maps allows us to definenatural families of projection
operators

("Con agon () V) (24) = /3 dzydradrs E(A|X )Y (23, 22, 21) (2.11)
R

("Cot o ()W) (24) = / dzydradrs ED(A|X ) (s, 22, 71) (2.12)
R3

with integral kernels!” (Al X) andEo(ﬁ)(A\X) given as

) = [ (512),(5122), 2.13)
EAX) = [da (551550, (5 1222),. 2.14)
The b6; symbols{ 3! 22| -} are then defined by the relations
EW(A1Z) = / dp(o) { o102 |00}, EV(AZ) (2.15)
Q/2+iR
where the Plancherel measulg(«) is explicitly given by the expression
dp(a) = da M(a), M(a) :=|Sy(20)|*. (2.16)

It is clear that the explicit expression for theéslhsymbols depends on the normalization chosen
for the Clebsch-Gordan maps. We will denote jesymbols corresponding to? | 22 gll)jn
and (93 o201, by { g1 92 a: 1, respectively.

T2 T1 a3 a4

s an
ot b

a3 o4

a1 " were calculated iri [PTEJ

Qg

The b6; symbols{ 21 a2

a3 oy

ap az |os |20 Sb(ag +as — al)Sb(at + o — a4)
aeaaianlh Sp(ag + ay — az)Sy(as + az — ay)

« /Cdu Sy(—as + (a1 — Q/2) + u)Sh(—as + (a3 — Q/2) + 1)
X Splae + g+ (ap — Q/2) —u)Sp(Q £ (s — Q/2) — u) .

The following notation has been us8g « + ) := Sy(a + u)S,(a — u). The integral in[(2.1]7)
will be defined foray, € QQ/2 + iR by using a contou€ that approache® + iR near infinity,
and passes the real axis(i? /2, )), and for other values af,;, by analytic continuation.

(2.17)

The b6; symbols corresponding to the normalization defined abosdlan given by the
formula

as} _ M(as,az,01)M(ay,a3,06) f a1 az
at Jb T M(o,a3,00)M(ag,0,00) L a3 oy

with M(Ozg, g, al) being defined ”112]9)

1The formula below coincides with equation (228)in [TO1jafshiftings — u — o, — Q/2. We have moved
a factor|S,(2a;)|? into the measure of integration in(2115).

a1 a2
a3 o4

asan (2.18)

ot b




2.4 3j symbols for the modular double

37 coefficients describe invariants in tensor products ofghiepresentations. Such invariants
may be constructed from the Clebsch-Gordon maps and thaanvilinear formB : P, ®
Po-o — C defined by[[PT2]

Bf.g)i= [ de flalgla -~ iQ/2). (219)
R
We may thereby construct an invariant trilinear fof) o, o, : Pay @ Pa, ® Pa, — C as

603,0127041<f37f27f1> = B(f37 C§2 313 fo® fl) . (2.20)

The formC,, «,,., Can be represented as

Casiazor (f3, fo, f1) = / drsdrydry (52 92 o) fa(ws) fa(w) fr(21) (2.21)

R3

with 3j-symbols( 2 22 21) given in terms of the Clebsch-Gordan coefficiefifs |22 21) as

xr3 T2 T T2 T1

(879 |220). (2.22)

(as a2 al)
T3 T2 X1 x3—iQ/2 | ©2 1

We may similarly define

SCgZagag al(f47f37f27f1) = B(f47 SC23324Q1< s) ‘f3®f2®f1)7

(2.23)
tc(()ﬁ as,a2, ozl(f47f3af27fl) = B(f4a tCS; 524041( t) . f3 ® f2 X fl) .
The b6; symbols{ 21 a2 2= are then defined by the relation
chi agz,a2,01 = / . du g; gi g: }b tcg; as3,02,0q ° (224)
Q/2+iR
It follows that
g;lg gi g:}b - sz Q4 g:}b7 O_é4 = Q - 054. (225)
The b6; symbols satisfy the following identities [PT1]
a] oo B ai 6 as asz o o o] o
AT S RCE RSN L R T RE RO
QT (2.26)

[ L L 55 ), = (M)l — o))
|

The explicit expression will again depend on the chosen abration of the Clebsch-Gordan
maps, giving us two versiong 2 &2 &} and{ &1 22 o= 1 ¥ respectively.

ag oy Ot ag a4



2.5 A new integral formula for the b-6j symbols
One of our main results will be the following formula for thesp symbols:

g; gi g: }b - A(Oés, Qg, Oél)A(Oé4, Qg, QS)A(ata asg, O‘Z)A(O‘% Qg al) (227)
X /du Sp(u — 125) Sp(U — s34) Sp(u — ua3e) Sp(u — aves)

‘ X Sb(Oé1234 - U)Sb(Oésﬂ?, - U)Sb(Oést24 - U)Sb(QQ - U) .
The expression involves the following ingredients:
e We have used the notations;, = o; + a; + ag, Qjm = @ + o + oy + oy.
o A(as, an, ) is defined as

Sp(ar +as + oy — Q) )2
Syl + ag — ag)Sp(ag + g — ag) Sy + ay — ay) )

A(O(g, Qg, al) = (

e The integral is defined in the cases thate /2 + iR by a contoulC which approaches
2@ + iR near infinity, and passes the real axis in the intef8@l/2, 2Q)). For other values
of the variablesy, it is defined by analytic continuation.

The reader may notice how closely the structure of the egjesn (2.27) resembles the well-
known formulae for the classicé) symbols.

For establishing this relation, the main step is containdtie following integral identity:

an

o f, =Cla) / du Sp(u — a195)Sp(u — aus34)Sp(u — o) Sp(u — ) (2.28)
Cl

XSb(Oé1234 - U)Sb(astls - U)Sb(Oést24 - U)Sb(QQ - U)a

al ag
Qs 04

where the contout’ in (2.28) runs betwee?() — ico and2(Q + ioo, anda is shorthand notation
for the tuple(ay, as, as, ay, i, ay). The prefactoC(a) is explicitly given by the expression

C(Q) = Sb(—Q -+ (03] + g + Oét)Sb(Q — 1 — (O + Oés)
X Sp(—Q + g + az + @) S(Q — a2 + az — ) Sp(Q + g — a3 — ay) (2.29)
X Sp(Q — az + ay — ag)Sp(Q — az — oy + ag)S(Q + az — ay — ay).

The proof of identity[(2.28) is nontrivial. It is described AppendiXB, based on recent ad-
vances in the theory of elliptic generalizations of the hgpemetric functions [SOL, SC3, S08].



3. Relations to three-dimensional hyperbolic geometry

Our goal in this section is to demonstrate by direct calooethat the b6 symbols reproduce
the volume of non-ideal tetrahedra in the classical limitsécond, perhaps more conceptual
proof of this fact will be outlined in sectidd 5 below.

Similar observations concerning relations between thedassical behavior of the noncom-
pact quantum dilogarithm and hyperbolic volumes have presly been made in [Hil, Hi2, Hi3,
BMS1,[BMS2, DGLZ, AK]. It would be interesting to understatiek precise relations to our
result below.

3.1 Volumes of non-ideal tetrahedra

We are considering non-ideal tetrahedra which are conipldédined by the collection of six
dihedral angleg, ..., ns. In order to formulate the formula for their volumes from [I}) Yet
us use the notatiod, = ¢+, and define

U(U, A) :L12 (U) —+ L12 (ASﬂgU) + LiQ(Ast24U> -+ Lig(A1234u) (31)
- Liz(—AlzsU) - Liz(—As34U) - Li2(—A4t1U) - Li2(—A32tU) )

WhereA”k = AiAjAka Aijkl = AZAjAk’Ala a|0ng with

A(A) =log AsA; +log Ay Ay + log A As (3.2)
+ A(A%L% A17 AZ) + A(A%L% A37 A3) + A("41% A17 A4) + A(Ata A27 A3) )

where
A(A;, Ay, As) = —% (Lig(— A1 A2 A3Y) + Lig(— A1 A3  A) + Lig(— AT Ax 43)
+ Lip(—A7 A7 T AT + log? Ay + log” As + log? A3).
The following formula was found in [MY, Theorem 2]
Vol(4) = 5 Tm[U(uy, A) + A(A)] =~ In[Ulu_, 4) + A(4)], (3.3)

whereu, are the two roots of the equation

d A 27i

d(u,4) _ 2 (3.4)
du U

It can be shown [MY] that equatiof (3.4) is a quadratic equatihich has two solutions..

which are pure phasey. | = 1.



3.2 Semiclassical limit

In the following we will assume that;, € R, 0 < o < @/2. In order to study the quasi-
classical limit of [2.27) let us write the right hand side[®d7) in the form

I:= E(g)/cduz(a, byu) . (3.5)

The integrand (a, b; u) may be written as
H?:l Sp(a; +u)

Z(a,b;u) = 3 du, (3.6)
Sp(—=Q +u) [Ti=; Sp(Q — bi + u)
where
a=[ay,a0,a3,a4] = [~y — 1 — o, —0s — Q3 — g, —Qy — Q1 — Oy, —Qy — Qg — 3],
b=1[b1,be,b3] = [as+ a4+ a1 + as,as + oy + ag + ay,aq + ag + az + ay). (3.7)

The quasi-classical limit of (a, b; u) is easily determined with the help of formula(Al17) in
AppendiXA. In order to write the result in an convenient fdethus reparameterize variables

e—27ribak+7Ti = AI“ k & {1, 2,3,47 S,t} .

Introducing the integration variables= 27b(u — Q/2) we get an integral of the form

dv
I:Dg/ — J(a,b;v (3.8)
OF I = T4CLD
whose integrand’ (a, b; v) has quasi-classical asymptotics
. _ 1 iv 2
J(a,b;v) = exp <—27r62 Ule ,A)) <1 +O(b )) , (3.9

with U(e'?, A) given by the formulal(3]1). The quasiclassical asymptaifcthe prefactor in
B.8)is
B 1 S
Da(A) = exp (W (A(é) —37 )) ; (3.10)
whereA(A) was defined in[(3]2) above.

Now we are ready to perform the saddle-point approximatamttie integral[(3)5). The
saddle points are the solutions of the equation (3.4). Theegaf the b6; at these points are

exp (

Sinceu, = e*™?, ¢ € R as noted above, we find that

1 .
| iszVi(A)), where  Wa(d) = Ulzs, 4) + A(4) — 7 + 2rilogus.
T

Wald) = Ulas, A) + A4) - x5 2%, (3.11)

Taking the imaginary part of (3.11) one sees that we arenggttie volume of a hyperbolic
tetrahedron((313).
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4. Relation to Liouville theory and the representation theay of Diff(S!)

In this section we want to explain that the normalizatiordleg to the definition of the 64
symbols is also very natural from the point of view of Liol@itheory. This is closely related to
the interpretation of 65 symbols a$; symbols for the the infinite-dimensional groDpff(S?).

4.1 Fusion kernel

Recall that the fusion kernel is usually defined in terms ef¢bnformal blocks appearing in
the holomorphically factorized form of the four-point fuimns,

< Va4 (Z47 24)‘/043 (337 23)‘/042 (327 22)‘/041 (Zb 21) > =
= / dOéS C(O{47043,OCS)C(Q - O[S,(){27041).F(§SS)<A‘Z).F(§SS)(A‘Z) (41)
Q/2+iR

= / dOét C(OZ4,0{t,OZ1)C(Q - at7a37a2)fo(zi)(A|Z>‘F(§ci)(A‘Z) (42)
Q/2+iR

whereA = (Oél, o, (3, Oé4), 7 = (21, 22,23, 24), and

1

Cla, 0z, a5) = (mpuy(b?)p? ") (@ enea=es)y (4.3)
y ToT(201) Y (202) T (20x3)
T(ay + s+ as — Q)Y (ay + az — as) V(g + s — az)V(ag + a3 —ay)
herey is the so-called cosmological constant in Liouville fielédhy andy(z) = I'(z)/I'(1 —
x). We also used (z) = (Iy(2)[4(Q — )1, To = L&, _; where the functio, () is the
Barnes double Gamma function. Appendix A lists the definidod the relevant properties of

Fb(l’)

The first expressior (4.1) for the four-point functions esgants the operator product expan-
sion of the fieldsV,, (22, Z2) andV,, (21, z1), while the second expressidn (4.2) represents the
operator product expansion of the fields, (z3, z3) and V., (22, Z2). The equality of the two
expressions (411) and (4.2) follows from the validity of tk&ations

FNAZ) = / doy Foo, [222 | FO(A|Z), (4.4)
Q/2+R
which were established in [TO1]. The following formula wasifid in [PT1| TO1],
‘ N(ag, ag, a1)N(ay, ag, o) an
Fa.at a3 a2 — M Oc'1 a2 | g , 45
s [a4 a1} N(at,ag,ag)N(a4,at,a1) (at) a3 oy at} ( )
where
N(Oég,OéQ,Oél) = (46)

o Fb(2Q - 2a3)Fb(2a2)Fb(2a1)
Fb(QQ — 1] — g — Oég)rb(Q — (1 — Qg + Oég)Fb(Oél —+ a3 — Oég)rb(OéQ -+ 3 — Oél) '
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4.2 Unitary normalization

The expressions (4.1) arid (4.2) strongly suggest to redefineonformal blocks by absorbing
the three-point function§'(as, e, 1) into the definition,

G&‘?(AIZ) = (C(C% ag, o) C(Q — as, as, al))%fo(fs)(A|Z) ,
Qétt)(A|Z) = (C(a4, ay, a1)C(Q — ay, s, QQ))%]:(t)(AM) .

Qg

4.7)

This corresponds to normalizing the conformal blocks assed to the three-punctured sphere
in such a way that their scalar product is always unity. Thigmalization may be called the
unitary normalization. We then have

< Va4(z4> 24)‘/043(237 23)‘/042 (227 ZZ)VOQ (217 21) > = (48)
— [ do g0 12 = [ do 60AIZ)6A12),
2 4iR 4R
the second equation being a consequence of the unitaribeaftange of basis
G(417) = [ doy Gon 3] GUAIZ). 4.9)
Q/2+R

The normalized fusion coefficients,, ., [ 23 2 | are related to thé, ,, [ 2322 | as

[eZ e [eZRed]

Gasat [ag oo } _ \/C(a47a37as)C(Q—as,027041) Fasat [a;; a2 } ) (410)

[eZyes ] C(a4,at,a1)C(Q—at,a3,a2) [eZyes]

The fusion coefficientss,,. ., [0“3 o2 ] have a simple expression in terms of théjbsymbols,

Q4 1

1

Gowar[0202] = (M(ay)M(a))2 { o1 020} . (4.11)

a4 o g aq a

Indeed, formula{4.11) is a straightforward consequenceqofations[(4.10)[(4.5) and (2]18)
above.

4.3 6j symbols ofDiff (S')

It is known that Liouville theory is deeply related to the megentation theory of the group
Diff(S!) of diffeomorphisms of the unit circle [T08]. The operatoog@uct expansion from
conformal field theory leads to the definition of a suitablaeyalization of the tensor product
operation for representations of infinite-dimensionalug®like Diff (S'). One may therefore
interpret the chiral vertex-operators from conformal fidd@ory as analogs of the Clebsch-
Gordan maps, and the fusion coefficients as analdg-symbols [MS| TOL, TO8].

A similar issue arises here as pointed out above in our dismu®f the modular double: To
find particularly natural normalization conditions. Thermalization defined in[(417) above,
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while being natural from the physical point of view, is notigedt counterpart of the normal-
ization condition used to define tlig symbols of the modular double above. Such a normal-
ization condition can naturally be defined by requiring namace under the Weyl-reflections
a; — ) — a;. Due to the factord (2«;) in the definition ofC'(as, as, 1), the symmetry under
a; — Q — «; is spoiled by the change of normalization (4.7).

However, it is easy to restore this symmetry by replacing tleemalization factor
C(as, as, aq) entering the definitiori (417) by

T3 (2001 )Ty (2002 T (20x3) | 2
T(2CM1)T(2C¥2)T(2C¥3)

D(Oél,O[Q,Oég) C(a?na?val) :

ReplacingC by D in (4.7) leads to the definition of normalized conformal tbds&ﬁfs)(A|Z)
and K%/ (A|Z) which can be interpreted as analogs of invariants in tensmdycts of four
representations dbiff(S'). The kernel appearing in the relation

K$)(A]Z) = / dpr(on) {35285} e KO(A12). 4.12)
Q/2+iR

is naturally interpreted as an analog of tiyesymbols forDiff(S'). It coincides exactly with
the b6 symbols,

a1 Qg Qg a1 ag Qg }b (413)

a3 Qg o }Diff(S1 Tl

as can easily be checked by straightforward calculations.

5. Application to two-dimensional quantum hyperbolic geonetry

It is known that the Racah-Wigner symbols of the modular d®plkay an important role when
the quantum Teichmdller theory [FA97, Ka98, CF99] is stddin the length representation
[TO3,[T0OS]. Having fixed a particular normalization in ouffigéion of the b6; symbols above
naturally leads to question what it corresponds to in thigext. We are going to show that the
definition of the b6; symbols corresponds to the quantization of a particulaicehaf Darboux-
coordinates for the classical Teichmiiller spaces. Thehfeilller space$ (C') are well-known

to be related to a connected component in the moduli spacatdf £l(2, R)-connections on
Riemann surfaces. Natural Darboux coordinates for thisespave recently been discussed in
[NRS].

The quantization of the Teichmuller spaces will be disedss terms of the Darboux coor-
dinates of [NRS] in a self-contained mannerlin [TeVa]. In tbkowing we will collect some
relevant observations that can fairly easily be extraatechfthe existing literature.
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5.1 Classical Teichnilller theory of the four-holed sphere

To be specific, let us restrict attention to four-holed sphé€l, ,. The holes are assumed to be
represented by geodesics with lengths= (I3, ...,l;). There are three simple closed curves
Yss» Y, @nd-y, encircling pairs of pointgzy, 23), (22, 23) and(zy, z3), respectively. A set of
useful coordinate functions are defined in terms of the Hygér cosinesL, = 2cosh %’

o € {s,t,u}, of the geodesic length functiofnson 74 = 7 (Cy4). I, is defined as the length
of the geodesig,,, defined by means of the constant negative curvature metrg o.

The well-known relations between Teichmilller spag¢€’) and the moduli spacest(C')
of flat G = SL(2, R)-connections on Riemann surfaces imply that the geodesitidunctions
L, are related to the holonomigs along~, asL, = —Tr(g,). This allows us to use the
description given in[[NRS], which may be briefly summarizedfallows. The structure of
M (Co4) as an algebraic variety is expressed by the fact that the twerdinate functions
L,, L, and L,, satisfy one algebraic relation of the fory,(L,, L;, L;) = 0. The Poisson
bracket{ L,,, L,,} defined by the Weil-Petersson symplectic form is also akgelin the length
variablesL,, and can be written elegantly in the form

0
oL,

As shown in[NR$] one may represef, L; andL,, in terms of Darboux-coordinatésandk,
which have Poisson brackél, k;} = 2. The expressions fat, andL, are, in particular,

{LsaLt} =

Pr(Ls, L, Ly) . (5.1)

Ly = 2cosh(l5/2), (5.2)
Lt(Li — 4) = 2(L2L3 + L1L4) + Ls(Lng + L2L4) + 2 COSh(]CS) 012(L3)034(Ls) s

whereL; = 2 cosh %, andc;;(L,) is defined as

cij(Ls) = L2+ L7 + L3 + LL;L; — 4 (5.3)

sl lstli—1; lo—li+1; ls—li—1;
= 2 cosh %2 cosh %2 cosh %2 cosh —.

Together with a similar formula fok.,, these expressions ensure that both the algebraic relation
Pr(Ls, Ly, Ly) = 0 and the Poisson structuie (5.1) are satisfied. These Dadomrginates are
identical to the Fenchel-Nielsen length-twist coordisatell-known in hyperbolic geome@y.

Similar Darboux coordinate§,, k;) and (l,, k,,) can be associated to the curvgsand~,,
respectively. The change of coordinates between the Darboordinateg/s, k) and(l;, k;) is
represented by a generating functi®fi(/,, /;) such that

0 0

o Qst ls l — _ks T Qst
8ls L( 7t) ) 8lt L

2This can be inferred from [ALE'S]. We thank T. Dimofte for pting this reference out to us

(Lo le) = k. (5.4)
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Other natural sets of Darboux-coordinatés £/ ) can be obtained by means of canonical
transformations = k, + f(l,). By a suitable choice of (¢), one gets Darboux coordinates
(Is, k%) in which the expression fak, in (5.2) is replaced by

Lt(Li — 4) = 2(L2L3 + L1L4) + Ls(Lng + L2L4) (5.5)
+ 2 cosh #2 cosh ls“j_ll 2 cosh l”ﬁ’_l“ 2 cosh % ethe

_ /
+ 2 cosh #2 cosh ls_li_b 2 cosh ls”j”“ 2 cosh % e ks

The Darboux coordinate§l,, k.) are equally good to represent the Poisson structure of
M (Co4), but they have the advantage that the expressions,foio not contain square-roots.
This will later turn out to be important.

5.2 The quantization problem

The quantum Teichmuller theory [Fo97, Ka98, CF99, CFOGjstaucts a non-commutative
algebraA, deforming the Poisson-algebra of geodesic length funst@nTeichmuller space.

In the so-called length representation [T03, TO5] one maystract natural representations of
this algebra associated to pants decompositions of thedRiersurface under consideration.

For the case under consideration, the aim is to constructegparameter family of non-
commutative deformationd, of the Poisson-algebra of functions @§, = 7 (Cj 4) which has
generatorL,, L, L, corresponding to the functions,, o € {s,t,u}, respectively. There is
one algebraic relation that should be satisfied among tlee tpenerators,, £;, L,,.

Natural representations,, o € {s,t,u}, of A, by operators on suitable spaces of functions
1, (l,) can be constructed in terms of the quantum counterparted@a#nboux variables,, k.,
now represented by the operattysk, defined as

Ia wa(la) = la wa(la) s ks 1%(50) = 47?52%—1/10(50) . (56)

The operatorr,(L,) acts as operator of multiplication in the representationr,(£,) =

2 cosh(l,)/2. The remaining two generators 4f, are then represented as difference operators.
Considering the representatiag, for example, we will find thatr,(£;) can be represented in
the form

7Ts<£t)ws(ls) = [D+(ls>€+ks + D0<ls) + D_ (ls)e_ks}¢s(ls> . (57)

This formula should of course reprodute {5.2)[or](5.5) indlassical limit, but due to ordering
issues and other possible quantum corrections it is a gaofrom obvious how to define the
coefficientsD.(l,), e = —, 0, +.
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Note, in particular, that the requirement thatL,) acts as multiplication operator leaves a
large freedom. A gauge transformation

s(ls) = ML), (58)
would lead to a representatiat of the form [5.7) withk, replaced by
K. =k, + 4702 9, x (1) - (5.9)

This is nothing but the quantum version of a canonical tramsation(/,, ks) — (Is, ks+ f(ls)).
The representation,(£;) may then be obtained from (5.7) by replaciby(l;) — E.(Is) with
E.(l,) equal toe!xts—4emt*)—x() D (1) for e = —1,0, 1. Fixing a particular set of Darboux
coordinates corresponds to fixing a particular choice ottefficientsD, (() in (5.7).

5.3 Transitions between representation

The transition between any pair of representationsandr,, can be represented as an integral
transformation of the form

wma:/%ﬂW%@MMm. (5.10)

The relations L8
(ﬂ-s(kt)ws)(ls) = 47Tb2/dlt Ait(ls,lt) Ta—l
t

‘W%§M@=/W%WMMMMM%%

describing the quantum change of Darboux coordinates egetadionsequences.

Ve(ly),
(5.11)

It is important to note that the problem to find the proper quanrepresentation of the
generatorsr, (L, ) is essentially equivalent to the problem to find the kera€ls>(i,, . [,,) in
(5.10). Indeed, the requirement that{ L,,) = 2 cosh(l, ) /2 implies difference equations for the
kernelA7***(l,,,l,,) such as

Tor (Loy) - AT (Lo loy) = 2cosh(ly,/2) AT (I, sy ) - (5.12)

The difference operator on the left is of course understo@att on the variablg, only. Under
certain natural conditions one may show that the differeegeations[(5.12) determine the
kernelsA7'**(l,,,l,,) uniquely. Conversely, knowingl7'**(l,,,l,,), one may show [TeVa]
that it satisfies relations of the forin (5112), and therebyude the explicit form ofr,, (L,,).

Considering the generalization to Riemann sphékgswith more than four holes itis natural
to demand that the full theory can be built in a uniform marfren the local pieces associated
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to the four-holed spheres that appear in a pants deconpositiC,,,. This leads to severe
restrictions on the kernelds(i,, [;) known as the pentagon- and hexagon equations [T05]. We
claim that the resulting constraints determitag((;, ;) essentially uniquely up to changes of
the normalization associated to pairs of pants.

Solutions of these conditions are clearly given by th&/symbols. It is important to note,
however, that a change of normalization of the form (2.18) lvé equivalent to a gauge trans-
formation [5.8). This means that different normalizatiohthe b6; symbols are in one-to-one
correspondence with choices of Darboux-coordinéfes:’ ) obtained from(l,, k) by canon-
ical transformations of the for} = [, k.. = k, + f(I,). Only a very particular normalization
for the b6; symbols can correspond to the quantization of the Fencles@&h coordinates.

5.4 Quantization of Fenchel-Nielsen coordinates

The main observation we want to make here may be summarizis ifollowing two state-
ments:

1) The geodesic length operators can be represented in tefithe quantized Fenchel-Nielsen
coordinates as follows:

T (Ls) =2cosh(ls/2), (5.13a)
can . 1 2
ML) = ST eos T (2 cos T (Lo Ly + Ly Ly) + Ly(L1 Ly + L2L4)>
1 €+k5/2 Cl?(" )034(Ls) +k /2 1 (513b)
2sinh(l,/2) 2sinh(l,/2) 2 sinh(l,/2)
1 o ks/2V ciz(L )C34<LS>6—k /2 1
2sinh(l,/2) 2sinh(l,/2) 2sinh(l,/2)’

wherel, = 2 cosh(l;/2) = m4(L,) andc¢;;(L,) was defined in(5]3). The formulae defining the
other representations; and, are obtained by simple permutations of indices.

2) The kernel describing the transition between repres@niar, and; is given in terms of the
b-6; symbols as

-
A1, 1) = (M ()M ()2 { o122 if o @

== 14
Q3 04 Ot ) p 2 47Tb’ (5 )

fori = 1,2,3,4,s,t. The formulae for other pairs of representations are agaumnid by per-
mutations of indices.

The relations between Liouville theory and quantum Teichen theory found in[[T0O3] allow
one to shortcut the forthcoming self-contained derivafi@Va] of the claims above. In[T03] it
was found in particular that the conformal block§’ (A| Z) represent particular wave-functions



17

in some representatiort,

s . Q .
Us(ls) = FO(A|Z) if a, = 5 Ty (5.15)
This relation fixes a specific representatigri®. The generatoL, is represented im°" as
in (5.7) with coefficientsDu(1,) that can be extracted frorn [AGGTV, DG(ET]Redefining
the conformal blocks as i (4.7) is equivalent to a gaugesfoamation[(5.8) which transforms
the representation’°" to the representation denote¢". It is straightforward to calculate
the coefficientsD, (I,) from DMou(],) using [4.Y) and{413). A related observation was recently

made in[IOT]. The case of the one-holed torus was discudsed aimilar lines in[[DiGu].

Other normalizations for the &3 symbols will correspond to different choices of Darboux-
coordinates. In the normalization used|in [DCOT], for exéanpne would find

, 1
ma(Le) = 2(cosh Iy — cos 27b?)

(2 COS sz(Lng + L1L4) + LS(Lng -+ L2L4)>

ls+l1—1o ls+lo—11 ls+l3—14 ls+la—l3
n 4 K2 cosh 1 cosh : cosh . cosh 1 2
sinh(ls/2) sinh(l5/2)
ls+l141lo ls—li—1o ls+l341a ls—l3—l4
4 K2 cosh ==7+2 cosh === cosh =3+ cosh =3 e

T .2 Sinh(1,/2)
As the analytic properties of the coefficieris(l;) in (5.14) are linked with the analytic prop-
erties of the kernelsls(l,, ;) via (5.12), it is no surprise that the kernel§’ (s, [;) associated
to the representation, have much better analytic properties th&(l,, [;) as given by[(5.14).
One may see see these analytic properties as a profoundgcemee of the structure of the
moduli spaces\(C') as algebraic varieties.

5.5 Classical limit

The classical counterpart of the expression (5.13b) isddoyrreplacing, andk, by commuting
variabled, andk,, respectively, and sendihg— 0. The formulae for the operator§*" (L) and
n¢(L,) given above are thereby found to be related to the formul&y {& L, and L, in terms
of the Darboux coordinatds andk, for 7, ,. We conclude that the representatidfi” is the
representation associated to the Darboux coordinatessdied in[[NRS]. The representation
7, reproduced (515).

Furthermore, by analyzing the classical limit of the relas the relation$ (5.11) with the help
of the saddle-point method one may see that the functjéfi;, /;) which describes the leading
semiclassical asymptotics of the kernil (i, [;) via

A1, 1) = exp (47r1i62 Szt(ls,lt)) (1+01%), (5.17)

30ur generator; corresponds t@ cos(7bQ)L(72,0) in [DGOT].
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must coincide with the generating function for the candnicansformation between the
Darboux-coordinate§, k) and (I;, k;). As this function is known [NRS] to be equal to the
volume of the hyperbolic tetrahedron specified by the lesgthls, i3, l4, I, [;), we have found
a second proof of the statement that the semiclassicalditite b6; symbols is given by the
volume of such tetrahedra.

6. Applications to supersymmetric gauge theories

6.1 Three-dimensional gauge theories on duality walls

Recently remarkable relations between a certain csd A/ = 2 supersymmetric four-
dimensional gauge theories and two-dimensional confofielditheories have been discovered
in [AGT]. One of the simplest examples for such relationsratations between the partition
functions of certain gauge theories 6t [P€] and physical correlation functions in Liouville
theory. The partition function of th&” = 2 SYM theory withSU(2) gauge group and/; = 4
hypermultiplets, for example, has a very simple expressioterms of the four-point func-
tion (4.1) in Liouville theory. The partition function of ¢hS-dual theory would be given by
the four-point function[(4]2), and the equality betweentihie expressions [T01] represents a
highly nontrivial check of the&s-duality conjecture.

Interesting generalizations of such relations were régeniggested in[ [DrGG]: one may
consider two four-dimensional theories from cla®n the upper- and lower semispheres of
S4, respectively, coupled to a three-dimensional theory @endéfectS® separating the two
semi-spheres. Choosing the two theories to bethe= 4 theory and itsS-dual, for example,
the arguments from [DrGG] suggest that the partition fuorctf the full theory should be given
by an expression of the form

/ dorgday (G (AI1Z))* Gaval [2252] 69 (A12), (6.1)
(Q/2+iR)?

using the notations from Sectibh 4. The interpretationimteof two four-dimensional theories
coupled by a defect suggests [DrGG] that the keégl,, [ 22 22 | in (6.1) can be interpreted as
the partition function of a three-dimensional supersynrimguge theory oy which repre-
sents a boundary condition for both of the four-dimensigaaige theories on the semi-spheres

of S%.

The identification of the three-dimensional gauge thediésy on the duality walls may be
seen as part of a larger program [TY, DiGu, DiGG] which aimdegelop a three-dimensional
version of the relations discovered in [AGT]. Roughly spgagkthe idea is that there should
exist a duality between certain families of three-dimenalgupersymmetric gauge theories and
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Chern-Simons theories on suitable three-manifolds. Agutace was described in [DiGG] for
the geometric construction of relevant three-dimensigaaige theories from simple building
blocks associated to ideal tetrahedra.

In the simpler case where th€; = 4 theory is replaced by th&/ = 4-supersymmetric
gauge theory, an ansatz for the relevant three-dimensibaaly was suggested by the work
[GW], where this theory was called[SU(2)]. In subsequent work [HLP, HHL 2] it was explicit
checked that the analog of the kerrtél,,, for this case is given by the partition function
of the T'[SU(2)] theory. A natural mass-deformation exists for thgU(2)]-theory, and it
was also shown in [HLP, HHL 2] that its partition function wdwessentially coincide with the
counterpart of the kernel which would appear in the casees$thcalledV = 2*-theory rather
than the/N, = 4-theory. However, so far no three-dimensional gauge thetigh would have
the b6; symbols as its partition function has been identified yet.

6.2 Partition functions of three-dimensional supersymmeic gauge theories

Let us briefly review the general form of the partition fuocis for3d supersymmetric field
theories. According ta [HHL2], followind [KWY/,\J, HHL1], t& partition function foBd N =

2 SYM theory with gauge groupr and flavor symmetry group’ defined on a squashed three
sphere has the form

ico rank G _
Z(f) = / TT dus Iz [ 2 (f, w). 6.2)
- 1 I

ico 5

Here f;, are the chemical potentials for the flavor symmetry gréugvhile «;-variables are
associated with the Weyl weights for the Cartan subalgebtfasogauge groug-. For Chern-
Simons theories one hau) = ¢ ™# X527 4} wherek is the level of CS-term, and for SYM
theories one hag(u) = 2% % where) is the Fayet-llliopoulos term. There are two
different contributions to the partition function (6.2)*¢(x) which comes from vector super-
fields andZg""(f, ) arising from the matter fields. All these terms are expresséerms of
noncompact quantum dilogarithms. The contribution of #estperfield folG = SU(2) which

we are interested in coincides with the Plancherel mea@uté)introduced above,
7 (u) = M(Q/2 + iu), (6.3)

as follows from [HHL2, Equation (5.33)] using (A.l15) arid {&). For each chiral superfield
®; the contribution to the partition function i$,(a) wherea is some linear combination of
the R-charge and mass parameters which can be derived from the gepresentation of the
matter content (see, for example, [DSV]).
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6.3 The b-6] symbols as a partition function

Although expressior_(2.28) for & symbol resembles the partition functions3af SYM the-
ory with U(1) gauge group, it cannot easily be interpreted as partitiontfan for some three-
dimensional gauge theory since the parameters enteriegpi®ssion are subject to the con-
dition that their sum equal&?), while the parameters entering partitions functions arter&o
stricted.

In the course of the derivation of the new formuila (2.28) Far b6; symbols, as described in
AppendiXB.2, we have found a few other integral repres@natfor these objects, including

Q-at—a1—ay 3Q—at—a1—au Qton—aatay
e e T e BT
A I( —Q—a1a-a4+at Q—a1fa4+at _Q+0112—Ol4+0ét ) ) (6.4)
T b ey SRR ey —EEE R 4
where we define the integréa(y.) as
L Ty So(p £ w) pa p2 s
I(p) =5 = du,  [p]= : (6.5)
2 )i Sp(E2u) fa M5 [

and the prefactor in_(6.4) is explicitly given as

Sp(ae + ag — o) Sp(ar — ag + @) Sp(—Q + a1 + ay + o)

A =
! Sb(Oég —+ Ay — 043)517(043 -+ ap — Oég)Sb(Oég — Oy + Oés)

We would like to point out that this expression, as oppose@i28), admits an interpretation
as a partition function of the forni (6.2) for a certain thoémensional SYM theory. Namely,
the expression (6.4) without coefficiedt can be interpreted as the partition function of three-
dimensional\/ = 2 SYM theory defined on a squashed three-sphere #if2) gauge group
and6 quarks in the fundamental representation of the gauge gitupflavor symmetry group
isSU(6) x U(1)a x U(1)g. The total axial mass i1y = %Zle ue While the masses of 6
chiral multiplets then isn; = 4, — £ 3°0_ jux,i = 1,...,6 (constrained ty_._, m; = 0).
We also take thek?-charge in UV to be 0. Considering (6.4) as the partition fiomcfor 3d
N = 2 SYM theory one obtains a whole series of Seiberg dualitiéshvtan be derived from
[DSV] by taking N = 1 there. Keeping in mind the coefficient; in (6.4) one sees that the
corresponding theory hasmore singlet chiral fields and the flavor symmetry group ikbro
toU(1)°> x U(1)a x U(1)p.

We would also like to remark that the identification of thé bsymbols as partition functions
works straightforwardly only for the b5 symbolq & 52 | & }Z“ The square-roots appearing in

a3 o4
the expression fof &1 &2 | o }b seem to prevent a similar interpretation.
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6.4 Applications to the geometric construction of three-dinensional gauge theories?

It is interesting to observe that the result for (mass-deéat) 7'[SU(2)] from [HLP, [HHLZ],
after applications of the same type of identities, can beiginbto3d N = 2 CS theory with
SU(2) gauge group at levél, 4 quarks and some singlet chiral fields. The above statemant ca
be derived from the following integral identity [SV11]

0 S (Q/4 — pn+m/2+ z)
—ioco Sb<3Q/4 e m/2 + Z)

L oonie—(24m)24,2) o0 Sb(% +HEputlEy)
= 3¢ it2 Sp(Q/2 —m £ 2¢) n 5, (E2)

et (6.6)

e—27riy2dy )

These two observations suggest that there may be an anatbg geometric construction of
three-dimensional supersymmetric gauge theories dieduss$DiGCG] which is based on build-
ing blocks withSU(2) gauge symmetry rather thdn(1) gauge symmetry. Indeed, the two
three-dimensional partition functions discussed abowebesidentified with the kernels for the
fusion moveA and for the modular transformation of the one-puncturedst6t respectively.
Together with the braiding, the two kernels above generagpeesentation of the modular
groupoid [T08]. This is what one needs to apply standard outiior the combinatorial quan-
tization of Chern-Simons theories to the caseSdf(2, R)-Chern-Simons theory. It is also
suggestive to point out that the number of quarks of the thetrose partition function gives
(6.4) nicely matches with the number of angles defining threege hyperbolic tetrahedron.

We take these observations above as a hint that three-diomehd/ = 2 SYM theory with
SU(2) gauge group and quarks plus some number of singlets could be associate@ taoti-
ideal hyperbolic tetrahedron in a future generalizationhef constructions ir_[DiGG], where
the triangulations of three-manifold by ideal tetrahederaplaced by triangulations by non-
ideal tetrahedra. This raises several interesting questidnich should be clarified, including,
in particular, the interpretation of normalization chasf@ b-6; symbols[(2.1B) from the point
of view of supersymmetric gauge theories.

AcknowledgementsWe would like to thank T. Dimofte, S. Gukov, R. Kashaev and S.
Shatashvili for useful discussions on related topics.
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A. Special functions

A.1 The function I';(x)

The functionl,(x) is a close relative of the double Gamma function studied np. [B can be
defined by means of the integral representation

oo

e—:ct - e—Qt/Z — 9 2 — 92
logTy(z) = /@<( _(@—227 Q=2 ) : (A1)
0

t \(1—et)(1—eth) et t
Important properties df,(x) are

functional equation T'y(x + b) = \/27rbbm‘%r‘1(bx)F(x). (A.2)
analyticity I'y(z) is meromorphic,
poles:z = —nb —mb ™ n,m € Z=°. (A.3)

A useful reference for further properties|is [Sp].

A.2 Double Sine function

The special functions used in this note are all build fromgbecalled double Sine-function.
This function is closely related to the special functiond@enoted, (x), which was introduced
under the name ajuantum dilogarithmn [EK2]. These special functions are simply related
to the Barnes double Gamma function![Br], and were also dutced in studies of quantum
groups and integrable models in [F2,/Ru,/Wo, V].

In the strip|Im(x)| < %, functione,(z) has the following integral representation

ep(x) = exp{ dt ﬁ} , (A.4)

B 4t sinh bt sinh %
RH0

where the integration contour goes around the pete) in the upper half—plane. The function
sp(z) is then related te,(x) as follows

sp(x) = e%r%%(bub&)eb(x). (A.5)

The analytic continuation of,(z) to the entire complex plane is a meromorphic function with
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the following properties

functional equation % = 2 cosh(rb™' ), (A.6)
SplT — 3
reflection property s,(x) sp(—z) =1, (A.7)
complex conjugation s,(x) = sp(—7), (A.8)
zeros/poles (sy(z))*' =0 & £z € {i$+nb+mb ';n,m € Z7°}, (A.9)
residue Res s,(x) = I (A.10)
:E——IQ 27T

_ e F@ RO for 12| = oo, |arg(z) < T,
asymptotics s(z) ~ . ) (A.11)
et 2 @) for (2] 5 0o, |arg(z)] > z.
Of particular importance for us is the behavior for> 0, which is given as
LI 2
e (2%) - exp( = b2L12( )) (1+0(b )). (A.12)
In our paper we mainly use the special functi®yix) defined by
Sp(z) := sp(iz — 1Q) (A.13)
and has the properties
self-duality Sy(z) = Sp-1(x), (A.14)
functional equation Sy(x + bv*') = 2 sin(7b™'z) S(z), (A.15)
reflection property Sy(z) S,(Q —x) =1. (A.16)
The behavior of5,(z) for b — 0 is then given as
i (12 1 i
Qﬂz(l’_*l"" 7?) _ s (v 2
Sh <27rb> = e 2 exp ( il Lis(e )) <1 + O )) . (A.17)
In terms ofl",(z) the double Sine-function is given as
_ Dy(2)
Sb(l’) = Fb(Q—J}).

A.3 The elliptic Gamma function

The second class of special functions we need here is tigi@jamma function which ap-
peared implicitly in[[BX] and was introduced in [Ru]

1,i+1 ,5+1
qJ

e
Fzipa) = [ T (A.18)

4,j=0
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satisfying the following properties

symmetry I'(z;p,q) =I'(2;¢,p), (A.19)
functional equations I'(¢z; p, q) = 0(z; p)T'(2; p, q), (A.20)
L(pzip,q) = 0(z0)I(zp,9) (A.21)
reflection property I'(z;p,q) T (pq7p, q) =1, (A.22)
zeros z € {p"'¢*i,j € 27°}, (A.23)
poles =€ {p~'q ;i j € 27"}, (A.24)
residue ResI'(z;p,q) = —;. (A.25)

2=1 (75 P)oo (43 @)oo

Hered(z; p) is a theta-functiol(z; p) = (2;0)00 (P2 715 D)0e-

B. Proof of identity (2.28)

B.1 The master integral identity

Let us start from thé -function [S03] which is the example from Spiridonov’ thgaf elliptic
hypergeometric integrals [SU1, E,lﬁﬂeflned by

F (2 ’ ) d
_—K/I_Ll s275pq) 4z (B.1)
(22 p, ) 2miz

where[[_, s; = (pq)? is the so-called balancing condition and

(P;P)oo (@5 @)oo
2

with (25 ¢)e = [[520(1 — 2¢"). The main building block is the elliptic gamma function defin
in (A.18) above.

Theorem 1. [S03]

K =

H ['(sis;:0, Q)T (Si448j14:0, @)V (1), (B.2)

1<i<j<4

where

ti =es;,1=1,2,3,4; t;,=¢c's;,i=5,6,7,8,

4From physical point of view this integral is the so-callegperconformal index for four-dimensional SQCD
theory with SU(2) gauge group andV; = 4 flavors. The integral transformations for-function describe the
multiple duality effect for the above theoty [SV10].
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and

6:\/ bq :\/55363758
51525354 pbq

The integral identities used in this paper will be obtaineualrf (B.2) by limiting procedures
[DS] which reduce the elliptic gamma functions to doubleeSimnctions. First, we redudeé-
function to the level of hyperbolig-hypergeometric integrals using the reparameterizatfon o
variables

i T 2mib 2mir /b
z = XM s; =€ =1 .8, p =™, g =e>mr/b, (B.3)

and the subsequent limit — 0. In this limit the elliptic gamma function has the following
asymptotics

1—\(627rirz; 627rirb’ 627ri7”/b) Tio 6—7Ti(22—b—1/b)/12r5b(z).

Using it in the reduction, one obtains an integral lying oe thp of a list of integrals emerg-
ing as degenerations of théfunction (we omit some simple diverging exponential npliér
appearing in this limit together withi),

1 T, Solp £ u
Ih(:ub B 7”8) = § / Hl_éb(igu) )du7 (B4)

ico
with the balancing conditioEf:1 wi = 2(b+ b~1). It has the following symmetry transforma-
tion formula descending from the elliptic one

In(p, - ps) = H S + 1) H Sp(pi + py)In (v, - - vs), (B.5)
1<i<j<4 5<i<j<8
wherey; = p; + &, vivg = pica — &,1 = 1,2, 3,4, and the parametéris

8

4
2 = pi—b—bTl=b+b"=>
=1

1=5

Formula [B.5) will be our main tool in the following.

B.2 Useful corollaries.

For proving the main transformation formula which allowsaiget from [2.17) the expression
(2.28) we need following corollaries.

Corollary 1.

I(p) = Sp(s + p6)Sh(2Q — Z 116) H Sp(pi + py)I(v), (B.6)

i=1 1<i<j<4
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where we define the integraiy) as

1 I Se( £ w)
I(p) = 5 éb(iQU) du. (B.7)

—ioco

Here we have

(1, V9,3, a,V5,06) = [+ & pa+E& s+ & pa+ & s — &, e — €]

and )
26 = Q- .
=1
Later it will be convenient to write 6 variablesin the following way
M1 M2 M3
= | |
Ha M5 He
Corollary 2. :
3
J(p,v) = H Sy(pti + va)Sp(vi + pa)I(p), (B.8)
=1
with )
ico
J(p.v) = / H Sp(pi — u)Sp(vi + u)du, (B.9)
—loco i=1

which hasU(1) gauge symmetry, and the balancing conditfofi_, (1 + ;) = 2Q. Here we
have

[p17p27p37p47p57p6] = [M1+£7M2+£7M3+£7V1 _£7V2 _571/3_5]

and

3 3
28 = Q—V4—ZM:—Q+/~L4+ZV2‘-
=1 =1
Again it is useful to have the following notation

[, v

]:[Ml H2 U3 M4}
Vy Va V3 14 ’

The inversion of Corollari]2 is the following

Corollary 3.

Ip)= T Solpi +p)Su(piss + piss)J(p,v), (B.10)

1<i<j<3
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and the balancing conditioE?:1 i + v; = 2Q). Here we have

M1 M2 H3 M4]:[P1—!E p2—T p3—T Q — psse —
vy Vo V3 14 pat+x ps+x pst+x Q—prozt+x
wherepias = p1 + pa + ps, pase = pa + ps + pe, andz is arbitrary.

Corollary 4. :

) = $2Q =3 m) [ Selwi + 1) 1Q/2 - ). (B.11)

1<i<j<6

To get the desired transformation formulas one should westtlowing asymptotic formulas
when some of the parameters go to infinity

lim eZB22 8, () = 1, forargh < argu < argl/b+,
U—00
lim e 25228 (u) = 1, forargh—r < argu < argl/b.
U—r00

By taking different restrictions for the parameters onegetiots of identities from the integral
identity (B.B). Let us take

My —> fy o s > fs — [

with the following limit © — oo. The left hand-side of (Bl5) gives

1 / Hz’:Q Sb(lul :l:Z)Sb(/’LZ+4:l:Z)dz’ (812)

I =—

h</~L27/~L37/~L47/~L67M77M8) 2 - Sb(:l:QZ)
without any restrictions for parameters 13, 14, 16, 1i7, it @nd in the right hand-side one needs
to shift the integration variable — =z — /2 and afterwards taking the limit — oo which

gives

IT ol + 1) Su(ptiva + 11744) (B.13)

2<i<j<4

[z et ) 208 )2~ 6 2)

4
< LT So(hi + € = (1 + 115)/2 = 2)Sp(ptiga — €+ (i + 15) /2 + 2)dz,

=2
and2{ = @ — Z?:z i
Inverting now the equality (B.12)E(B.13) one gets Coroll@r To get Corollary 1l one takes
the limit 7, ug — oo such thatu; — ug = O(1) in (B.5).
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Application of [B.2) twice and thrice gives new integralrtsformations formulas fof (Bl.1)
while further application of(Bl2) does not lead to new im&@d¢ransformations. It can be shown

[S08]
V(si,...,s8)= [ Tlsisjipq) (\/7 . f) (B.14)

S8
1<i<j<8

the reduction to the hyperbolic level of which brings to Qtangy (4.

In [SV11] other reductions of -functions were considered in connections with the scedall
state integral fod; knot [Hil] and with the kernel of-move [T03].

B.3 Derivation of the indentity (2.28)

Let us start from the expressidn (2.17) and apply Corollagkihg parameters as

[, V]

—044:|:(0z3—%) Q@ _ay—ay —%—i—oq—ozg

_[ Qt(a,—%) awtarta—9¢ a2+a4—0zt+%}
2

one gets
Q—at—a1—ay 3Q—ar—a1—ay Q+a;—as+az
Yt — s — —_— —
A, ( 2 ° 2 i 2 s ) (B.15)

—Q—oa+toytay + Q—ortoy+o — —Q+o1—agtoy + s

2 2 2

with
Sp(ae + ag — o) Sp(ar — ag + a5)Sp(—Q + a1 + ay + o)

A = .
! Sb(zl:(Q — 20&0)5{,(0&2 + Ay — Oég)Sb(Oég + ap — OéQ)Sb(Oég — Q4 -+ Oés)

The integral in[(B-Ib) is defined fax, € Q/2 + iR by using a contout” that approaches
% + iR near infinity, and passes the real axiiirnfl—?, %), and for other values af;, € % +iR
by analytic continuation.

Applying Corollary1 to[(B.15) (with the order of parametassstaying in(B.1l5)) one obtains

Qa3 —o2—Q _ Q3 —o2—Q Qar—Qp—Qa3
" I( o + =5 Q — g + =% oy + =5 )
2 )

ay — Q + 062"‘0534‘0% Q — o + OCt—0422—043 —ay + 042+053+04t

(B.16)

defined by the contout’' and where

Sb(Oég -+ g — Oét)Sb(—Oél + (0] -+ OAS)Sb(Oél -+ gy — Oét)Sb(QQ — 3 — Oy — Oés)

A2 - Sb(zl:(Q — 20&0)5{,(0&3 — oy + Oés)Sb(Oég + ay — Oés)

On the next step we apply Corolldry 4 fo (B.16) and get

Q+as—az+at —Q+az—az+ay Q+astaz—a
—Qg + F—F—"— Qg+ V7 — +
As T ( ’ 2 ’ 2 ! 2 ) , (B.17)

3Q—as—az3—« —Q+as+az—a —a2—a3—
_a4+Q223ta1+Q223ta4+Q223t
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with the same contout’ and

Sp(ar — ag + ;) Syl — ay + o) Sy + aq — )
Sp(E£(Q — 204))Sp(ag — az + ay)Sp(aq + ag — ) S (2Q — ap — g — )
" Sp(2Q — a1 — ag — ) Sp(—ag + g + ay)
Sp(—az + ay + a,)Sp(2Q — ag — az — ay)Sp(ag + g — ay) Sp(—ae + az + o)

Az =

Finally, we apply Corollary3 fol.(B.17) with slightly perrted parameters (since the integral
hasSg permutation symmetry over parameters)

4 —Q+tas—asztay oy + —Q+astaz—ay —ay + 3Q—a—az—ou )
)

A3]< Qs 2 2 2

+as—a3zto +astaz—o —Q2—3—Q
_as+Q 223t_a1_|_Q 223t a4+Q 2237:

together with taking

_ Q+astaztas

x 2

to get [2.28) which proves the identify (2128) in the mairt péthe text.
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