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Structural response of crystals to an applied external perturbation is 
important as a key for understanding microscopic origin of physical 
properties.  Experimental investigation of structural response is a 
great challenge for modern structure analysis. We demonstrate how 
advanced X-ray diffraction techniques facilitate probing tiny (10-4 

Å) distortions of bond lengths under a permanent electric field. We 
also discuss details of the experimental procedure essential for 
reaching such precision.  

We ask whether the experiment can be used to evaluate 
chemical bonds in crystals by their sensitivity to an external 
electric field and discuss if the bond deformations can be 
predicted using the bond-valence model or the Bader's theory of 
atoms in molecules and crystals. Finally, we describe the new 
time-resolved studies of a structural response to a dynamical 
switch of applied electric field. These results give access to the 
time-lining of piezoelectric effect on a microsecond time scale.  
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Introduction 

X-ray diffraction is the standard route to the determination 
of space group symmetry, atomic positions, electron density 
and thermal displacement parameters in crystals. The 
instrumentation is widely available in the form of 
commercial diffractometers incorporating the well-
established theories, algorithms, and techniques to study 
atomic structure of crystals under static ambient conditions.  
There is rapidly increasing interest in the investigation of a 
crystal structural response caused by the change of external 
conditions such as electric field, temperature, stress, short 
laser pulses, etc. The instrumentation for that is still quite 
elaborate and much less common than for ordinary X-ray 
diffraction. Therefore, current efforts strongly focus on the 
development of the experimental techniques, theoretical 
background, strategies for data collection, and methods for 
data analysis for probing small structural variations under 
external fields.  
The interest in structural response is inspired by both 
fundamental and material science since the sensitivity of a 
structure to an external perturbation defines its physical or 
chemical properties. For example, direct piezoelectric effect 
is the appearance of a dielectric polarization in response to 
an applied mechanical stress; converse piezoelectric effect is 
the development of a macroscopic strain in response to an 
applied electric field, etc. [1],[2]. These properties are well 
understood at the macroscopic level. It is however much less 
clear how they are linked to atomic structure and interatomic 
interactions. 
The role of the interatomic interaction can be illustrated with 
an example of -SiO2 (quartz) and -GaPO4 (gallium 

phosphate) piezoelectric materials. Both crystals belong to 
the same structural type (space group P3121): they are 
formed by a chain of corner-shared AO4 tetrahedra (A = Si, 
Ga, P); the -SiO structure converts into the -GaPO4 by 
alternating replacements of a Si atom by Ga and P atoms in 
the tetrahedra. This replacement of the atoms doubles the 
magnitude of the piezoelectric constant: d11 = 2.2 pC/N for 

-SiO2, d11 = 4.4 pC/N for -GaPO4. Thus, the macroscopic 
effect originates from the change in the atomic sizes and the 
atomic interactions. 
Understanding how and why substitution of atoms in a 
structure modifies its physical properties requires 
knowledge of material response at the microscopic rather 
than the macroscopic level. One must be able to predict the 
response of individual structural units – bond lengths, bond 
angles and structural polyhedra – to the different kinds of 
perturbation. Following from this, physical properties of a 
material could be evaluated even before it is synthesized, or 
the role of a certain chemical element in a structure could be 
explained. Unfortunately, the ab initio approach to this 
problem does not exist yet. Brown [3],[4],[5],[6] developed 
the empirical bond-valence model which allows of the 
calculation of the effective bond force constants and 
estimates the bond compressions under applied pressure 
using the bond lengths and the bond-valence indices. It is, 
however, unknown how well the bond-valence method 
performs when another perturbation, e.g. an external electric 
field, is applied. 
This work aims to summarize our recent efforts and 
achievements in X-ray crystallography under an applied 
external electric field performed on inorganic single 
crystals. We describe the modern experimental techniques 
and specify typical pitfalls and technical challenges. We pay 
particular attention to the chemical aspect of the work and 
demonstrate how X-ray diffraction by crystals under an 
external electric field can be applied to characterize 
chemical bonds by their sensitivity/response to an external 
electric perturbation. We also discuss the ability of the 
bond-valence model and Bader's theory of atoms in 
molecules and crystals to predict the microscopic response 
under an applied electric field. Finally, we present a novel 
experimental approach to time-resolved X-ray diffraction 
studies of a crystal response to an electric field on the 
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microsecond timescale and discuss the time regimes of the 
microscopic and macroscopic deformations. 

Experimental technique  

The magnitude of an external electric field that can be 
applied to an inorganic piezoelectric single crystal ranges 
between ~ 106 and 107 V/m; further field increase usually 
leads to an electrical breakthrough.  It is smaller by a factor 
of 10-5 – 10-4 than the average internal electric field: the 
structural shifts induced by an external electric field are 
expected to be very small. Therefore, detection of the related 
changes in diffraction intensity is an experimental and 
technical challenge. 
We constructed a dedicated data acquisition system that 
allows us to detect tiny (~0.5 %) differences of diffraction 
intensity under an applied electric field. The concept of the 
system originates from the works of Puget & Godefroy[7] 
and Fujimoto [8] – it was extensively used in a number of 
studies ([9], [10], [11], [12], [13], [15], [16], [18] [22], [21], 
[23],[24],[25],[30],[31],[32],[33],[34],[35]). This data 
acquisition strategy exploits the stroboscopic approach: an 

applied electric field is periodically modulated in a 4-step 
mode (the modulation periods consist of successive positive, 
zero, negative and zero states) with the frequency of about 
20 Hz; signals coming from an X-ray photon counter are 
continuously distributed over four counting channels, 
synchronized with the above modulation of the high voltage. 
In this way, the diffraction intensity is measured quasi-
simultaneously for each of the different electric field states.  
The stroboscopic data collection can be applied to a variety 
of diffraction geometries (single crystal, powder, grazing 
incidence, triple axis, etc.) where diffraction intensity is 
measured with a point detector. For a single crystal 

diffraction experiment we implement an open point detector 
and collect rocking curves around the pre-selected Bragg 
positions (see [23] for schematics of the scans in a 
reciprocal space).  An example output (the rocking curves 
collected stroboscopically at the positive (+), negative (–) 
and zero applied voltages) is shown in Figure 1. 
 
The first reason to apply the stroboscopic technique is to 
avoid any irreversible changes caused by a perturbation. The 
intervals of a quasi-static electric field must be long enough 
to move the atoms within a unit cell and to change the lattice 
dimensions. On the other hand, they should be short enough 
to prevent any mesoscopic changes such as migration of free 
charges, variation of defects structure, etc. These 
mesoscopic changes are difficult to model; their contribution 
to the total X-ray diffraction intensity can be higher than 
that of the microscopic structural changes (shifts of atomic 
positions in a unit cell). Thus, the modulation period of an 
applied high voltage should be chosen according to the 
expected time dynamics of the processes induced by an 
electric field. 
The second reason to apply the stroboscopic technique 
originates from the extremely small intensity variations. As 
a rule, Bragg intensities change by less than 1 %. All 
“external” errors such as instability of a synchrotron beam, 
drift of sample temperature, or variations of detector 
efficiency must be carefully excluded. For that reason, the 
diffraction profiles corresponding to the different states of 
an electric field must be collected quasi-simultaneously, i.e. 
stroboscopically. 
 
Comments on data analysis 
 

Besides using the stroboscopic experimental technique, we 
need to analyse the data differently from that of 
conventional X-ray structure analysis.  
In particular, we perform a structural least-square 
refinement against the relative intensities variation, not the 
absolute values of intensities. The relative intensity 
variation is modelled as 

=
| ( ) | | ( ) |

| ( ) |
,   (1) 

 
where | ( ) |  is the structure factor under applied electric 
field E. Theoretical analysis [19],[20] has shown that the 
field-induced displacements of atoms give the only 
observable contribution (more than 0.1 %) to the change of 
kinematical diffraction intensity. Therefore, they are used as 
the variables in refinement.  
The relative change in intensity is extracted from the 
experimental data (Figure 1):  
 

± = ± ,    (2) 

 
where , ,  are the integrated intensities (areas under the 
rocking curves) corresponding to the positive, negative and 
zero (average of two zeros) states of an electric field 
correspondingly.   
The approach using the relative intensity variations instead 
of the absolute intensity has the following advantages. First, 
it benefits from cancelation of several sources of systematic 
errors such as absorption, polarization correction, scaling of 

Figure 1. Typical modification of a Bragg rocking curve under 
applied external electric field. The right and left curves correspond 
to the positive and negative polarities of applied voltage, the 
middle curve corresponds to the average between two zero states. 
Shifts of the angular positions and relative change of intensity are 
extracted from the curves and analysed independently from each 
other. 
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different data sets, etc. It is particularly important as in situ 
electrical contacting of a crystal introduces several 
absorption related corrections to the absolute diffraction 
intensity and further increases the systematic error. Second, 
traditional techniques of structure analysis would fail to 
distinguish between field-on and field-off structures 
differing by ~ 10-4 Å atomic displacements. The scheme that 
uses the intensity variations allows one to obtain the field-
induced displacements of atoms directly, without referring 
to their precise initial positions.  
To demonstrate that we suppose that the initial position of 
an atom is R0 (± R), where R is the systematic error of the 
R0, and R is an electric field induced displacement of the 
same atom. Expanding the electric field-induced variation of 
intensity in a second-order Taylor series we obtain: 
 

= ( + + ) ( + ) =  

= + +  . (3) 

 
The systematic error, R, contributes to the intensity 
changes as a second order term only. To demonstrate how it 
affects the relative changes in intensity, we simulated I/I 

values in the case of the Li2SO4·H2O crystal for a few 
random R sets. Both initial atomic positions and the small 
(~10-4 Å) electric field induced displacements from Schmidt 
et al. ([25]) have been used. We randomly shifted the field-
free atomic positions by | R| = 10-3 Å (one order of 
magnitude higher than the field induced displacements) and 
calculated (using Eq. 1) the intensity changes due to 
additional electric field induced shifts. Figure 2 
demonstrates the results – electric field induced intensity 
variations of three selected Bragg peaks for 50 different sets 
of R.  
 
Figure 2. Relative variations of the structure factors of Li2SO4·H2O 
calculated for 50 different sets of initial atomic positions. Each 
point corresponds to the field-free position of each atom in a unit 
cell displaced in a random direction by 10-3 Å. The relative 
intensity variation (in %) was calculated using Eq. (1) and electric 
field induced displacements from [25].  

 
 
This modelling reveals how the systematic error, R, in the 
initial atomic position, propagates to the systematic error in 
the relative variation of structure factors. It shows that 
consideration of intensity variations instead of absolute 
intensities relaxes the requirements of precise knowledge of 
the field-free structure: it is acceptable to determine the 
initial atomic positions with the precision of 10-3 Å. In this 

case, the systematic errors of modelled intensity variations 
are still smaller than the average systematic error of 
measured intensity variations.  

The problem of extinction 

Extinction can create serious problems for the data analysis. 
It accounts for the correction factor y to the kinematical X-
ray diffraction intensity in the case when the diffraction is 
not entirely kinematical, = | | . Although a few 
approximate models are available to estimate extinction 
correction (see the review in [45]), they are never accurate 
enough to consider extremely small changes of intensity. In 
the case of a plate-shaped perfect crystal Hansen et al [17] 
suggested to use the alternative expression ~ | |  where n 

( ) approximates the precise solution given by the 
dynamical X-ray diffraction theory ([50]). For a real crystal, 
i.e. a crystal with an uncertain degree of perfection, the so-
called primary and secondary extinction corrections must be 
introduced and modelled as the functions of the mesoscopic 
structural parameters [51] – the average size of a 
hypothetical mosaic block and the distribution of mosaic 
block orientations. Any variation of a mosaic structure 
reflects in an extinction correction. Unfortunately, neither 
the changes of a mosaic structure in a crystal under an 
external electric field nor the related changes of extinction 
correction can be simulated and introduced into the 
refinement procedure. As a result, the Bragg reflection, 
presumably affected by extinction, must be excluded from 
the refinement.  

We adopted the following guidelines to avoid the Bragg 
reflections strongly affected by extinction: a) reflections 
with lower values of structure factors are measured; the 
extinction correction is expected to be significant for strong 
Bragg peaks only, b) sets of symmetry equivalent reflections 
are collected; the measured intensity changes are compared 
– significant disagreement indicates the appearance of an 
extinction, c) the change of a peak width (FWHM) is 
controlled: those peaks with significant change of the 
FWHM under applied electric field are not included in the 
refinement. The application of the selection rules b) and c) 
rejects approximately 30 % of the reflection (the exact 
percentage of rejected reflections strongly depends on the 
crystal). The inclusion of these reflections in the refinement 
results in a dramatic increase of the reliability factors and 
unphysical (extraordinarily large) refined values of atomic 
displacements.  

The alternative approach to the problem of extinction relies 
on the different time dependences of the structural and 
mesoscopic responses: the atomic shifts are much faster than 
the change of extinction. Therefore, time resolved 
measurements of a rocking curve can be a potential way to 
separate different contributions to the intensity. The new 
experimental technique which can be applied in future is 
described in the last part of this paper.  
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Macroscopic strains and piezoelectric coefficients 

Shifts of the peak positions (Figure 1) can provide 
information about a field induced macroscopic strain. The 
peak shifts 

( ± ) = ± ,   (4) 
with average positions of a rocking curve given by 

± , = ± , ( )

± , ( )
, 

are analysed using the approach introduced by Graafsma 
[27] and further developed in [23]. The observed peak shifts 
are modelled as: 
 

( ) = +  , 
(5) 

where  is the Bragg angle, H is the reciprocal lattice vector 
length, Hi and dijk are the components of the reciprocal 
lattice vector and the piezoelectric tensor correspondingly 
(the components are given relative to the crystal physical 
Cartesian coordinate system). The unit length vector Y is the 
cross product Y = [H,w]/H, where the unit vector w points 
along the rotation axis of the diffractometer. The second 
rank tensor RijkEi describes the rotation of the whole crystal 
under an applied electric field.  

We successfully apply this algorithm to different crystals, 
including crystals of low symmetry ([23], [25], [38]) and 
routinely use it for determination of piezoelectric 
coefficients. As an example, Table 1 compares the 
piezoelectric constants of monoclinic Li2SO4·H2O, 
determined by using the above algorithm, with those 
obtained by the application of a dynamical pressure cell 
([36],[37]). It demonstrates that the measured peak shifts are 
a reliable probe of a piezoelectric strain induced by an 
external electric field.  

In conclusion, a single rocking curve measured 
stroboscopically under an electric field gives an independent 
probe of both macroscopic and microscopic structural 
variations measured under the same conditions: spot of the 
sample, temperature, etc.  

 

Distortion of chemical bonds under external 
electric field 

Let us consider the microscopic structural changes in the 
two investigated systems: -GaPO4 and Li2SO4·H2O 
crystals.  

The -GaPO4 structure can be viewed as a chain of 
alternating corner-sharing GaO4 and PO4 tetrahedra (Figure 
3, right). The Ga–O/P–O chemical bonds have different 
length, strength and type. In addition, Ga and P cations are 
characterized by significantly different formal atomic 
charges.  
The crystal structure of Li2SO4·H2O is formed by LiO4, 
LiO3(H2O) and SO4 groups linked together by O atoms to 
form a three dimensional tetrahedral framework , see Figure 
3, left.   
As a first step we studied the static properties of Ga–O, P–O, 
Li–O and S–O chemical bonds using two different 
approaches: the bond-valence theory and the theory of 
atoms in molecules and crystals.  
1. The empirical bond-valence model developed by 
Brown et al. ([4],[5],[6]) estimates effective bond force 
constants, considering that bond distances and bond 
valences are known.  
2.  The theory of atoms in molecules and crystals 
developed by Bader [39] quantifies chemical bonds using 
experimental or theoretical electron densities. Interatomic 
interactions are rated by the features of bond critical points 
(saddle points in the electron density on bond paths – lines 
of locally maximal electron density linking some atomic 
pairs within the structure). These features are the electron 
density values, , Laplacian of electron density, , 
and the total electronic energy density, hBCP. The energy 
density is computed from the electron density and its 
derivatives using Kirzhnits approximation ([41],[42]). 
According to [43],[44],[45],[46],[47],[48], and [49], these 
properties categorize each bond as either a shared (covalent), 
a closed-shell (ionic) or an intermediate interaction. The 
number of electrons assigned to each atom can be evaluated 
by integrating the electron density within an atomic basin 
(volumes inside zero flux surfaces of the electron-density 
gradient). 
We applied this approach to the electron densities of -
GaPO4 and Li2SO4·H2O derived from the X-ray diffraction 
experiments and using Hansen & Coppens multipole model 
([28],[45],[46]). The data were collected at the D3 beamline 
at HASYLAB (for -GaPO4) and home-lab CAD4 
diffractometer (for Li2SO4·H2O). The details of the 
refinement procedure are described in [21] (for -GaPO4) 
and [25],[38] (for Li2SO4·H2O).  All the experimental results, 
including the features of electron density at the bond critical 
points, were validated by density functional calculations 
performed with the WIEN2k package [29] (with the 
exception of Laplacian of electron density at the S-O critical 
point, where different signs of  were obtained from 
the experimental and theoretical electron density).  Further 
details of the DFT calculations can be found in [21] (for -
GaPO4) and [25],[38] (for Li2SO4·H2O). 

Table 1. The piezoelectric coefficients (10-12 m/V) of 
Li2SO4·H2O from the analysis of 20 Bragg peak shifts ([25]), in 
comparison to the piezoelectric coefficients determined in a 
dynamical pressure cell ([36],[37]). 

 d211 d222 d233 d213 

X-ray -3.4(3) 15.3(2) 1.4(3) -2.4(2) 
DPC -3.3(2) 15.8(5) 1.7(1) -2.2(1) 
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The bond-valence model yields force constants of the Ga–O, 
P–O, Li–O and S–O interactions, 313, 833, 55, 1130 N/m 
correspondingly. Properties of the Ga–O, P–O, Li–O, and 
S–O bonds based on topological analysis are summarised in 
Table 2.  It shows that the Li–O interactions are ranked as 
closed-shell (ionic) ones (both the Laplacian of the electron 
density and the total electronic energy density is positive). 
The S–O bond is rated as either covalent (as follows from 
the theoretical electron density) or intermediate (as follows 
from the experimental electron density) between closed-
shell and covalent. The bonds in -GaPO4 are intermediate 
between ionic and covalent (we use the terminology given in 
[39] and categorize chemical bonds by the signs of 
Laplacian of electron density and electronic energy density).  

The features of the chemical bonds as reflected by the 
experimental electron densities (the results of the multipole 
refinements) are shown in Figure 4. They are plotted in four 

sections (covering O–X–O planes, X = Ga, P, Li, S) in the 
form of the static deformation electron density: the 
difference between multipole model electron density (the 
density, based on the refined multipole model parameters) 
and a sum of the densities of hypothetical independent 
spherical atoms located at the same positions as atoms in a 
crystal. The difference density maps characterize the 
properties of bonds qualitatively since they show explicitly 
the redistribution of the density into the bonding areas 
between the atoms.  

As the next step, we analysed the chemical bonds by their 
ability to respond to the electric field, applied along the 
[110] direction for -GaPO4 and the [010] direction for 
Li2SO4·H2O. Table 3 summarizes selected details of the X-
ray diffraction experiments and the model refinement: the 
number of measured reflections, the number of parameters 
of the model, average intensity variation and reliability 
factors. The choice of free model parameters, constrains due 
to the symmetry and pseudo-symmetry of the atomic 
positions, constrains due to the fixed dielectric polarization, 
etc. were described elsewhere ([20],[21],[22],[25],[38]). The 
relative standard uncertainties of the bond deformation were 
estimated at less than 1 % for both crystals. The last two 

rows of Table 3 show the distortions of the chemical bonds 
reduced to E = 1 kV/mm, both calculated from the refined 
displacements of atoms and estimated according to the 
bond-valence theory.  

The example of the atomic displacements in the PO2 
fragments of -GaPO4 is presented in Figure 5. 

Figure 4. Experimental deformation electron densities (the 
difference between experimental density of a crystal and density 
of spherical atoms placed in the same points ([45])), in the O–Li–

 

Table 2. Properties of Ga–O, P–O ( -GaPO4) and Li–O, S–O 
(Li2SO4·H2O) chemical bonds, including a) bond force constant, 
K, according to the bond-valence model ([3]); b) cation charge 
according to Bader's theory of atoms in molecules; c) electron 
density at the bond critical point; d) Laplacian of the electron 
density at the bond critical point; e) total electronic energy density 
at the bond critical point (in atomic units); f) type of interactions 
according to topological properties of the bonds (see the references 
in the text) where C, I and CI denote covalent (shared), ionic 
(closed shells) and intermediate atomic interactions, respectively. 
All properties b) - f) are based on the experimental electron 
densities. For S-O bond only we obtained different values of the 
Laplacian from the experimental and the theoretical electron 
densities, both are presented in the table (experimental/theoretical). 
 Ga–O P–O Li–O S–O 

a) K, N/ m 313 833 55 1130 
b) Q, e 1.19 3.13 0.90 4.10 
c) , / Å  0.79 1.70 0.16 1.90 
d) , / Å  13.73 13.49 4.87 8.6 / -2.8 
e) h, a.u. -0.03 -0.24 0.01 -0.31 
f) Interaction type CI CI I CI / C 
     

Figure 3. The crystals structures of Li2SO4·H2O and -GaPO4, 
studied under permanent external electric field. Left: crystal 
structure of Li2SO4·H2O in projection along [100] direction, the 
atoms related by a symmetry operation are marked by stars. Right: 

-GaPO4 structure is shown in projection along [110] direction. 

 

 
Table 3. Summary of the Ga–O, P–O, Li–O and S–O bond 
response to an applied electric field: a) number of collected 
Bragg peaks; b) number of model parameters used for the 
refinement of atomic displacements; c) average value of intensity 
variation; d) reliability factors, e) average deformation of 
chemical bond under normalized (E = 1 kV/mm) electric field; f) 
bond distortions, roughly estimated using the bond-valence 
theory and calculated as 2Q , where Q is the Bader’s charge 
of the cation, E = 1 kV/mm, K is the bond force constant from 
Table 2.  

 Ga-O P-O Li-O S-O 

a) Reflections 54 130 
b) Parameters 16 13 
c) / ,% 0.8 1.6 
d) Rw / R 0.21 / 0.20 0.23 / 0.29 
e) , 10-5

 Å 1.8 4.1 11.3 1.6 
f) 2Q -5

   Å 1.2 1.2 5.2 1.2 
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O, O–S–O and     O–Ga–O, O–P–O planes. Contour spacing is 
0.05 e/Å3, negative (density deficient) contours are represented 
by the broken lines. The features of the density accumulation in 
the interatomic regions approximately characterize the type of the 
bonding. 

Figure 6 presents the magnitudes of the bond-length 
distortions (reduced to E=1 kV/mm) as a function of cos , 
where is the angle between the electric field and the bond 
line.  

Figure 5. The schematic view of the atomic displacements in PO2 
sublattice of -GaPO4. The directions of atomic displacements 
induced by the electric field applied along [110] are shown by 
arrows.  

 

The correlation between cos and d is observed for the Li–
O bonds only. In addition, Li–O shows the highest response 
to an electric field: their average distortion is 11.3·10-5 
Å/(kV/mm), referring to the ionic character and low strength 
of the Li–O interaction. The S–O bonds are the most 
resistant to an applied external electric field: their distortions 
average to 1.6·10-5 Å/(kV/mm). It agrees with the strength 

of the S–O bonds: the largest force constant, electron density 
and electronic energy density at the bond critical point. This 
situation is different in -GaPO4: the stronger P–O bonds 
are more responsive to an electric field than the weaker Ga–
O bonds: the bond distortions average to 4.1·10-5 and 1.8·10-

5 Å/(kV/mm) correspondingly. This contradiction may 
account for the different P and Ga atomic charges: the force 
exerted on the bond is formally proportional to the charges 
of the bounded atoms. Unfortunately, the interpretation 
based on the atomic charges is valid for isolated charges or 
ions only. The picture becomes more complicated if the 
atoms are involved in shared interactions where significant 
charge density accumulates in the interatomic region. For 
example, the atomic charge treatment is not applicable to the 
S–O interactions: the atomic charge of S atom is high (+4.1 
e) but the bond distortion is low. Thus, the analysis of the 
experimentally derived small S–O bond distortions needs 
more sophisticated treatment models. 

Figure 6. Distortion of Ga–O, P–O, Li–O and S–O chemical 
bonds under external electric field E = 1 kV/mm, applied along 
[110] (for -GaPO4) and [010] (for Li2SO4·H2O) direction. 
Distortions of covalent S–O, Ga–O, P–O are strongly 
anisotropic and not obviously correlated with the bond-field 
angle. Distortion of ionic Li–O bonds is linearly dependent on 
the projection of electric field in the bond direction.  

 
 

 

Time-resolved studies of piezoelectric crystals 

X-ray diffraction under quasi-static electric field is a tool to 
probe atomic shifts and macroscopic deformation 
simultaneously and independently from each other. To 
understand the interplay between microscopic and 
macroscopic shifts we need to compare their time regimes, 
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i.e. perform the experiment in a time-resolved mode. The 
fundamental question is whether (1) microscopic shifts 
(changes of bond length) create macroscopic deformation or 
- vice versa - (2) elastic deformation (changes of lattice 
dimensions) creates a microscopic strain. Alternatively (3) 
microscopic and macroscopic deformation can be in the 
permanent interplay with each other so that their dynamics 
is not separable. In the first scenario, the piezoelectric 
deformation starts with the shifts of atoms in a unit cell and 
finishes with the development of a macroscopic deformation, 
releasing the residual internal stress of the distorted bonds. 
In the second scenario, an electric field induces a 
macroscopic deformation first; it results in the shifts of 
atoms – they are pushed into the positions that are optimized 
for the new unit cell size. The third scenario can be 
described as a mixture between the first two: electric field 
shifts the atoms in the unit cell first; the macroscopic strain 
develop later; the atoms are pushed further due to the 
macroscopic deformation, etc., so that the process goes on 
until the self-consistency between the atomic positions, the 
electric field and the lattice constants is achieved.   
The first X-ray diffraction study of the relaxation processes 
in piezoelectric crystals has been performed by van 
Reeuwijk et al. ([14]). The pump-probe based technique and 
the special time structure of the beam has been used.  
In this work we developed the novel data acquisition system 
that facilitates the time-resolved X-ray diffraction study of a 
single crystal under a periodic electric field and without 
using time structure of a synchrotron beam. While the high-
voltage is cycled, the data acquisition system time-stamps 
the detected photons relatively to the beginning of a high-
voltage cycle and distributes them in different time channels 
(Figure 7). The width of a single channel is 100 ns, the 
typical period of applied perturbation is 1 ms, giving 10000 
rocking curves, at the end of the experiment. Binning of the 
neighbouring channels can improve counting statistics; the 
time resolution changes accordingly.  The main advantage 
of the proposed scheme is the possibilities to read out all 
time channels simultaneously and perform the time-resolved 
measurements without using the time structure of the 
synchrotron radiation. Thus, the data collection is much 
faster than in the commonly used pump-probe method. 
In addition, we designed the electronic circuits supplying 
dynamic switches of the field: the rising of 3 kV of voltage 
during 200 ns. 
 
Figure 7.  The flow chart of the data acquisition system for the 
time-resolved X-ray diffraction study of crystals under dynamically 
switched electric field. The high-voltage generator (upper left 
corner) produces the periodic high-voltage signal: a single period 
includes long intervals of opposite polarities (half of a period each) 
and dynamic (3 kV/200 ns) switches between them. The digital 
pulse generator (middle left) controls the frequency of the high-
voltage: each digital pulse corresponds to the beginning of a new 
high voltage cycle. The high-voltage is delivered to the crystal. 
Both, digital pulses and detector pulses are introduced into the 
FPGA-board (Field-programmable gate array). FPGA processes the 
detector signals and time-stamps them relatively to the beginning of 
the high-voltage cycle. 

 
 
 
Figure 8 illustrates the rocking curve of the 3 9 2 reflection 
from the piezoelectric BiB3O6 crystal stored successively 
into 10000 time channels, each 100 ns long and within a 
single high-voltage period. The first and 5001st channels are 
triggered to the positive and the negative high voltage edge 
(the beginning and the middle of a high-voltage cycle), 
correspondingly. The jump of the average peak position in 
the middle of a cycle results from the switching of field 
polarity. In addition the switch of applied electric field 
generates the oscillations of the peak position, which can be 
related to the oscillations of macroscopic strain of the crystal. 
The oscillations result from the elastic deformation 
propagating back and force in the crystal; the frequencies of 
the oscillations (eigen-frequencies of the crystal plate) 
depend on the geometry of the crystal and its elastic 
constants / sound velocities.      
 

Figure 8. The timeline of the 3 9 2 Bragg peak rocking curve of 
the BiB3O6 piezoelectric crystal within a single high-voltage 
period; the measurements were performed with the data 
acquisition system shown in Figure 6. The discontinuity 
appearing at the 5001st time channel corresponds to the change in 
the HV polarity – at this point the average position of the peak 
maximum displaces accordingly and oscillates around a new 
position [52].  

 
The oscillations, caused by the dynamic switch of the field 
can be qualitatively described by the model of a generalized 
harmonic oscillator. The framework of this model consists 
of a generalized mechanical force F as a perturbation and 
the generalized displacement q of a mass M as a response.  
When a mechanical force is applied statically, the response 
is proportional to the force (q=F k, where k is the 
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generalized force constant). In the case of dynamically 
applied perturbation, the response, q, is also dynamic and 
can be obtained from the equation of motion: 
 

 + 2 + = ( ) .                          (6) 
 
Here  is the damping constant accounting for the 
generalized attenuation force. Modelling the time regime of 
the applied perturbation by the rising time and the 
expression  
 

( ) = 1                             (7) 

 
leads to the oscillatory solution of the equation (6). Figure 9 
shows the solutions of (6) for two qualitatively different 
rising times measured in the periods of eigenmode of the 
oscillator  = 2 / . The amplitude of the oscillations 
is significant for a ‘fast’ (  = 0.1·T0) (Figure 9, left) switch 
of the perturbation. It diminishes for the ‘slow’ (5·T0) 
(Figure 9, right) switch and disappears when the rising time 
is increased. 
The generalized displacement q accounts for either an 
atomic displacement or a strain. In the first case, the period 
of free oscillations ranges by the periods of optical phonon 
vibrations, where the key parameters are interatomic 
interactions (T0 ~ 10-12 s); electric field dynamics is 'slow'. 
In the second one, eigenmodes are acoustical phonon 
vibrations where the key parameters are sound velocities (T0 
~ 10-6 s) ; electric field dynamics is 'fast'. If both the 
microscopic and the macroscopic deformations were linked 
to each other, the resulting model oscillator would adapt the 
longest period of vibration.   
 
 
Figure 9. The normalized response of a damped harmonic 
oscillator, q(t) 0 (oscillating curve), to the dynamical switch of 
external force, F(t)/F0 (smooth curve). Response of a harmonic 
oscillator is simulated as a solution of an equation of motion (6) for 
two rising times of the force (7):  =0.1 T0 (fast switch, left) and  
= 5 T0 (slow switch, right), where T0 is the period of eigen-
vibrations of the oscillator. The fast switch of the force generates 
high-amplitude oscillations of the displacements; the slow switch 
of the force induces lower-amplitude oscillations; further increase 
of the rising time removes the oscillations: the response will be 
proportional to the force as in a static case [52].  
 

  
 
 
The experiments were performed at the BM01A beamline at 
the ESRF using the wavelength  = 0.64 Å. We collected 
the rocking curve of the selected Bragg reflections 
repeatedly; the satisfactory counting statistics was reached 
after typically 5 hours of the measurement. This data 
collection time corresponds to approximately 2·107 high-

voltage cycles applied to the crystal. Figure 10 shows both 
the shift of the peak position and the relative change in the 
integrated intensity of the 0 5 1 peak collected from the 
Li2SO4·H2O crystal. The time regimes differ substantially: 
the peak position oscillates around the corresponding static 
values, so that the equilibrium value of strain is not reached 
when the direction of electric field is reversed. The 
integrated intensity does not oscillate and follows the 
smooth time dependence of the applied external electric 
field. The maximum observed change of intensity (~0.23%) 
has the same order of magnitude as the change of intensity, 
expected under static electric field (0.38%, based on the 
atomic displacements which were refined using the result of 
the static experiment). Any modulations in the intensity are 
smaller than the statistical noise of the experiment. In 
contrast, the oscillations of the peak position are so strong 
that the curve passes through zero peak shifts a few times. 

Figure 10. The time-dependence of the 0 5 1 peak shift (blue 
oscillating curve) and the relative change in intensity (red curve) in 
response to the dynamic switches (~ 3 kV / 200 ns) of an applied 
electric field. The peak shift oscillates, while the intensity does not; 
it follows the profile of the applied electric field. This observation 
agrees with the model of a harmonic oscillator, corresponding to 
fast and slow switches of applied perturbation.  

 
 
The oscillations of the peak positions and smooth behaviour 
of the intensity suggest that atomic displacements are the 
driving force for the piezoelectric deformation. This means 
that the external electric field displaces the atoms in a unit 
cell first. The time constant of this process (T0 ~ 10-12) is 
much smaller than the switching time of the electric field 
therefore no oscillations are expected (Figure 9, right). The 
displacements of atoms in a unit cell produce the net internal 
stress, related to the distortion of the bond lengths and the 
bond angles not compensated by the external electric field. 
This internal stress is elastically released by the 
development of a macroscopic strain, i.e. by piezoelectic 
deformation. The time constant of this process (  ~10-6 s) is 
comparable to the switching time of an applied electric field, 
therefore the oscillations are expected (Figure 9, left) 
The scenario, suggesting that displacements of atoms follow 
a macroscopic strain must be rejected. If it was the case then 
the oscillations of the Bragg intensity would have to be 
observed and correlated with the oscillations of the peak 
position. The experimental results do not give any clear 
evidence of such oscillations and show that the diffraction 
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intensity follows the value, close to that expected under a 
static electric field [25] (~ 0.38 %).  
In conclusion, the time resolved experiment suggests that 
atomic positions in a unit cell are not affected by the 
macroscopic deformation. Piezoelectric deformation is a 
result of atomic shifts and distortion of bond lengths/bond 
angles. 

Conclusion 

We have demonstrated that electric field induced bond 
distortions depend on the bond character, bond strength and 
atomic charges of the bounded atoms.  
The closed shell ionic Li–O interactions have been observed 
to be the most sensitive to an applied electric field. The 
distortion of the Li–O bond length is proportional to the 
projection of the electric field on the bond line. The 
displacement of the Li atom is almost independent from the 
displacements of other atoms in the structure. This 
conclusion agrees well with the relatively weak bonding 
between Li and O and allows describing Li as an 
independent body.  
The S–O interaction has been shown to be the most resistant 
to an applied electric field; the distortion of the S–O bond 
length is 10 times smaller than that of the Li–O bonds in the 
same crystal. This result is the least understood so far: the 
small distortion of the S–O chemical bonds contradicts the 
fact that Bader’s atomic charge of sulphur atom is quite big 
(+4.1 e); it suggests that the electric field force on a sulphur 
atom should not be described in terms of the point charge 
model.   
The intermediate Ga–O and P–O interactions showed a 
strong role of the bond polarity (ionicity). The stronger P–O 
bonds turned out to be more sensitive to electric field than 
the weaker Ga–O bonds. This difference contradicts the 
expected bond strengths but agrees with the differences in 
the atomic charges: it is significantly bigger for the P atoms 
than for the Ga atoms.  
To summarize, our work provides the first proof of principle. 
It does not present a comprehensive review of bond 
sensitivity to an applied electric field. More structures 
containing different types of atomic interactions must be 
investigated. The number of the structures that can be 
studied under electric field is, however, limited due to the 
experimental difficulties. Moreover, the collection of data is 
very time consuming. The number of improvements in 
experimental technique is expected: the development of the 
fast area detectors must facilitate faster data collection. 
We verified the mechanism of macroscopic piezoelectric 
distortions: displacements of atoms in a unit cell are the 
primary reason for macroscopic deformations. Both 
processes are separated in time: atomic shifts are completed 
much faster than macroscopic strain. We make this 
conclusion on the basis of simultaneous observation of 
Bragg intensity and peak position in response to a fast (200 
ns) switch of electric field polarity.   
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