Measurement of charm production in DIS with D^* mesons and extraction of $F_2^{c\bar{c}}$

Andrii Gizhko¹ on behalf of the ZEUS Collaboration

¹National University "Kyiv-Mohyla Academy", Kyiv, Ukraine.

DOI: http://dx.doi.org/10.3204/DESY-PROC-2012-02/45

Charm production has been measured with the ZEUS detector in deep inelastic ep scattering at HERA. The measurement is based on the full reconstruction of the decay chain $D^* \to D^0 \pi$, $D^0 \to K \pi$ and exploits the full HERA II statistics with integrated luminosity $L=357~{\rm pb}^{-1}$. Differential cross-sections have been measured. The kinematic range is 1.5 GeV $< P_t({\rm D}^*) < 20~{\rm GeV}, |\eta({\rm D}^*)| < 1.5, 5 < Q^2 < 1000~{\rm GeV}^2$ and 0.02 < y < 0.7. The observed cross sections were extrapolated to the full $P_t({\rm D}^*)$ and $\eta({\rm D}^*)$ range in order to determine the open-charm contribution, $F_2^{c\bar{c}}({\rm x},Q^2)$ to the proton structure function F_2 .

1 Introduction

The production of heavy quarks at HERA proceeds dominantly via the direct boson-gluon fusion (BGF) process $\gamma g \to c\bar{c} \, (\gamma g \to b\bar{b})$. The measurement of processes involving heavy flavour production gives a test of perturbative QCD calculations and information on the gluon content of proton. The measurement of the charm contribution $F_2^{c\bar{c}}$ to the proton structure function allows to test parton density functions. Information about gluon and heavy quark distribution in the region of low Bjorken x is important for measurement of Standard Model and new physics processes at hadron-hadron colliders such as LHC.

In this paper recent measurements on the charm production in neutral current deep inelastic scattering (NC DIS) obtained from the reconstruction of D* mesons at HERA by the ZEUS experiment are presented. The analysis is based on $e^+ p$ and $e^- p$ data collected by ZEUS from 2004 to 2007 at a center of mass energy $\sqrt{s} = 318$ GeV .

2 Analysis Techniques

In this analysis charmed hadrons were detected by reconstructing the decay products of $D^{*\pm}$ mesons in the central tracking detector using $D^* \to K\pi\pi$ decay channel. The kinematic range of measurement is $5 < Q^2 < 1000 \ GeV^2$, $|\eta(D^*)| < 1.5$, $1.5 < P_t$ (D*) $< 20 \ GeV$, 0.02 < y < 0.7. The invariant mass difference $M(K\pi\pi)$ - $M(K\pi)$ for D^0 candidates in the range 1.8 $< M(K\pi) < 1.92 \ GeV$ is shown in Fig.1. Background was estimated by using combination of tracks with wrong charge of reconstructed D^0 . Both combinations, right and wrong charge were normalized in background region [150,168] MeV. The shaded area indicates the signal mass window. D* mesons can also originate from beauty hadrons, but contribution is only a

few %. For acceptance calculation RAPGAP Monte Carlo samples (charm and beuaty) were used.

3 D* differential cross-sections

On Fig.2 measured double-differential cross-sections (black dots) are compared to NLO QCD calculation made with the HVQDIS program [1] (dashed line) and measurements of the H1 collaboration [2] (empty symbols). The beauty contribution to $D^{*\pm}$ production (continuous line) was calculated with the RAPGAP [3] Monte Carlo, scaled by 1.52 in agreement with ZEUS measurements. For all cross-sections QED corrections were applied. Presented measurements are in good agreement with theoretical prediction.

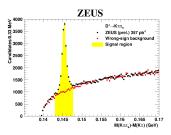


Figure 1: D* signal

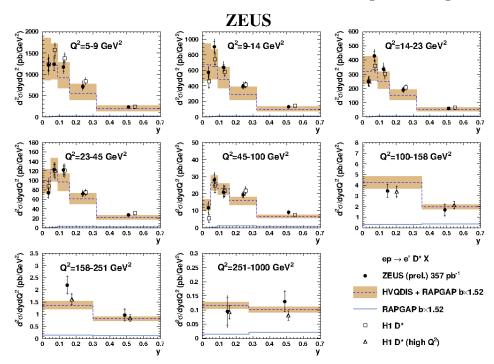


Figure 2: Double-differential cross-sections in bins of Q^2 and y, compared to recent H1 data [?] and to the HVQDIS calculation.

4 $F_2^{c\bar{c}}$ measurement

The $F_2^{c\bar{c}}$ ratio was evaluated as :

$$F_2^{c\bar{c}} = \sigma_{bin}^{vis} \times \left(\frac{F_2^{c\bar{c}}(x, Q^2)}{\sigma_{bin}^{vis}}\right)_{theory}$$

where σ_{bin}^{vis} is the D* visible cross-section in a Q^2 , y bin after substraction of the beauty contribution. On Fig.3 is measured charm structure function $F_2^{c\bar{c}}$ (filled circles) compared to the recent D^+ [4] ZEUS result (filled squares) and preliminary combination of H1 and ZEUS data [5] (empty circles).

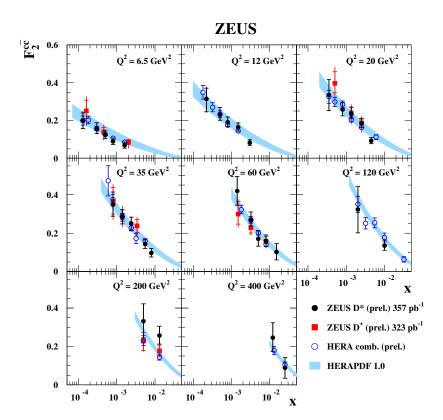


Figure 3: Measured charmed structure function $F_2^{c\bar{c}}$ compared to previous HERA results and HERAPDF 1.0

 $\left(\frac{F_2^{c\bar{c}}(x,Q^2)}{\sigma_{bin}^{vis}}\right)_{theory}$ ratio were obtained using HVQDIS program and cross-section extrapolation on full phase space were performed with following parameters :

Scales: the renormalization (μ_R) and factorization (μ_F) scales set to $\mu_F = \mu_R = \sqrt{Q^2 + 4m_c^2}$

and varied simultaneously by a factor two up and down. The scales were varied both in HVQDIS and in the PDF fit.

Mass: the charm quark mass (m_c) is set to 1.5 \pm 0.15 GeV, varied simultaneously in HVQDIS and in the PDF fit.

PDF: the HERAPDF 1.0 PDF fit performed with the fixed flavour number scheme (FFNS) , with scales and masses in agreement with those used in HVQDIS.

Fragmentation function: fragmentation is performed in the γ^* - p frame using Kartvelishvili fragmentation function with the parameter α_K dependent on the photon-parton center of mass energy squared, based on [6] and [7].

Fragmentation fraction: the probability that a c quark produces a D^{*+} meson is set to f(c $\rightarrow D^{*+}$) = 0.2287.

The theoretical band shown in Fig.3 is RT GM-VFNS heavy flavour scheme at NLO based on the HERAPDF 1.0 densities. The band corresponds to a variation of m_c from 1.3 to 1.65 GeV.

5 Summary

A measurement of the heavy flavour content of the proton in DIS at HERA have been presented. D* cross-sections and $F_2^{c\bar{c}}$ measurements were made using information from ZEUS detector with D* \to K π π_{slow} decay channel. The D* cross-sections are found to be well described by the predictions of perturbative QCD at NLO. Measured $F_2^{c\bar{c}}$ are in good agreement with previous HERA measurements and HERAPDF 1.0. Measured $F_2^{c\bar{c}}$ will improve precision of H1-ZEUS combination.

References

- [1] B. W. Harris and J. Smith, Nucl. Phys. **B** 452 (1995) 109.
- [2] F. D. Aaron et al. [H1 Collaboration], [arXiv:1106.1028[hex-ex]]; F.D. Aaron et al. [H1 Collaboration], Phys. Lett. B 686 (2010) 91.
- [3] H. Jung, Comp. Phys. Comm. **86** (1995) 147.
- [4] ZEUS Collaboration, Measurement of charm production with D^{\pm} in DIS at HERAII, ZEUS-prel-10-005,
- [5] H1 and ZEUS collaborations, Combination of F₂ c from DIS measurements at HERA, H1prelim-09-171, ZEUS-prel-09-015,
- [6] F. D. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 59 (2009) 589.
- [7] S. Chekanov et al. [ZEUS Collaboration], JHEP 0904 (2009) 082.