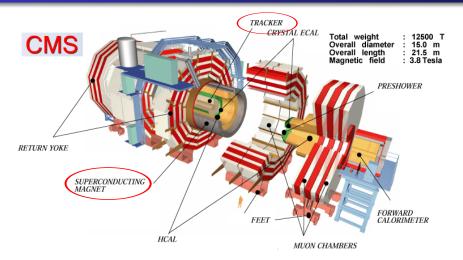
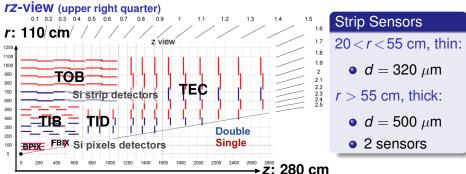
Operation and Performance of the CMS Silicon Strip Tracker

Gero Flucke (on behalf of the CMS Collaboration)

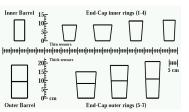

21st International
Workshop on Vertex Detectors
VERTEX 2012
September 16-21, 2012
Jeju, Korea

Operation and Performance of the CMS Silicon Strip Tracker

Outline

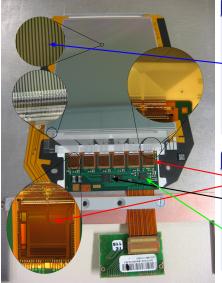

- CMS silicon strip tracker:
 - modules, readout, services
- Operation issues
- Detector performance
- Alignment

The CMS Detector at the LHC



- Large solenoid: B = 3.8 T.
- All silicon tracker: $\sigma(p_t)/p_t = 1-2\%$ for $p_t(\mu) = 100$ GeV/c.

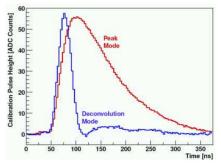
The CMS Tracker: All Silicon

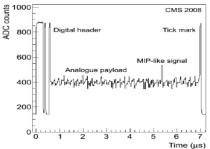

Many module shapes for strips

- 9.6 M strips in 15 148 modules.
- 200 m² silicon sensors.
- Strips generally measure $r\phi$ direction.
- Some radii ('Double'): additional 2nd modules rotated by 100 mrad
 ⇒ measurements for η(track).

CMS Silicon Strip Modules

TEC Ring 1 Module


Sensor


- p^+ implant in *n*-type silicon bulk (single-sided processing [\Rightarrow]).
- 512 or 768 strips.
- strip pitch p=80-205 μ m.
- $\frac{w}{p} = 0.25$ (w: p^+ implant width).
- AC-coupled readout.

Electronics on Hybrid

- 4 or 6 APV readout chips.
- Multiplexed on 2 or 3 readout lines by MUX.
- DCU: leakage current, temperature,...

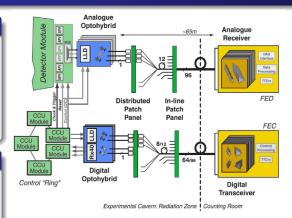
Readout

APV Chip

- Analog readout every 25 ns.
- 192 cell pipeline ($\hat{=}$ 4.8 μ s).
- Peak mode (signal height p),
 - CR-RC circuit (50 ns),
 - low noise,
 - robust for time misalignment.
- Deconvolution mode,
 - signal at t is weighted mean: $d_t = w_3 p_{t-2} + w_2 p_{t-1} + w_1 p_t$
 - shorter signal,
 - higher noise.

Signal Frame: 2 APVs Interleaved

- Headers and tick marks frame 2 × 128 analog signals.
- Send on external trigger.


Readout and Control Chains

Signal Path (upper half)

- Module: silicon ⇒ $APV \Rightarrow MUX$
- AOH (electric → light)
- Fibre
- FED

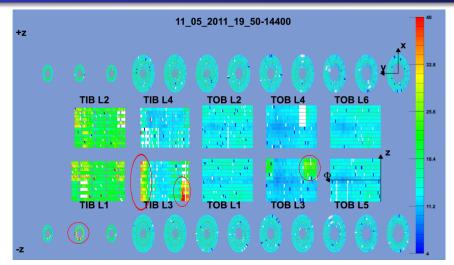
Control Rings (lower half)

- FEC
- Fibre
- DOH (electric ↔ light)
- CCU
 - ⇒ clock/trigger ring
 - \Rightarrow I²C communication
- Module (APV, DCU)

440 FEDs

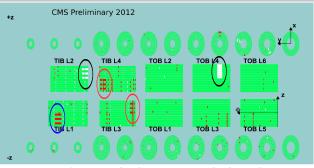
- Non-zero suppressed data from fibre.
- Digitisation, common mode noise subtraction, zero suppression.
- Rely on pedestal and noise values.

Services Work Reliably


Power Supply (PS)

- Inside cavern (in contrast to FEDs/FECs):
 - to reduce losses in copper cables,
 - requires radiation and B-field tolerance.
- 1944 PS units (2 per PS module) for silicon modules:
 - 1 LV line (1.25 V, 2.5 V) for APV, AOH,...
 - 2 HV lines (up to 500 V, now at 300 V), 3-12 silicon modules each,
 - failure rate even smaller than in previous years (<1% per year).
- 356 LV power groups for control rings: no group failed yet.

Cooling


- Need to take away about 50 kW.
- Two cooling plants for strip tracker, 90 lines each.
- Cooling liquid is C_6F_{14} : volatile, neutral to electronics.
- Leaks not an issue anymore: ~1 kg per day (five lines closed).
- Cooling liquid at 4° C,
 - to be decreased significantly in 2013/14 shutdown:
 - essential to mitigate the effects of irradiation (so far not an issue).

Silicon Sensor Temperatures from DCU Reading

- Module-by-module measurements every 30 s!
- Clearly see regions without direct cooling.
- DCUs read leakage currents, LV, hybrid temperatures as well.

Detector Status: Active Modules

Active, Masked, Not Commissioned

Reasons for Masking

- Control ring shorts
- Control rings missing
- HV line shorts
- HV lines open
- fibres/CCU/...

Active by Partition

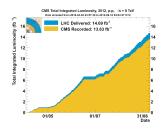
TIB/TID	94.63 %
TOB	98.19 %
TEC+	98.81 %
TEC-	99.13 %
Tracker	97.61 %

Almost stable:

2008: 98.5%

2011: 97.75 %

 Potentially recoverable in 2013/14 shutdown:
 2-3 control rings (0.7-1.0%).

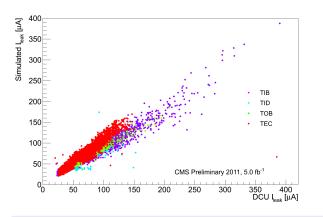

4□ > 4₫ > 4 분 > 4 분 > 2| ± 900

Detector Status

Offline Masking

- Run-by-run analysis of 'express reconstructed' data determines
 - modules temporarily excluded from DAQ,
 - noisy or dead channels, etc.
- Usually flags 0.1-0.6% of channels.
- Results available in delayed (48 h) full reconstruction:
- ⇒ Tracking knows
 - which hits to ignore (noise),
 - whether a missing hit is expected (dead region).

Strip Tracker Operation

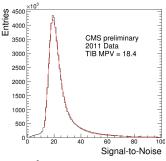

Downtime

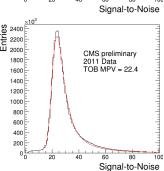
- Loss of luminosity delivered by LHC for physics analysis (CMS 2012: 7%).
- Strip tracker doing well: despite large number of FEDs, responsible for only 16% of downtime.

Decrease Downtime by Automation

- Automatic raising of HV if stable beams:
 - Checking of beam status (from LHC) and radiation monitor.
 - ⇒ ~1.1 minutes instead of few minutes for manual operation.
- Soft error recovery instead of stop run and reconfigure:
 - Treating single event upset (SEU), broken control rings, etc.
 - ⇒ Recovery now 20-30 s instead of 2-5 minutes.

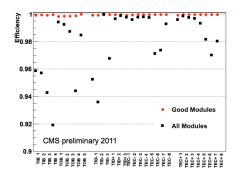
Irradiation


Leakage Currents


- Increase with radiation damage.
- ⇒ Give a handle to measure accumulated irradiation.

- Current measured module-by-module via DCU.
- Good agreement after 5 fb⁻¹ of integrated luminosity:
 - FLUKA simulation vs measurements.

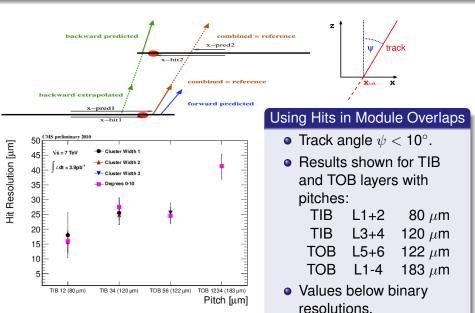
Excellent Signal-to-Noise Ratio



Deconvolution Mode

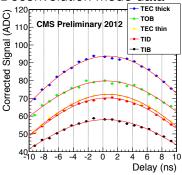
- Clusters on track only, charge corrected for track angle.
- Distributions nicely follow Landau distributions convoluted with Gaussian resolution.
- Large most probable value (MPV), according to expectations:
 - thin sensors (TIB): ~18
 - thick sensors (TOB): ~22

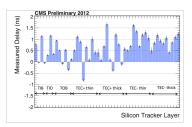
Hit Efficiencies



- Measured using good tracks, passing sensors far away from their borders.
- This avoids biases from track pointing uncertainties.
- Not considering last hits on tracks: no result for last layers.

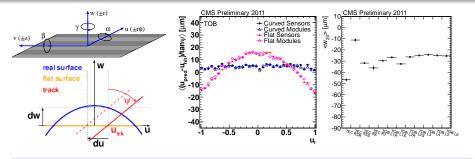
Results


- Considering All Modules:
 - variations down to 92%, reflecting bad module distribution.
- For Good Modules:
 - all layers >> 99% efficient,
 - ⇒ we know very well which modules are not good.


Hit Resolution Measurements

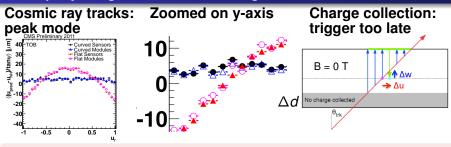
Signal Time Profile

Deconvolution mode data


Timing Check: Few Minutes of Data

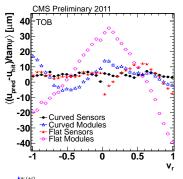
- Time delays in steps of 1.04 ns (i.e. smallest possible adjustment).
- Signal maximum at 0 means current fine timing is perfect.
- ⇒ Largely stable compared to 2011, no adjustments needed.

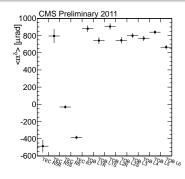
Relevance (Deconvolution Mode)

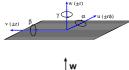

- If timing off: miss peak of signal, signal-to-noise ratio degraded.
- If far off, efficiency may suffer.
- Even 3 ns can impact alignment (but small effect ⇒).

Alignment: Sensors are Curved

- Single sided silicon processing
 ⇒ curved sensors (specifications: < 100 μm).
- Visible in average track angle corrected residuals $\langle \Delta w \rangle = \langle (u_{trk} u_{hit}) / \tan \psi \rangle$.
- Average amplitude in TOB: -30 μ m (with relevant RMS).
- Sensor-by-sensor values determined in alignment: hit position corrections let modules appear flat (as tracking expects).

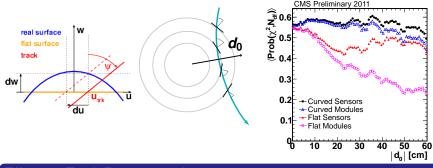

Interplay Alignment ⇔ Timing




After curvature correction: ~5 μ m offset in peak mode data. Why?

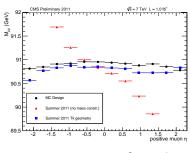
- If timing late: charge of sensor back-plane not collected.
- \Rightarrow Sensor appears thinner by Δd , mean shifted by $\Delta w = \Delta d/2$.
 - "Back-plane" corrections for deconvolution data calibrated with 2010 data: $\Delta d = 12 \ \mu \text{m}$ for TOB.
 - Improved time alignment in 2011: 3 ± 1 ns in TOB.
 - "Back-plane" correction not re-calibrated: tension peak vs deco.
 - Alignment dominated by deconvolution mode data.
- ⇒ Offset remains for peak mode data.

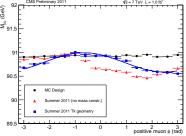
Alignment: Double Sensor Modules Have Kinks


sensor 2

Looking along the Strip Direction

- Modules with daisy-chained sensors exhibit significant kink.
- ⇒ Alignment treats sensors independently.
- Average kink in TOB: $\langle 2\alpha \rangle = 1.6$ mrad.


Alignment: Modules with Curvatures and Kinks

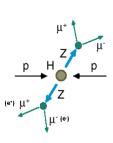


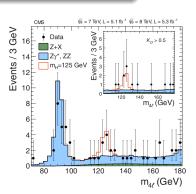
Effect on Track Reconstruction

- Position corrections now applied in hit reconstruction.
- Hits of tracks with large on module surface are most affected.
- Pixel layer 1 for forward tracks $|\eta| > 2$ (not the topic here).
- Cosmic ray tracks:
 - average track fit probability vs d₀ now almost flat.
- Relevance for overall tracking:
 - importance of cosmic ray tracks for alignment (weak modes).

Alignment: Weak Modes and Momentum Scale

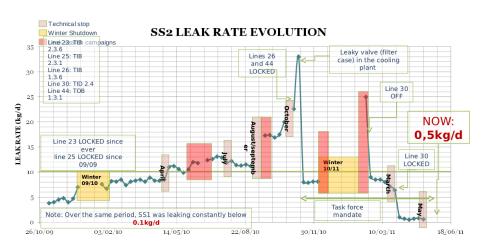
Track-Based Alignment

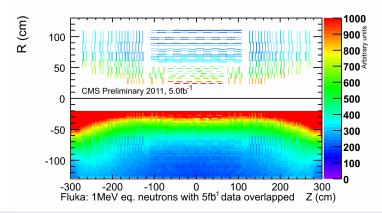

- Common linearised χ² fit of alignment parameters (200 k) and ~20 M tracks (MILLEPEDE II).
- Weak modes: χ^2 compensation between geometrical distortions and track parameter biases.
- Here visible in reconstructed $Z^0 \rightarrow \mu^+\mu^-$ mass as a function of direction of μ^+ .
- Adding information of nominal Z⁰
 mass in alignment fit control η
 dependence (blue curve).
- Azimuthal dependence still present, but small.


Summary

- CMS silicon strip tracker:
 - analog readout via optical fibres,
 - two readout modes: peak and deconvolution.
- Services work reliably in third year of full LHC running.
- More automated operation to further reduce downtime.
- Irradiation effects follow expectations.
- Good performance:
 - excellent signal-to-noise and efficiency,
 - resolution better than binary.
- Single sided silicon processing introduced sensor curvatures:
 - determined by track-based alignment.
- Alignment largely controls momentum biases from weak modes.

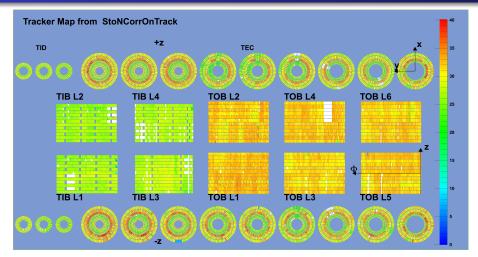
CMS Silicon Strip Tracker


Serving well for physics discoveries.

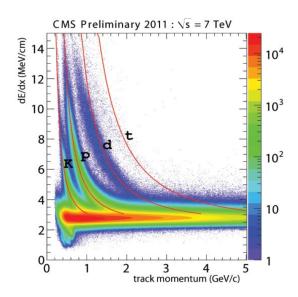


BACKUP

Cooling Leak Rate History



Irradiation


- Normalise leakage current to temperature and volume.
- Compare 1 MeV neutron equivalent.
- Dose per module (upper half).
- Overlayed with simulation (lower half continuous in space).
- → Modules almost vanish, i.e. good description.

Excellent Signal-to-Noise Ratio

Module-by-Module: Mean Values (> MPV)

- \Rightarrow Thin sensors: mean \approx 25.
- \Rightarrow Thick sensors: mean \approx 35.

