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ABSTRACT: We perform a systematic analysis of moduli stabilisation for weakly coupled
heterotic string theory compactified on internal manifolds which are smooth Calabi-Yau
three-folds up to o’ effects. We first review how to stabilise all the geometric and gauge
bundle moduli in a supersymmetric way by including fractional fluxes, the requirement
of a holomorphic gauge bundle, D-terms, higher order perturbative contributions to the
superpotential as well as non-perturbative and threshold effects. We then show that the
inclusion of o/ corrections to the Kéhler potential leads to new stable Minkowski (or de
Sitter) vacua where the complex structure moduli and the dilaton are fixed supersymmet-
rically at leading order, while the stabilisation of the Kéhler moduli at a lower scale leads
to spontaneous breaking supersymmetry. The minimum lies at moderately large volumes
of all the geometric moduli, at perturbative values of the string coupling and at the right
phenomenological value of the GUT gauge coupling. We also provide a dynamical deriva-
tion of anisotropic compactifications with stabilised moduli which allow for perturbative
gauge coupling unification around 10'® GeV. The value of the gravitino mass can be any-
where between the GUT and the TeV scale depending on the stabilisation of the complex
structure moduli. In general, these are fixed by turning on background fluxes, leading to a
gravitino mass around the GUT scale since the heterotic three-form flux does not contain
enough freedom to tune the superpotential to small values. Moreover accommodating the
observed value of the cosmological constant is a challenge. Low-energy supersymmetry
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could instead be obtained by focusing on particular Calabi-Yau constructions where the
gauge bundle is holomorphic only at a point-like sub-locus of complex structure moduli
space, or situations with a small number of complex structure moduli (like orbifold mod-
els), since in these cases one may fix all the moduli without turning on any quantised
background flux. However obtaining the right value of the cosmological constant is even
more of a challenge in these cases. Another option would be to focus on compactifications
on non-complex manifolds, since these allow for new geometric fluxes which could be used
to tune the superpotential as well as the cosmological constant, even if the moduli space
of these manifolds is presently only poorly understood.
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1 Introduction

String theory is a candidate for a quantum theory of gravity with full unification of the
forces of nature. As such it should be able to describe the patterns of the Standard Models
(SMs) of particle physics and cosmology. For this description of 4D physics, string theory
needs to compactify its ambient 10D space-time. The multitude of possible compacti-
fication choices together with a plethora of massless 4D ‘moduli’ fields originating from
the deformation modes of the extra dimensions, leads to vacuum degeneracy and moduli
problems. Recent progress in achieving moduli stabilisation points to the possibility of an
exponentially large set of cosmologically distinct de Sitter (dS) solutions of string theory
with positive but tiny cosmological constant, the ‘landscape’ (for reviews see [1, 2]).

These results need to be combined with string constructions of viable particle physics.
One fruitful region of the string landscape for this purpose is weakly coupled heterotic string
theory. Recent works on heterotic compactifications on both smooth Calabi-Yau (CY) man-
ifolds [3] and their singular limits in moduli space, orbifolds [4-8|, provided constructions
of 4D low-energy effective field theories matching the minimal supersymmetric version of
the SM (MSSM) almost perfectly. However, in contrast to the understanding achieved in
type IIB string theory, heterotic CY or orbifold compactifications lack a well controlled
description of moduli stabilisation, and consequently, of inflationary cosmology as well.!

As weakly coupled heterotic CY compactifications lack both D-branes and a part of
the three-form flux available in type IIB, historically moduli stabilisation in the heterotic
context focused mostly on the moduli dependence of 4D non-perturbative contributions
to the effective action from gaugino condensation [11-13]. While this produced models of
partial stabilisation of the dilaton and some Kéhler moduli [9, 14-16], this route generically
failed at describing controlled and explicit stabilisation of the O(100) complex structure
moduli of a given CY. Moreover, the resulting vacua tend to yield values of the compact-
ification radius and string coupling (given by the dilaton) at the boundary of validity of
the supergravity approximation and the weak coupling regime.

The works [17-19] proposed to include the three-form flux H to stabilise the complex
structure moduli in combination with hidden sector gaugino condensation for supersym-
metric dilaton stabilisation. The inclusion of fluxes in the heterotic string was originally
studied by Strominger [20] who showed that, by demanding N' = 1 supersymmetry, the
classical 10D equations of motion imply H = —%(9 — 9)J where J is the fundamental
(1,1)-form on the internal space. Hence a non-vanishing three-form flux breaks the Kéhler
condition dJ = 0. Note that this is the case of (0,2)-compactifications which allow for
MSSM-like model building and the generation of worldsheet instantons, since in the non-
standard embedding the Chern-Simons term gives a non-zero contribution to the three-form
flux H. However this contribution is at order o, implying that the Calabi-Yau condition is
preserved at tree-level and broken only at order o/. Moreover, in the heterotic case, due to
the absence of Ramond-Ramond three-form fluxes, there is generically no freedom to tune
the superpotential small enough to fix the dilaton at weak coupling. However, a sufficiently
small superpotential could be obtained by considering fractional Chern-Simons invariants

'"However, for some recent attempts see e.g. [9, 10].



(such as discrete Wilson lines) [17]. Note that it is natural to take these effects into account
for (0, 2)-compactifications which are the most relevant for both model building and moduli
stabilisation since, as we pointed out above, they feature a non-vanishing Chern-Simons
contribution to H, regardless of the presence of fractional Chern-Simons invariants.?

Supersymmetric vacua with all geometric moduli stabilised could be achieved by fixing
the Kahler moduli via contributions from threshold corrections to the gauge kinetic func-
tion [21, 22]. However this minimum cannot be trusted since it resides in a strong coupling
regime where the gauge coupling is even driven into negative values [17]. The inclusion of
a single worldsheet instanton contribution can resolve this difficulty [19]. However, none of
these vacua break supersymmetry, resulting in unrealistic anti-de Sitter (AdS) solutions.

In this paper, we shall present new stable Minkowski (or de Sitter) vacua where all
geometric moduli are stabilised and supersymmetry is broken spontaneously along the
Kahler moduli directions. Let us summarise our main results:

e We identify two small parameters, one loop-suppressed and the other volume-
suppressed, which allow us to expand the scalar potential in a leading and a sub-
leading piece. This separation of scales allows us to perform moduli stabilisation in
two steps.

e The leading scalar potential is generated by D-terms, quantised background fluxes
(if needed for the stabilisation of the complex structure moduli), perturbative contri-
butions to the superpotential and gaugino condensation. This potential depends on
the gauge bundle moduli, the complex structure moduli and the dilaton which are
all fixed supersymmetrically at leading order.

e The subleading scalar potential depends on the Kéahler moduli and it is generated
by threshold corrections to the gauge kinetic function, worldsheet instantons and
O(a'?) [23], and O(a/3) [24, 25] corrections to the Kihler potential. These effects
give rise to new Minkowski vacua (assuming the fine-tuning problem can be solved)
which break supersymmetry spontaneously along the Kéhler moduli directions. The
dilaton is stabilised at a value Re(S) ~ 2 in a way compatible with gauge coupling
unification, while the compactification volume is fixed at ¥V ~ 20 which is the upper
limit compatible with string perturbativity. These new minima represent a heterotic
version of the type IIB LARGE Volume Scenario (LVS) [26, 27].

e By focusing on CY manifolds with K3- or T%-fibres over a P! base, we shall also
show that this LVS-like moduli stabilisation mechanism allows for anisotropic con-
structions where the overall volume is controlled by two larger extra dimensions
while the remaining four extra dimensions remain smaller. This anisotropic setup is
particularly interesting phenomenologically, as it allows one to match the effective
string scale to the GUT scale of gauge coupling unification [28, 29], and fits very well

2 As we shall describe in section 3.1.1, the co-exact piece of the Chern-Simons term is responsible for the
breaking of the Kéhler condition dJ = 0 while the generation of fractional invariants is controlled by the
harmonic piece of the Chern-Simons term.



with the picture of intermediate 6D orbifold GUTs emerging from heterotic MSSM
orbifolds [29, 30].

e The soft terms generated by gravity mediation feature universal scalar masses, A-
terms and p/Bpu-term of order the gravitino mass, mg/, = |[W|Mp/+/2Re(S)V, and
suppressed gaugino masses at the %-level. In turn, the value of the supersymmetry
breaking scale depends on the stabilisation of the complex structure moduli:

1. If the complex structure moduli are fixed by turning on quantised background
fluxes, due to the lack of tuning freedom in the heterotic three-form flux, |W| can
at most be made of order |[WW| ~ O(0.1—0.01) by turning on only Chern-Simons
fractional fluxes. Hence the gravitino mass becomes of order Mgy ~ 106 GeV
for Re(S) ~ 2 and V ~ 20, leading to high scale supersymmetry breaking.

2. If the complex structure moduli are fixed without turning on quantised back-
ground fluxes, the main contribution to |WW| can come from higher order pertur-
bative operators or gaugino condensation. Hence |W| can acquire an exponen-
tially small value, leading to low-scale supersymmetry [31, 32].

Let us discuss the stabilisation of the complex structure moduli in more detail. In a series of
recent papers [33-35], it has been shown that in particular examples one could be able to fix
all the complex structure moduli without the need to turn on any quantised background
flux. Note that, as we explained above, if one focuses on (0,2)-compactifications, this
observation is not important for preserving the CY condition (since this is broken at order
o/ regardless of the presence of a harmonic quantised flux) but it is instead crucial to
understand the order of magnitude of the superpotential which sets the gravitino mass
scale once supersymmetry is broken. Following the original observation of Witten [36], the
authors of [33-35] proved that, once the gauge bundle is required to satisfy the Hermitian
Yang-Mills equations, the combined space of gauge bundle and complex structure moduli
is not a simple direct product but acquires a ‘cross-structure’. Denoting the gauge bundle
moduli as C;, i = 1,..., N, and the complex structure moduli as Z,, a = 1,...,h"?, this
observation implies that the dimensionality of the gauge bundle moduli space is actually
a function of the complex structure moduli, i.e. N = N(Z), and viceversa the number of
massless Z-fields actually depends on the value of the gauge bundle moduli. As a simple
intuitive example, consider a case with just one gauge bundle modulus and a leading order
scalar potential which looks like:

h12
fix

V=1 12 | IcPP. (1.1)
p=1

The form of this potential implies that:

e If C is fixed by some stabilisation mechanism (like D-terms combined with higher
order C-dependent terms in the superpotential) at (C') # 0, then héj complex struc-
ture moduli are fixed at (Zg) =0Vp =1,..., héxz Hence the number of Z-moduli



left flat is given by hifl =hpb2— hé’f, which is also the dimensionality of the sub-locus
in complex structure moduli space for C' # 0 where the gauge bundle is holomorphic.
Hence the best case scenario is when this sub-locus is just a point, i.e. htlloz1 =0.

e If the Z-moduli are fixed by some stabilisation mechanism (like by turning on back-
ground quantised fluxes) at values different from zero, then the gauge bundle modulus
C is fixed at (C) = 0.3

However this stabilisation mechanism generically does not lead to the fixing of all com-
plex structure moduli due to the difficulty of finding examples with h111021 = 0, i.e. with a
point-like sub-locus in complex structure moduli space where the gauge bundle is holomor-
phic. In fact, there is so far no explicit example in the literature where hifl = 0 can be
obtained without having a singular CY even if there has been recently some progress in
understanding how to resolve these singular point-like sub-loci [39]. Moreover, let us stress
that even if one finds a non-singular CY example with h}IIOQ1 = 0 (there is in principle no
obstruction to the existence of this best case scenario), all the complex structure moduli
are fixed only if C' # 0, since for C = 0 the Z-directions would still be flat. As we pointed
out above, C # 0 could be guaranteed by the interplay of D-terms and higher order terms
in the superpotential, but in the case when the number of C-moduli is large, one should
carefully check that all of them are fixed at non-zero values (for example, one might like
to have some of them to be fixed at zero in order to preserve some symmetries relevant
for phenomenology like U(1)p_r). Thus the requirement of a holomorphic gauge bundle
generically fixes some complex structure moduli but not all of them. Note also that these
solutions are not guaranteed to survive for a non-vanishing superpotential, since one would
then need to solve a set of non-holomorphic equations.

Let us therefore analyse the general case where some Z-moduli are left flat after the re-
quirement of a holomorphic gauge bundle, and summarise our results for their stabilisation:

e Given that promising phenomenological model building requires us to focus on the
non-standard embedding where the H-flux already gets a non-vanishing contribution
from the co-exact piece of the Chern-Simons term, we consider quite natural the
option to turn on also a harmonic Chern-Simons piece that could yield a fractional
Z-dependent superpotential that lifts the remaining complex structure moduli [17].

o If H # 0, as in the case of (0,2)-compactifications, both the dilaton and the warp
factor could depend on the internal coordinates. For simplicity, we shall however
restrict to the solutions where both of them are constant, corresponding to the case
of ‘special Hermitian manifolds’ [40].

e The inclusion of quantised background fluxes cannot fix the remaining hifl > (0 com-
plex structure moduli in a supersymmetric way with, at the same time, a vanishing
flux superpotential Wy. In fact, setting the F-terms of the Z-moduli to zero corre-
sponds to setting the (1,2)-component of H to zero, whereas setting Wy = 0 implies

3See also [37, 38] for a mathematical discussion of this issue which basically comes to the same conclusion
that gauge bundle moduli are generically absent.



a vanishing (3, 0)-component of H. As a consequence, given that the flux is real, the
entire harmonic flux H is zero, and so the hllw21 > 0 Z-moduli are still flat.* Note that
this would not be the case in type IIB where the three-form flux is complex (because
of the presence of also Ramond-Ramond fluxes) [41].

e The remaining h111021 > 0 Z-moduli can be fixed only if Wy # 0 but this would lead
to a runaway for the dilaton if Wy is not fine-tuned to exponentially small values
to balance the dilaton-dependent contribution from gaugino condensation. However,
due to the absence of Ramond-Ramond fluxes, the heterotic H-flux does not contain
enough freedom to tune Wy to small values, since it is used mostly to stabilise the

complex structure moduli in a controlled vacuum. There are then two options:

1. Models with either accidentally cancelling integer flux quanta or only Chern-
Simons fractional fluxes where the flux superpotential could be small enough to
compete with gaugino condensation, even if this case would lead to supersym-
metry breaking around the GUT scale;

2. Compactifications on non-Kéahler manifolds which do not admit a closed holo-
morphic (3, 0)-form, since these cases allow for new geometric fluxes which could
play a similar role as type IIB Ramond-Ramond fluxes, and could be used to
tune Wy to small values [40, 42—45]. In this case one could lower the gravitino
mass to the TeV scale and have enough freedom to tune the cosmological con-
stant. However, the moduli space of these manifolds is at present only poorly
understood.

In this paper, we shall not consider the second option given that we want to focus
on cases, like ‘special Hermitian manifolds’, which represent the smallest departure
from a CY due to o effects.

This analysis suggests that if one is interested in deriving vacua where our Kéhler
moduli stabilisation mechanism leads to spontaneous supersymmetry breaking around the
TeV scale, one should focus on one of the two following situations:

1. Models where the requirement of a holomorphic gauge bundle fixes all complex struc-
ture moduli without inducing singularities (so that the supergravity approximation
is reliable), i.e. models with hlllfl = 0 [33-35]. The dilaton could then be fixed in a
supersymmetric way by using a double gaugino condensate while the Kéhler moduli
could be fixed following our LVS-like method by including worldsheet instantons,
threshold and o effects. This global minimum would break supersymmetry sponta-
neously along the Kéhler moduli directions. The gravitino mass could then be around
the TeV scale because of the exponential suppression from gaugino condensation.

2. Simple models with a very small number of complex structure moduli, like Abelian
orbifolds with a few untwisted Z-moduli, or even non-Abelian orbifolds with no com-
plex structure moduli at all. In fact, in this case gauge singlets could be fixed at

“This statement is also implicit in [18].



non-zero values via D-terms induced by anomalous U(1) factors and higher order
terms in the superpotential [4-8], so resulting in cases where all the Z-moduli be-
come massive by the holomorphicity of the gauge bundle. The dilaton could then be
fixed by balancing gaugino condensation with the contribution from a gauge bundle
modulus (i.e. a continuous Wilson line in the orbifold language) which develops a
small vacuum expectation value (VEV) because it comes from R-symmetry breaking
higher order terms in the superpotential [31, 32]. A low gravitino mass could then
be obtained due to this small VEV.

Let us finally note that accommodating our observed cosmological constant, which is a
challenge even with fluxes and O(100) complex structures, is even more of a challenge in
cases without quantised fluxes.

This paper is organised as follows. In section 2 we introduce the general framework of
heterotic CY compactifications [46, 47|, reviewing the form of the tree-level effective action
and then presenting a systematic discussion of quantum corrections from non-perturbative
effects [11-13], string loops [48-50], and higher-derivative o/-corrections [23-25] according
to their successive level of suppression by powers of the string coupling and inverse powers
of the volume. Supersymmetric vacua are then discussed in section 3, while in section 4 we
derive new global minima with spontaneous supersymmetry breaking which can even be
Minkowski (or slightly de Sitter) if enough tuning freedom is available. After discussing in
section 5 the resulting pattern of moduli and soft masses generated by gravity mediation, we
derive anisotropic constructions in section 6. We finally present our conclusions in section 7.

2 Heterotic framework

Let us focus on weakly coupled heterotic string theory compactified on a smooth CY three-
fold X. The 4D effective supergravity theory involves several moduli: h?(X) complex
structure moduli Z,, o = 1,...,h"%(X); the dilaton S and h'! Kéhler moduli T}, i =
1,...,hb1(X) (besides several gauge bundle moduli).

The real part of S is set by the 4D dilaton (see appendix A for the correct normalisation):

Re(S)=s= L e 201 = L e 2y, (2.1)
47 47
where ¢ is the 10D dilaton whose VEV gives the string coupling e{?) = g,. The imaginary
part of S is given by the universal axion a which is the 4D dual of By. On the other hand,
the real part of the Kéahler moduli, ¢; = Re(T;), measures the volume of internal two-cycles
in units of the string length ¢, = 27v/o/. The imaginary part of T} is given by the reduction
of By along the basis (1,1)-form D; dual to the divisor D;.

We shall focus on general non-standard embeddings with possible U(1) factors in the
visible sector. Hence the gauge bundle in the visible Eg’is takes the form Viis = Uyis @, Lr
where Uy;is is a non-Abelian bundle whereas the L, are line bundles. On the other hand
the vector bundle in the hidden Eélid involves just a non-Abelian factor Viig = Upnig. We
shall not allow line bundles in the hidden sector since, just for simplicity, we shall not
consider matter fields charged under anomalous U(1)s. In fact, if we want to generate a



superpotential from gaugino condensation in the hidden sector in order to fix the moduli,
all the anomalous U(1)s have to reside in the visible sector otherwise, as we shall explain
later on, the superpotential would not be gauge invariant.

2.1 Tree-level expressions

The tree-level Kéahler potential takes the form:
Kiee = —InV —In(S+5) —In <1/ Q/\Q), (2.2)
X

where V is the CY volume measured in string units, while Q is the holomorphic (3,0)-
form of X that depends implicitly on the Z-moduli. The internal volume depends on the
T-moduli since it looks like:

L ki (T4 ) (T + ) (Te + T | (2.3)

1
V= 6 kijktitjtk = 18

where k;j, = fX ﬁl A Ej A ﬁk are the triple intersection numbers of X.
The tree-level holomorphic gauge kinetic function for both the visible and hidden sector
is given by the dilaton:

ftree = S = Re( firee) = g4_2 =3s. (2.4)

The tree-level superpotential is generated by the three-form flux H and it reads:
Waux = / HAQ, (2.5)
X

with the correct definition of H including o/ effects:

/

H=dB, — % [CS(A) — CS(w)], (2.6)
where CS(A) is the Chern-Simons three-form for the gauge connection A:
2
CS(A)zTr(A/\dA+3AAA/\A>, (2.7)

and CS(w) is the gravitational equivalent for the spin connection w.

The VEV of the tree-level superpotential, Wy, is of crucial importance. Due to the
difference with type IIB where one has two three-form fluxes, which can give rise to can-
cellations among themselves leading to small values of Wy, in the heterotic case Wy is
generically of order unity. Hence one experiences two problems:

1. Contrary to type IIB, the heterotic dilaton is not fixed by the flux superpotential,
resulting in a supergravity theory which is not of no-scale type. More precisely, the
F-term scalar potential:

Vi = el <KI‘7D1WDJV_V ~ 3\W|2> , (2.8)



derived from (2.2) and (2.5) simplifies to:

Vi = K [Z KPDoWDsW + <KSSKSK5+Z K”KJ(;Z%) |W|2]
Z T

— K (Z KD, WD;W + |W|2> : (2.9)
z

since KSSKSKg = 1 and ZTKﬁKz‘Kj —3 = 0. Setting D)W = 0 Va =

1,...,h%2(X), the scalar potential (2.9) reduces to:

[Wol?

_ K 2 _
Vi = e"|[Wol" = 25V

(2.10)
yielding a run-away for both s and V if |Wy| # 0. Given that generically |Wy| ~
O(1), it is very hard to balance this tree-level run-away against S-dependent non-
perturbative effects which are exponentially suppressed in S. One could try to do
it by considering small values of s = g;;2 but this would involve a strong coupling
limit where control over moduli stabilisation is lost. A possible way to lower |Wj|
was proposed in [17] where the authors derived the topological conditions to have
fractional Chern-Simons invariants.

2. If |[Wy| # 0, even if it is fractional, one cannot obtain low-energy supersymmetry. In
fact, the gravitino mass is given by mg/y = e/ 2|Wo|Mp, and so the invariant quantity
K2\ Wo| = [Wo|/(v/2sV) has to be of order 107'% to have TeV-scale supersymmetry.
As we have seen, the 4D gauge coupling is given by agpy = g:2V, and so a huge
value of the internal volume would lead to a hyper-weak GUT coupling. Note that a
very large value of V cannot be compensated by a very small value of g;?2 since we
do not want to violate string perturbation theory.

Let us briefly mention that in some particular cases one could have an accidental
cancellation among the flux quanta which yields a small |Wy| as suggested in [18]. We
stress that in the heterotic case, contrary to type IIB, this cancellation is highly non-
generic, and so it is not very appealing to rely on it to lower |Wp|. Hence it would seem
that the most promising way to get low-energy supersymmetry is to consider the case
where |Wy| = 0 and generate an exponentially small superpotential only at sub-leading
non-perturbative level. This case was considered in [34], where the authors argued that,
at tree-level, one can in principle obtain a Minkowski supersymmetric vacuum with all
complex structure moduli stabilised and 2(h''! + 1) flat directions corresponding to the
dilaton and the Kéhler moduli. As explained in section 1, this corresponds to the best case
scenario where the gauge bundle is holomorphic only at a non-singular point-like sub-locus
in complex structure moduli space.

If instead one focuses on the more general case where hllwz1 > 0 Z-moduli are left flat
after imposing the requirement of a holomorphic gauge bundle, as we shall show in section 3,
the conditions DzeWhyx = 0Va =1,..., hifl and |Wy| = 0 imply that no quantised H flux
is turned on, resulting in the impossibility to stabilise the remaining Z-moduli. This result



implies that it is impossible to stabilise the remaining complex structure moduli and the
dilaton in two steps with a Z-moduli stabilisation at tree-level and a dilaton stabilisation
at sub-leading non-perturbative level. In this case there are two possible way-outs:

1. Focus on the case DzoW =0 Va = 1,.. .,hlll’oz1 and |Wy| # 0 so that H can be non-
trivial. In this case one has however a dilaton run-away, implying that no moduli
can be fixed at tree-level. One needs therefore to add S-dependent non-perturbative
effects which have to be balanced against the tree-level superpotential to lift the run-
away. A small |[Wy| could be obtained either considering fractional Chern-Simons
invariants or advocating accidental cancellations among the flux quanta.

2. Focus on the case with trivial H so that no scalar potential is generated at tree-
level. The dilaton and the complex structure moduli could then be fixed at non-
perturbative level via a race-track superpotential generating an exponentially small
W which could lead to low-energy supersymmetry. Note that even though dH =
RAR—FAF #0 for (0,2)-models, it is still possible to have |Wy| = 0 since only
the harmonic part of the H-flux contributes to this superpotential (see discussion
in section 3.1). Hence, moduli stabilisation would have to proceed via a racetrack
mechanism involving at least two condensing gauge groups with all moduli appearing
in the gauge kinetic functions and/or the prefactors of the non-perturbative terms.
Since this is generically not the case for heterotic compactifications, this avenue will
not lead to supersymmetric moduli stabilisation except perhaps for a few specific
cases. Note that in this case to get a Minkowski supersymmetric vacuum one would
have to fine-tune the prefactors of the two (or more) condensates so that W = 0
at the minimum. Then one would have (under the conditions mentioned above) a
set of holomorphic equations for the Z-moduli which will always have a solution.
However once supersymmetry is broken this option is no-longer available since now
one needs to have W # 0 at the minimum if one is to have any hope of fine-tuning
the cosmological constant to zero. However now the equations for the Z-moduli are
a set of real non-linear equations which are not guaranteed to have a solution.

2.2 Corrections beyond leading order

As explained in the previous section, in smooth heterotic compactifications with h}llj >0

complex structure moduli not fixed by the holomorphicity of the gauge bundle, these Z-
moduli cannot be frozen at tree-level by turning on a quantised background flux since
this stabilisation would need |Wp| # 0 which, in turn, would induce a dilaton and volume
runaway. Thus, one has to look at any possible correction beyond the leading order expres-
sions. Before presenting a brief summary of the various effects to be taken into account
(perturbative and non-perturbative in both o' and gs), let us mention two well-known
control issues in heterotic constructions:

o Tension between weak coupling and large volume: In order to have full control over the
effective field theory, one would like to stabilise the moduli in a region of field space
where both perturbative and higher derivative corrections are small, i.e. respectively

,10,



for gs < 1 and V > 1. However, as we have already pointed out, this can be
the case only if the 4D coupling is hyper-weak, in contrast with phenomenological
observations. In fact, we have:

2
1
%8 = qour = 5, (2.11)

and so if we require g5 < 1, the CY volume cannot be very large, V < 25, implying

~

that one has never a solid parametric control over the approximations used to fix
the moduli.

o Tension between GUT scale and large volume: In heterotic constructions, the unifi-
cation scale is identified with the Kaluza-Klein scale, Moyr = Mgy, which cannot
be lowered that much below the string scale for V < 25, resulting in a GUT scale
which is generically higher than the value inferred from the 1-loop running of the
MSSM gauge couplings. In more detail, the string scale My = ¢! can be expressed
in terms of the 4D Planck scale from dimensional reduction as (see appendix A for
an explicit derivation):

o Mp M3

_ ~ ~ (1.35-10'7 GeV)? . 92.12
47rac_;éT 1007 ( ) ( )

In the case of an isotropic compactification, the Kaluza-Klein scale takes the form:

M
Megyr = Myg =~ W >8-10Gev  for V<25, (2.13)
which is clearly above the phenomenological value Mgy ~ 2.1 - 106 GeV. On the
other hand, anisotropic compactifications with d large dimensions of size L = z/;
with > 1 and (6 — d) small dimensions of string size [ = /5, can lower the Kaluza-
Klein scale:

— M, M,
Vol(X) = LA = Idgg = VEE =  Mgyr = Mgg ~ — =~ yi/d’

(2.14)

For the case d = 2, one would get the encouraging result Mgy = % >2.7-10'5 GeV.

2.2.1 Higher derivative effects

Let us start considering higher derivative effects, i.e. perturbative o’ corrections to the
Kéhler potential. In the case of the standard embedding corresponding to (2, 2) worldsheet
theories, the leading o/ correction arises at O(a/®)R* [24] and depends on the CY Euler
number x(X) = 2 (h"t — h'?). Its form can be derived by substituting the o/ corrected
volume V — V + £/2 into the tree-level expression (2.2) with ¢ = —((3)x(X)/(2(27)3).
Given that ¢(3) ~ 1.2, £ is of the order £ ~ (h'? — hl!) /200 ~ O(1) for ordinary CY
three-folds with (h? — h1:') ~ O(100). Hence for ¥ ~ O(20), the ratio £/(2V) ~ O(1/40)
is a small number which justifies the expansion:

~ Y- S __ 5
Ke—lmV-o5 = Kp=—g. (2.15)
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As pointed out in [23] however, this is the leading order higher derivative effect only for the
standard embedding since (0,2) worldsheet theories admit o’ corrections already at O(a/?)
which deform the Kahler form J as:

J—=J =J+0)h+0)h? 4. . (2.16)

where both A and h(® are moduli-dependent (1,1)-forms which are orthogonal to J, i.e.
S ®J A h = S ®J A h() = 0. Plugging J’ into the tree-level expression for K (2.2) and
then expanding, one finds that the O(a’) correction vanishes because of the orthogonality
between h and J whereas at O(a’?) one finds:”

1 = |lAl)?
Kys=— [ shAh= . 2.1
o QV/X* : 2V (2.17)

Note that the correction (2.17) is generically leading with respect to (2.15) since (2.17)

should be more correctly rewritten as:

e 1

Kon = V13— p1/3

with g

g ~ ~
> .

e /XJ/\h/\h_O, (2.18)
where g is a homogeneous function of the Kéahler moduli of degree 0 given that J scales
as J ~ V3 and h does not depend on V. As an illustrative example, let us consider the
simplest Swiss-cheese CY X with one large two-cycle ¢, and one small blow-up mode t5 so
that J = tbﬁb — tsD, and the volume reads:

; K\ 3

V=Ikyt} —kt>>0 for 0<2< (2 : (2.19)

ty ks
In the limit kbt‘z > kt3 the function g then becomes (considering, without loss of gener-
ality, h as moduli-independent):

1

t
g=cp+cs—>0 with ¢ = ——

/ DyAR AR and e, = 11/3/ DoARAR.
X 2k, X

(2.20)
The sign of ¢, and ¢y can be constrained as follows. In the limit ¢5/¢, — 0, g reduces to
g = ¢, = |ep| > 0. On the other hand, requiring that g is semi-positive definite for any
point in Kéhler moduli space one finds:

o\ 1/3
cs = — |y (ka> + |k, (2.21)

where |k| is a semi-positive definite quantity.

®In looking at the derivation of the correction at O(a’?) in [23], one may wonder about the réle of field
redefinitions. The fact that the corrected Kéhler potential K’ can be written in terms of .J’ as a function of
J J'ANJ AJ alone, just the same way as the tree-level K in terms of J, may imply that a field redefinition
of the Kéhler form may actually fully absorb the correction at O(a’?). To this end, the observation in [23]
that the generically non-vanishing string 1-loop corrections in type IIB appearing at O(a’?) are S-dual to
the heterotic correction, provides additional evidence for the existence of this term.
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2.2.2 Loop effects

Let us now focus on g5 perturbative effects which can modify both the Kéhler potential and
the gauge kinetic function. The exact expression of the string loop corrections to the Kéhler
potential is not known due to the difficulty in computing string scattering amplitudes on
CY backgrounds. However, in the case of type IIB compactifications, these corrections have
been argued to be sub-leading compared to o’ effects by considering the results for simple
toroidal orientifolds [48] and trying to generalise them to arbitrary CY backgrounds [49, 50].
Following [50], we shall try to estimate the behaviour of string loop corrections to the scalar
potential by demanding that these match the Coleman-Weinberg potential:
WP Mg
2s Y2(1+1/d)”

where we took the cut-off scale A = Mg, and we considered d arbitrary large dimen-

Vg, =~ A? Str M? ~ m§/2 M2, ~ (2.22)

sions. Note that these effects are indeed subdominant with respect to the o ones for
large volume since the O(a’?) and O(a’?) corrections, (2.18) and (2.15), give respectively
a contribution to the scalar potential of the order V2 ~ |[W|?/V%/3 and Vs ~ |[W|?/V2,
whereas the g potential (2.22) scales as V,, =~ [W|?/V7/3 for the isotropic case with d = 6
and V,, ~ |[W|?/V3 for the anisotropic case with d = 2. Due to this subdominant behaviour
of the string loop effects, we shall neglect them in what follows.

String loops correct also the gauge kinetic function (2.4). The 1-loop correction has a
different expression for the visible and hidden Ejg sectors [22]:

Fae=S+ 2T, fu=5-01, (223)
where: 1
ﬁi = 4/ (CQ(VVis) — CQ(Vhid)) ND;. (2.24)
TJXx

2.2.3 Non-perturbative effects

The 4D effective action receives also non-perturbative corrections in both o and gs. The
o/ effects are worldsheet instantons wrapping an internal two-cycle T;. These give a con-
tribution to the superpotential of the form:

Wi = > Bje tli, (2.25)
j

Note that these contributions arise only for (0, 2) worldsheet theories whereas they are ab-
sent in the case of the standard embedding. On the other hand, g; non-perturbative effects
include gaugino condensation and NS5 instantons. In the case of gaugino condensation in
the hidden sector group, the resulting superpotential looks like:

Wye = ZAj e~ @ fnid — ZAj e Y (S_%Ti) , (2.26)
J J

where in the absence of hidden sector U(1) factors, all the hidden sector gauge groups have
the same gauge kinetic function. Finally, NS5 instantons wrapping the whole CY manifold
would give a sub-leading non-perturbative superpotential suppressed by eV <« 1, and so
we shall neglect them.
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2.3 Moduli-dependent Fayet-Iliopoulos terms

As already pointed out, we shall allow line bundles in the visible sector where we turn on
a vector bundle of the form Viis = Uyis @, L. The presence of anomalous U(1) factors
induces U(1) charges for the moduli in order to cancel the anomalies and gives rise to
moduli-dependent Fayet-Iliopoulos (FI) terms. In particular, the charges of the Kéhler
moduli and the dilaton under the x-th anomalous U(1) read:

q%f) —4d(Ly)  and ¢ =240 = 2B (La) (2.27)
so that the FI-terms become [22]:

r) OK K i ol r
(90K _ 0K _ Alln) g 10 (2.28)

S0 = G T4 55 T Ty s

Note that the dilaton-dependent term in the previous expression is a 1-loop correction
to the Fl-terms which at tree-level depend just on the K&hler moduli. The final D-term
potential takes the form:

_ £
Vp=>_ Rel) (2.29)

K

From the expressions (2.27) for the U(1)-charges of the moduli, we can now check the
U(1)-invariance of the non-perturbative superpotentials (2.25) and (2.26). In the absence
of charged matter fields, the only way to obtain a gauge invariant worldsheet instanton
is to choose the gauge bundle such that all the 7} appearing in Wy,; are not charged, i.e.
¢ (L) = 0 ¥k and Vi. The superpotential generated by gaugino condensation is instead
automatically U(1)-invariant by construction since all the anomalous U(1)s are in the visible
sector whereas gaugino condensation takes place in the hidden sector. Thus, the hidden
sector gauge kinetic function is not charged under any anomalous U(1):

K K /BZ K i
q}hi)d = g ) - 5 qé“i) =2 (’Y(n) - Bicl([%)) =0. (2.30)

Before concluding this section, we recall that in supergravity the D-terms are proportional
to the F-terms for W # 0. In fact, the total U(1)-charge of the superpotential W is given

by q‘(,';) = qZ(F”)WZ-/W = 0, and so one can write:

D;W e K2 -
S = — a0 Ki = —%@T} =-q"” o Kat”
where the F-terms are defined as F! = eK/2Ki D;W. Therefore if all the F-terms are
vanishing with W # 0, the Fl-terms are also all automatically zero without giving rise to

(2.31)

independent moduli-fixing relations.

3 Supersymmetric vacua

In this section, we shall perform a systematic discussion of heterotic supersymmetric vacua
starting from an analysis of the tree-level scalar potential and then including corrections
beyond the leading order expressions.
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3.1 Tree-level scalar potential

In [20], Strominger analysed the 10D equations of motion and worked out the necessary
and sufficient conditions to obtain N' = 1 supersymmetry in 4D assuming a 10D space-time
of the form M x X where M is a maximally symmetric 4D space-time and X is a compact
6D manifold:

1. M is Minkowski;
2. X is a complex manifold, i.e. the Nijenhuis tensor has to vanish;

3. There exists one globally defined holomorphic (3, 0)-form Q which is closed, i.e. dQ2 =
0, and whose norm is related to the complex structure (1,1)-form J as (up to a
constant):%

d'J =i(0—0)In||Q| (3.1)

4. The background gauge field F' has to satisfy the Hermitian Yang-Mills equations:

Fog =Fop=0 and ¢7F;=0 (3.2)
5. The dilaton ¢ and the warp factor A have to satisfy (again up to a constant):”
b(y) = Aly) = S ]19I(y) (33)
6. The background three-form flux is given by:
H= —%(8—8)J, (3.4)

together with the Bianchi identity:

O[/

dH = 1 [tr(FAF)—tr(RAR)]. (3.5)
Some of the conditions listed above can be reformulated also in terms of constraints on
the five torsional classes W, i = 1,...,5 (for a review see [1, 40]). The second condition
corresponds to Wi = W, = 0 implying that the torsional class 7 belongs to the space
T € W3 & Wy & Ws. This is the case of ‘Hermitian manifolds’. Moreover, the third
condition above gives W5 = —2W, = dIn ||Q|| implying that both YW, and Wjs are exact real
1-forms. We shall focus on the simplest solution to 2W,; + W5 = 0 which is Wy = W5 =0
corresponding to the case of ‘special-Hermitian manifolds’ where the dilaton and the warp
factor are constant [40]. More general solutions involve a non-constant dilaton profile in
the extra dimensions and W; # 0 for ¢ = 4, 5 but we shall not consider this option [40].

The adjoint operator d' can be defined from the inner product (w,o) = [, w A *0 as (wp,dwp_1) =
(dfwp,wp—1). For an even dimensional manifold, as we have here, d = —  dx.
"We are writing the total metric as ds®> = e**®) (g,., (z)dz"dz"” + gi; (y)dy'dy’).
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Let us comment on the implications of the last Strominger condition (3.4) which for
constant dilaton can be rewritten as H = — % xd.J. Using the Hodge decomposition theorem,
the three-form H can be expanded uniquely as:

H= Hharm + Hexact + Hco—exact s (36)

where Hyapm is a harmonic form, Heyaet 1S an exact form and Heo_exact 1S a co-exact form
which are all orthogonal to each other. Given that *dJ = —d * J, (3.4) implies that H
is a co-exact form, and s0 Hparm = Hexact = 0. Moreover, since dJ is a (2,1) 4 (1,2)
form, (3.4) implies that the (3,0) + (0,3) component of Hco—exact is zero while the (2,1) +
(1,2) component breaks the Kéahler condition d.J = 0. However this happens only at O(a/).
In fact, the general expression of the H-flux is:

/

H = Hyux + dBs — O‘Z [CS(A) — CS(W)], (3.7)

where Hyg,x is a harmonic piece and the combination of Chern-Simons three-forms can also
be decomposed as:

[CS(A) - CS(W)] - Csharm + Csexact + Csco—exact . (38)

Comparing the two expressions for H, (3.6) and (3.7), we have (due to the uniqueness of
the Hodge decomposition):

o 1% %
Hharm = Hﬂux - Z CSharm ; Hexact = dBZ - Z CSexact 5 Hco—exact = _Z CSco—exact .

Then the relation (3.4) takes the form:

/

% CSco—exact = * dJ, (39)

showing exactly that the Kéhler condition dJ = 0 is violated at O(a’). Note that this
would be the case for the non-standard embedding where CSco—exact 7 0 contrary to the
less generic situation of the standard embedding where the Chern-Simons piece vanishes.
Taking the exterior derivative of (3.9) we recover the Bianchi identity (3.5) which now
looks like:

/

d+dJ = % [tr(F A F) — tr(R A R)] . (3.10)

This 10D analysis can also be recast in terms of an effective potential which can be
written as a sum of BPS-like terms and whose minimisation reproduces the conditions
above [36, 42-44]. Furthermore, some of these conditions can be re-derived as F- or D-
term equations of 4D supergravity, which could lead to the stabilisation of some of the
moduli in a Minkowski vacuum. For example, it has been shown in [36, 44], that the
second equation in (3.2) is equivalent to a D-term condition since:

1
w6l gV Fg =S FAJAJ. (3.11)
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This D-term condition holds for general non-Abelian gauge fields. If we restrict to Abelian
fluxes and integrate the above condition over the CY, this reproduces the tree-level ex-
pression for the Fayet-Iliopoulos terms given in (2.28). If we expand the Abelian fluxes as
Fuy = ¢ (L) D; together with J = tjﬁj we obtain:

‘)

1 (L)
H) = V/ A JANJT = IT k‘ijktjtk, (3.12)

which reproduces exactly the tree-level part of (2.28).

Regarding the F-terms, as we have seen in section 2.1, the starting point is the expres-
sion of the flux superpotential which has been inferred in [45] by comparing the dimensional
reduction of the 10D coupling of H to the gravitino mass term in the 4D supergravity ac-
tion. The final result is:®

Wﬂuxz/ H/\Q:/ Hyarm A Q. (3.13)
X X

Note that only the harmonic component of H contributes to Wgyx. The harmonic piece
Hyparm can be expanded in a basis of harmonic (3,0)- and (1, 2)-forms as:

Hyorm = a(2)UZ) +0*(Z, Z)xa(Z, Z) + c.c., a=1,...,h"(X). (3.14)

The same Hyparm, together with the holomorphic (3,0)-form €2, can also be expanded in a
symplectic basis of harmonic three-forms (ay, 87) such that [ xap Nag = S BPABT=0
and fX ap A B9 =6 with p,q=0,...,h12(X):

Hyarm = €0y, — myf? and NZ)=ZPo, — Gy(Z)p7, (3.15)

where G4(Z) = 07¢G(Z) with G(Z) a homogeneous function of degree 2. Note that a,
and 8? do not depend on the complex structure moduli Z¢ which are defined by the
expansion of © in (3.15). If (Ap, B?) is the dual symplectic basis of 3-cycles such that
A,NA;=BPNBYI=0and A,N BY = §}, we have (choosing units such that 27rva/ = 1):

Hharm - / Hharm A ﬁp - / (eTO‘T - mq/Bq) A 61) = ep7 (316)
BpP X X

and similarly m, = f A, Hyarm- The quantities e and m, are integer flux quanta.
The expansion of the flux superpotential (3.13) is then given by:

Wﬁux(Z) = / Hharm NV CL / Q )
=1ia(Z) = mqZ? — PG, ( (3.17)

8In [42] and [44] it is suggested that the complete expression for W should more appropriately be
W = fx (H + %dJ) A Q, similarly to the type IIB case where one has the RR flux in addition to the
H-flux. Integrating by parts, the new piece can be rewritten as fX J A dS) which clearly vanishes since
d2 = 0. However, if one considers the case where df2 # 0, i.e. where supersymmetry is broken directly at
the 10D level, this integral would still be zero if the internal manifold is complex since d.J is of Hodge type
(2,1) + (1,2) while © is (3,0). Thus this term can play a useful réle only for non-complex manifolds with
broken supersymmetry. Due to the difficulty to study this case in a controlled way, we shall not consider it
and neglect this additional piece.
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where we normalised | X QAQ = —i and used the fact that *Q = —iQ and the orthogonality
of the different Hodge components of H.

Let us now evaluate the complex structure F-terms D za Wiy = 0ze Waux +Waux 0z K.
Using the fact that (see for example [51]):

8ZaQ:ka(Z,Z)Q+Xa, aZaK: —]{a(Z, Z),

and:

fxxa/\XB . _
KQBEaZaangzngQ/\Q ZIL(XQAXBa

and expanding a generic element of the basis of harmonic (2,1)-forms as x.(Z,Z) =
A2, Z)ap — g4.0(Z, Z) B9, we find:

DZO‘Wﬂux = / Hharm N Xa = bB(Z’ Z)/ XB A Xa
X X
= $bul(2,2) = mfU(Z,7) — Pgpal2, 7). (318)

where we used again the orthogonality of the different Hodge components of H and the
fact that *yo = ixa- On the other hand, the dilaton and Ké&hler moduli F-terms look like:

DsWinx = Wineds K = —i% and Dy Wix = Wi, K = —i% Kiintith -
(3.19)
Due to the no-scale cancellation, these F-terms give rise to a scalar potential which is
positive definite and reads:

_ _ 1 _
V=X <Z K*P D ,WDsW + \WP) =5 <Z K*Pbobg + yaP) : (3.20)
Z Z

Let us now set all the F-terms to zero and see what they correspond to:
e DyoWgyx = 0 implies that the (2,1) + (1,2) component of Hyapy is zero.

o DsWyux = 0 and Dp,Wyyx = 0 imply that the (3,0) + (0,3) component of Hyarm
should also be zero, i.e. Wy = (Whux) = 0, if one wants to avoid solutions with a
dilaton run-away (s — oo) or where the internal space decompactifies (V — 00).

Combining these two solutions, one has that the total harmonic piece of H should vanish
and is of course consistent with the Strominger condition (3.4). An important question to
ask now is whether these conditions allow for the fixing of some moduli. The answer is no.
Let us see why.

The first condition Dz«W = 0 appears to fix the complex structure moduli supersym-
metrically since one obtains as many equations, b, (Z, Z) = 0, as the number of unknowns
(assuming that the 2 h'? real equations have solutions for some sets of values of the 2 h12+42
fluxes). The second condition Wy = (Wgyx) = ia(Z) = 0 could then be satisfied by an
appropriate choice of flux quanta.

However the two conditions DzeW = 0 < by(Z,Z) = 0 Vo and Wy =0 < a(Z) =0
imply from (3.14) that Hyam = 0. Given that H does not depend on the complex structure
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moduli, this implies that all flux quanta are zero. In turn, (3.17) and (3.18) are both iden-
tically zero, and so no potential for the Z-moduli is developed. Therefore no moduli, not
even the complex structure ones, can be stabilised at tree-level by using quantised back-
ground fluxes.? In particular, this implies that one cannot perform a two-step stabilisation
(similarly to type IIB) where at tree-level the Z-moduli are fixed supersymmetrically while
the S- and T-moduli are kept flat by tuning Wy = 0, and then these remaining moduli
are lifted by quantum corrections. As we have already pointed out in section 2.1, we shall
avoid this problem by considering in the next section situations with non-zero flux quanta
which allow to fix the Z-moduli with Wy # 0. The dilaton and volume runaway is then
prevented by scanning over integral and fractional fluxes which give a value of Wy small
enough to compete with non-perturbative effects. Hence the system becomes stable only
when non-perturbative effects are included, implying that all the moduli get stabilised
beyond tree-level.

3.1.1 Chern-Simons action and gauge bundle moduli

In this section, we shall show that also the first equation in (3.2), i.e. Fig9) = F(20) = 0, can
be derived from an F-term condition in 4D supergravity. This requires a brief discussion of
gauge bundle moduli. Let us focus on the Chern-Simons piece of the flux superpotential:

2
WCS[A]:/XTr<A/\dA+3A/\A/\A>/\Q. (3.21)

In the previous expression A is a function of both x and y, i.e. non-compact and com-
pact coordinates respectively, but the differentiation is just d = dy™0,, since we are only
interested in the contribution to the 4D scalar potential. We shall now write the gauge
potential as:

Az, y) = Ao(y) + Adet(z,y) , (3.22)

where Ag is a background contribution independent of x and Ages is a generic deformation
which can be parameterised as:

Aget(z,y) = > Cr(z)w’(y) (3:23)
=1

where C7 are 4D scalar fields and w! are an infinite set of 1-forms living on X and valued
in the adjoint representation of the structure group of the gauge bundle defined by Ag.'°

The superpotential (3.21) then becomes the sum of a constant, a linear, a quadratic
and a cubic term in the C’s:

Was = Wes, o) + Wes (1) Cr + W 2)C1Cr + Wl C1CiCre (3.24)

9The corresponding situation in type IIB is very different since there are two types of fluxes and the
effective flux G is complex [41].

1OWe expect the set of 1-forms w’ to be discrete since they will be solutions to an elliptic differential
equation on the compact manifold.
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with (for notational simplicity we dropped the trace symbol):
WCS,(O) = Wes [AO] ) Wé&(l) =2 / w! A FoNQ, (3.25)
X
- 2
Wcljé(Q) = / w! ADow’ A Q2 Wé‘sné)z/ wAw? AW AQ, (3.26)
’ X ’ 3 X

where the gauge covariant derivative Dy is defined as Eow(o’p) = gw(o,p) + Ao Awop) —
(=1)Pw(opy A Ag for an arbitrary (0,p)-form wq,). Note that in order to derive these
expressions we used df) = 0, the anti-commutativity of d and 1-forms and the cyclicity of
the trace. As we have argued earlier, classically the total superpotential W should be zero at
the minimum (for all the moduli), and so the F-term equation for the bundle moduli Cf is:

Wes

0=Fc, = ac,

I IJ IJK
= WCS,(l) + 2WCS,(2)CJ + 2WCS,(3)CJCK . (327)
If Ager is a small deformation of the background Ay, i.e. Cr(z) = 7(x), then these F-term
equations can be solved order by order in €, obtaining:

e At zeroth order Fr, = 0 gives Wés’(l) = 0 VI which from (3.25) implies that the (0, 2)-
component of the unperturbed field strength Fj has to vanish. Hence we recover the
holomorphic Yang-Mills equation Fj g9) = 0 which determines (given a complex
structure) Ag to be a flat (0,1) connection. This bundle, which we call Qp, then
determines the exterior derivative operator Dy.

e At linear order Fir, = 0 implies (see the expression of W< (2) In (3.26)):
Wéé(Q)CJ =0 VI = CJEOCL)J =0. (3.28)
This equation has two possible solutions:

1. Dow'=0 VC; fori=1,...,N
2. Dow*#0 C, =0 fort=N+1,...,00

The first solution defines the gauge bundle moduli which parameterise all possible
deformations of the background that keep the gauge bundle holomorphic. These first
order deformations correspond to w’ € H'(End(Qo)) where N = dim (H'(End(Qo)))
which is expected to be finite though it may change as one varies the complex struc-
ture since the equations determining the (0, 1)-forms w’ depend on the Z-moduli.
Hence N is a function of the Z-moduli, i.e. N = N(Z). If N =0 for Z = Zy, then if
the complex structure moduli can be stabilised via the fluxes exactly at Z = Zj, the
absence of any gauge bundle moduli is guaranteed (see [37, 38] for similar considera-
tions). Conversely, the equation Dow!(Z) = 0 could be used as a mechanism to reduce
the number of complex structure moduli, or even to fix all of them, if the C;’s develop
non-zero VEVs due to D-terms or higher order terms in W [33-35]. We denoted as
h%lfl the number of Z-moduli unconstrained by the equation Dow'(Z) = 0, which
represents the dimensionality of the sub-locus in complex structure moduli space
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Figure 1. Sketch of the leading order scalar potential V ~ [0cW|? + ... = |[Z]}|C|> + ... as a
function of the complex structure moduli (summarily denoted by Z) and the gauge bundle moduli
(summarily denoted by C') as arising at the second order in W schematically as W = Wcsy(g)CZ ~

(Z +0(22)) C2.

where the gauge bundle is holomorphic. In the best case scenario where h11w21 =0

one does not need to turn on any harmonic flux to fix the Z-moduli, whereas in the
more general case where h111021 > 0 the remaining complex structure moduli can be
fixed only by turning on a quantised background flux. For a graphical sketch of the
‘cross-structure’ of the combined complex structure and gauge bundle moduli space
see figure 1.

The second solution of (3.28) implies that the forms w* are not closed under Dy and
the index ¢ ranges over an infinite set of values. Hence C, are not flat directions but
correspond to massive deformations, namely the Kaluza-Klein modes. We can then
easily realise that Wé‘é’@) gives the mass matrix for these Kaluza-Klein modes.

e Focusing only on the massless modes, at quadratic order Fo, = 0 implies:
Wgs’(g)C’jCk =0 Vi, (3.29)

showing that a possible obstruction to the presence of gauge bundle moduli can arise

if the Yukawa couplings are different from zero, i.e. Wgék(g)) # 0 Vi. We stress again

the fact that Wgék(S) is a function of the Z-moduli, and so even if the equation
Dow'(Z) = 0 (or the flux stabilisation) gives a solution Z = Z, such that N(Z,) # 0,

one could still fix all the C-moduli if Wgsk (3)(Z*) # 0 Vi.

Having motivated both the background gauge flux and the nature of the leading de-
formation we can now work with an arbitrary deformation by separating the set {C;} =
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{Ci(o)} @ {CKK} with the first set being the massless modes and the second the Kaluza-
Klein rg)deg. This corresgonds to splitting the set of 1-forms as {w!} = {wéo)} & {whkk}
where Dngo) = 0 while Dowyy # 0. Then under the condition Fy 2y = 0, the F-term
equations (3.27) take the form:

, 0) (0 , 0 :

7

and:

0 = Foxic = 2WE o) CX8 2wl o OV 01 + 4w 5 0 OXK 4 2w CKK XK.
(3.31)
Note that Wé%,@) = M is the mass matrix for the Kaluza-Klein modes which by defi-
nition is non-singular. So eq. (3.31) can be solved for the massive modes in terms of the
massless modes giving a relation of the form:

OFK = [Mxx] A WAEE CRICP + 0(CF) - (3.32)

Using this in (3.30) we get the massless field equation which is the generalisation of (3.29)
for arbitrarily large deformations of the background gauge bundle:

2WE 010 + 0(Cly) = 0. (3.33)

These field equations always admit the solution C,go) = 0 for all gauge bundle moduli
which leaves the complex structure moduli unfixed in the absence of harmonic quantised
flux. Moreover, this solution remains valid even in the presence of non-zero W since the
additional term in DoW is proportional to C'. However one could also have solutions with
non-zero VEVs for the C-moduli which could be obtained by cancelling field-dependent
FI-terms associated with anomalous U(1) factors. By the cross structure of the combined
moduli space [33-35], this in turn implies stabilisation of at most h'? — h}luf1 complex
structure moduli. This situation is particularly relevant for the case of heterotic orbifold
compactifications which often have only a few untwisted Z-moduli. In this case it seems
possible to stabilise all gauge bundle moduli and the small total number of untwisted
complex structure moduli using only higher-order terms in (3.33) and a sufficient number
of D-terms from anomalous U(1) factors [4-8].

In the rest of the paper we will focus on the generic situation where this stabilisation
procedure fixes all the gauge bundle moduli and some, but not all, complex structure
moduli, so that hl[lloz1 > 0 Z-moduli are still left flat. Furthermore, even if h%lfl =0, it could
still be that some C-moduli are fixed at zero VEV, implying that the complex structure
moduli could still be flat (see figure 1).

3.2 Corrections beyond tree-level

Given that the remaining hifl > 0 Z-moduli cannot be fixed at tree-level by using quan-
tised fluxes (since |Wp| # 0 would induce a runaway for both s and V), let us focus on
perturbative and non-perturbative corrections to the scalar potential. We shall proceed in
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two steps, showing first how to fix the complex structure moduli and the dilaton by the
inclusion of an S-dependent gaugino condensate, and then explaining how to stabilise the
Kahler moduli by an interplay of world-sheet instantons and threshold corrections to the
gauge kinetic function. For the time being, we shall neglect perturbative corrections to the
Kéhler potential (either o’ or g5) since these generically break supersymmetry, and so we
shall include them only in section 4 where we shall study supersymmetry breaking vacua.

3.2.1 Step 1: Z and S stabilisation by gaugino condensation

Let us add a single S-dependent gaugino condensate to the superpotential and determine
how this term modifies the tree-level picture:

W = Wine + Wi — / HAQ+A(Z) eS| (3.34)
X

The Kahler-covariant derivatives now become:

DyzaW = ibo(Z) + e [0.A(Z) — ka(Z, 2)A(Z)], (3.35)

DsW = —% [1a(2) + @As + 1) AZ) ] (3.36)
. —\S

ppw — %) +;4V(Z)€ kijutste - (3.37)

The potential is again of the no-scale type (i.e. given by the first equality of (3.20)). At
the minimum the complex structure moduli will be frozen at the solution to:

DzoaW =0 & ibo(Z) = [ka(Z,2)A(Z) — 0.A(Z)], (3.38)
and now the dilaton is not forced anymore to run-away to infinity:
DsW=0 <« Wy=ia(Z)=—-02 s+ 1)A(Z)e . (3.39)

The potential for the Kahler moduli is flat, resulting in a Minkowski vacuum with broken
supersymmetry since substituting (3.39) into (3.37) one finds:

2
DTiW:—< As )WO

s + 1 v Eijrtity . (3.40)
The previous expression for Wy # 0, finite volume and ¢; > 1 Vi, gives Dp,W # 0 for a
generic point in moduli space.

Let us comment now on the possibility to satisfy (3.39) at the physical point (s) ~ 2
that corresponds to agar ~ 25. Setting A =1 and \ = 872 /N where N is the rank of the
SU(N) condensing gauge group, we have (fixing the axion a at A(a) = 7):

2 2
Wo = (167;\f<3> + 1) e (), (3.41)

As an illustrative example, for (s) ~ 2 and N = 5, the previous expression would give
Wy ~ 1072, which for V ~ 20 corresponds to a gravitino mass of the order mj /2 =
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Wo/(v2sV) ~ 330 TeV. On the other hand, for N = 30 (as in the case of Eg), one would
obtain Wy =~ 0.06 corresponding to a GUT-scale gravitino mass: mg/y =~ 10'6 GeV. Due
to the absence of Ramond-Ramond fluxes, there is in general no freedom to tune the
heterotic flux superpotential Wy to values much smaller than unity, implying that heterotic
CY compactifications generically predict a gravitino mass close to the GUT scale. As we
already pointed out, low-energy supersymmetry could instead be obtained in the particular
cases when h}lm21 = 0 so that one does not need to turn on Wy # 0 to fix all the Z-moduli,
in orbifold constructions or in compactifications on non-complex manifolds.

A possible way to obtain fractional values of Wy of order 0.1 —0.01 has been described
in [17] where the authors considered a trivial By field and a rigid 3-cycle 33 such that the
integral of H over Y3 (ignoring the contribution from the spin connection):

= /Z 3 CS(4), (3.42)

gives rise to a fractional flux.!! Stabilisation of all complex structure moduli would then
require scanning the three-form flux over all cycles to search for VEVs (Z,) such that
the overall (0, 3)-contribution to the superpotential (3.13) is of the order of the fractional
Chern-Simons contribution or smaller.!?

3.2.2 Step 2: T stabilisation by worldsheet instantons and threshold effects

The Kahler moduli can develop a potential either by loop corrections to the gauge kinetic
function or via worldsheet instantons. Let us start considering the case with just threshold
effects.

Threshold effects: The potential generated by gaugino condensation takes the form:

Bi .

Wye = A(2) M5-%T) (3.43)

lifting the T-moduli and modifying (3.40) into:

AW S s
Dr, :—7[2- —k:,-wﬁt}: = —— kgt ity - 44
W 2(2)\8+1)5+V jktitk| =0 & y Fidktith (3.44)
This result, in turn, gives:

Re ( ﬁiEbOp) = —% ti = % kijtitjte = 35 = 3Re (fii") . (3.45)

HNote that these flux quanta are well-defined quantities even if H is not closed since a rigid homology
class admits just one representative

12For the purpose of an explicit demonstration of such vacua one may rely on CYs arising in Greene-Plesser
pairs of manifolds related by mirror symmetry [52-54]. CY mirror pairs arising from the Greene-Plesser
construction have their complex structure moduli space partitioned by a typically large discrete symmetry
I' into an invariant subspace and its complement. One can then show that the periods of the invariant
subspace depend at higher-order non-trivially on all the I'-non-invariant complex structure moduli. If
the T-invariant subspace is of low dimensionality (as is the case e.g. of the CY CPi;140[18] as discussed
in [55, 56]), then turning on the relatively few fluxes on the invariant subspace is enough to stabilise all
complex structure moduli at an isolated minimum [55, 56]. On such a CY manifold one can therefore
stabilise all Z-moduli by just turning a few fractional Chern-Simons (0, 3)-type fluxes on the cycles of the
invariant subspace, which can serve to demonstrate the existence of such vacua.

— 24 —



implying that perturbation theory in the hidden sector is not under control since the one-
loop contribution is bigger than the tree-level one. Moreover the gauge kinetic function of
the visible sector becomes negative:

Re (fvis) = goe = s+ %t =-25<0, (3.46)

meaning that the positive tree-level contribution is driven to negative values by thresh-
old effects. Actually, before becoming negative, gv_is2 will vanish corresponding to a strong
coupling transition whose understanding is not very clear [17]. Note that we neglected
D-terms since, due to the relation (2.31), if present, they would also cause the same prob-
lems. Let us see now how these control issues can be addressed by including worldsheet
instantons [19].

Threshold effects and worldsheet instantons: The new total non-perturbative superpo-
tential reads:

Bi .
Wap = A(2) 55T) L gy ent (3.47)

where we included the contribution of a single worldsheet instanton dependent on 7. In
general, one could have more non-perturbative o’ contributions, but we shall here show
that just one worldsheet instanton is enough to overcome the previous problems. The new
Kahler covariant derivatives become:

. 9aA(Z) . 9.B(Z) .
Dza =1ib(Z d - ha Z,Z wi — ha Z,Z ’ A4
70W = 1bo(Z) + Wy AZ) Eao( )]+W [B(Z) ko(Z,Z)|, (3.48)
1
DsW = = [Wo + (2Xs + 1)Wee + W], (3.49)
Wo + Wee + Wi
DTPW = A% Wgc — 0 43{5 k'pjktjtk P 7& * (3.50)
. Wo + W, Wi
DT*W = A% Wgc — ,U,WWi - ot 4?; + k*jktjtk . (3.51)

The solutions describing supersymmetric vacua with vanishing F-terms are:

. B . 8.A(2) | _ 9.B(2)
100(Z2) = Wy |ka(Z,7) — A(2) } + Wi [k’a(Z, Z) — B(Z) |’ (3.52)
Wy = —(2)\8 + 1)Wgc — Wi, (3.53)
S
ﬂp = —9 kpjktjtk p 7& * (3'54)
LA _ Wi
By = v k‘*]ktjtk +2R, R= )\Wgc . (3.55)

It is important to note that the total superpotential W = Wy + Wye + Wi # 0. Indeed
if this were zero the dilaton would not be stabilised (see (3.53)). This of course means that
the supersymmetric vacua are AdS in contrast to Strominger’s classical analysis [20)].

The hidden and visible sector gauge kinetic functions now improve their behaviour
since they look like:

Re (fﬁijo‘)p) = —% ti=3s— Rt, =3Re (fiiy°) — Rtx, (3.56)
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and:
Re (fvis) = —2s + Rits. (3.57)

Thus there is a regime where the hidden sector is weakly coupled and the real part of
the gauge kinetic function of the visible sector (as well as that of the hidden sector) stays
positive for:

2s < Rt, < 4s, (3.58)

which points towards values Rt, ~ 3s. In fact, in this regime, not only Re (fyis) > 0 and
Re (fnia) > 0, but also:

Re (ﬁi:iloop) Re <fvligloop> ) ‘3 R

Re (firee) | | Re(firee)

<1. (3.59)

3.2.3 Tuning the Calabi-Yau condition

As pointed out in [18], in the absence of worldsheet instantons and for 9,A(Z) = 0,
eq. (3.48) reduces to:
iby = Wye ka(Z,2) £ 0. (3.60)

This induces a (2, 1)-component of H (harmonic) that should vanish according to Stro-
minger’s analysis [20]. However from (3.52), one may speculate that the CY condition can
be preserved by envisaging a situation where one tunes the flux quanta such that b, = 0

Va=1,..., h}lloz1 corresponding to H*! = 0. The complex structure moduli would then be
fixed by:
| _ _9aAZ)
Wwi A(Z)ka(Z,2)

DypaW =0 & (3.61)

9aB(Z)

Ve 1-35man

However now we have 4 hifl real equations determining 2 htllo21 real complex structure mod-
uli. Obviously the system has no solution unless we scan over the integer fluxes. However
there are only 2h'2 + 2 integer fluxes. Thus we have only the freedom to scan over
Q=2 <h1’2 — hi; + 1) integers while all 2 ht11021 real complex structure moduli as well as

all but @ of the integers (i.e. 2 h}llozl of them) must emerge as solutions to these non-linear
equations. Thus we do not think that it is possible to have b, = 0 in the presence of these
non-perturbative terms. However, this condition emerges only on demanding a supersym-
metric solution to the classical 10D equations, and so our 4D analysis cannot be expected

to satisfy these classical conditions once non-perturbative effects are included.

3.3 Flux vacua counting

Let us clarify here a crucial difference between type IIB and heterotic string theory regard-
ing complex structure stabilisation with three-form flux. The F-term equations (3.48) com-
prise 2 h'% conditions for 2 h!»? real variables (setting now h111021 = K12 for ease of comparison
with type IIB). A non-trivial H-flux yields exactly 2 h"? independent flux quanta (up to
the two related to the overall scaling of (7)) generically supplying the non-linear system
of h2 complex F-term conditions for the 2 h'? complex structure moduli. However, the
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existence of a finite number of isolated solutions for such non-linear systems with as many
equations as variables (rendering the system ‘well behaved’) is not guaranteed. One expects
therefore that most of the available freedom of choice among the 2 %2 H-fluxes is used
up to find a relatively small number of isolated solutions for the complex structure moduli
where all of them sit safely in the regime of large complex structure. Generically, this pre-
cludes the possibility of using the H-flux discretuum for tuning a very small VEV of Wyyx.

Note that this is different in the type IIB context. There, the availability of RR three-
form flux F3 supplies an additional set of 2h*! fluxes for an overall discretuum made
up from 4 h'? fluxes. We have therefore an additional set of 2h"? discrete parameters
available for tuning Wy, while keeping a given well-behaved complex structure moduli
vacuum. Consequently, after having used 2h%? flux parameters to construct a viable
complex structure vacuum, we can use the additional 2 k"2 flux quanta to construct a
‘discrete 2 h'2-parameter family’ of complex structure vacua, which allows for exponential
tuning of Wiux.

Finally we note that in the heterotic case the unavailability of any additional freedom
in the flux choice after fixing the Z-moduli, means that we have to depend on the far more
restricted choices that are available in the solution space of the complex structure moduli.
As mentioned before, one needs to scan over the H flux integers in order to find 2 h'?
acceptable (i.e. in the geometric regime) real solutions to the 2 h%? non-linear equations
DzoaW = 0. The size of the solution set that we get is likely to be much smaller than
the size of the original set of flux integers. Thus even if we had started with, let us say,
hY2 = O(100) and let each flux scan over 1 to 10, the number of acceptable fluxes are likely
to be far smaller than what is required to tune the cosmological constant. It should also
be emphasised here that the only source of tuning that is available after all the low-energy
contributions to the vacuum energy are included, has to come from these fluxes.

4 Supersymmetry breaking vacua

In this section we shall show the existence of new Minkowski vacua with spontaneous
supersymmetry breaking along the Kahler moduli directions. The strategy is to perform
moduli stabilisation in two steps as follows:

e Step 1: Fix at leading order some of the moduli supersymmetrically (all the h111021 >0
complex structure moduli, the dilaton and some K&hler moduli) at a high scale.

e Step 2: Stabilise the remaining light moduli at a lower scale breaking supersymmetry
mainly along the Kahler directions by the inclusion of o corrections to the Kéhler
potential in a way similar to type I1B.

In subsection 4.1 we shall consider the contributions to the scalar potential generated
by fluxes, non-perturbative effects and threshold corrections showing that there exist no
supersymmetry breaking minimum which lies in the regime of validity of the effective field
theory. However, in subsection 4.2 we shall describe how this situation improves by the
inclusion of o/ corrections to the Kahler potential which yield trustworthy Minkowski vacua
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(see subsection 4.3) where supersymmetry is spontaneously broken by the F-terms of the
K#hler moduli.’® In subsection 4.4 we shall explain what is the role played by D-terms
in our stabilisation procedure. Let us finally stress that this new procedure to obtain
supersymmetry breaking vacua is completely orthogonal to the way the complex structure
moduli are fixed, and so our results apply also to the case with h’}11021 = 0 where there is no
need to turn on quantised background fluxes to fix the Z-moduli.

4.1 Fluxes, non-perturbative effects and threshold corrections

In this section we shall derive the general expression for the scalar potential including
fluxes, non-perturbative effects (both gaugino condensation and world-sheet instantons)
and threshold corrections for a CY three-fold whose volume is given by:

V = kyty — kst? . (4.1)

The superpotential and the Kéhler potential look like (neglecting a possible Z-dependence
of A and B and setting for simplicity 85 = 0):

B
W = Wane(2) + Ae =3 T) 4 pents (4.2)
K=-InV-In(S+5)+Kus(Z2). (4.3)

Performing the following field redefinition:

(I)ES—%T[,, (4.4)

W and K take the form:
W = Wa(Z)+ Ae ™ ?® + Be 15 (4.5)
K=-InYV-In [q>+q>+52”(Tb+Tb) +K(Z,7). (4.6)

4.1.1 Derivation of the F-term potential

The F-term scalar potential turns out to be:

V=X [Z KPDoWDsW + K*® D W DgW
Z
+ (K" Ky, + KT Ky, ) (WDoW + W Dg V)
+EKT: 05 WDeW + K207, WDgW

WP (Z KK K; — 3)

T
+ (K B Ky, + K TSTSKTS) (Wor,W + Wor, W)

+KT T o, W, W

13See [57] for another attempt to fix the heterotic moduli via the inclusion of o’ effects.
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Let us consider the limit:

’Re (fﬁibop)‘ <Re(fiiy) = %tb <s, (4.7)

which implies (defining ® = ¢ + it)):
Byt Bpt 1 Byt
blb blh ~ 2

2
2¢ 2(5 - % tb) 1- ,Bbib 2s

1, (4.8)

together with:

3
tp ~ O(10) > ts ~ O(1) = €6 =—3 < 1. (4.9)
k‘btb
We can then expand the relevant terms as:
- 4e€?  ege? = =
K®® = 4¢? (1 + 2¢4 + ?‘ﬁ + 36¢> . KT = KT = ¢t (4.10)
= = 2€4¢ 4e €5€
KoKy + KT Ky = 207 (14 =2 4 250 4.11
I L 14 ey T3 TG (4.11)
The no-scale structure gets broken by loop effects:
= 2¢4 Tep  €p€s
K'K,K;: —3=—"= 14+ —+—). 4.12
ZT: T (1+e¢)2<+6+12 (412)

Note that one correctly recovers the no-scale cancellation for 3, = 0 < €5 = 0. Other

relevant terms are:

; ; 1+ 3ey/2 ro 22
KT Ky + KT Ky = —2t, (W) Y G N R (4.13)
s 1+e€y €s

We shall look for minima in the region V ~ Waux e#?s implying that Wy ~ €5 Wanx <
Wiaux ~ Wege. The relevant derivatives scale as:

OzaW ~ Whux O W ~ Wgc ~ Whux 8T9W ~ Wi ~ €s Wiaux - (414)
Therefore the F-term scalar potential can be expanded in the small parameters €, and € as:
V=Vot+tei+eVa+... (4.15)

where (defining W = Whaax + Wee):

Vo = ek (Z KD WD;W + 4¢2D¢WD@I§/> ~ O (X [Wasl?) |
Z

and:

eV = e [Z K7 (DaW DgWoyi + DaWi DgW ) + 467 (Do W Dy Wass + DeWai Dg WV )
Z

~

+8¢5$* Do W DgW + 2640 (ﬁ/DqMV + WD@W)

o = ~ — 2t2 _
2 W ey — 2t (WOr,W + Wop, W) + 2= (‘)TSWZ?TSW} ~ O (e Waudl?) ,
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and:

2V, = X [Z K“BDQWMDBWM + 4¢? D Wi Dg Wi + Se s (D@WDCI)Wwi + h.c.)
Z
2

1 o = = = 2¢ = o
+;ei¢2D¢WD¢W+2e¢¢(WD¢Wwi+WwiD¢W+h.c.)+;:qj(WDq>W—i—h.c.)
5¢2 .
¢ W2

3
_ = 4t2 _
_QtS(WWiaTSW+h.C.)—t56¢ (W8T5W+h.c.) +?)88TSW8TSW:| ~0 (€2€K|Wﬁux‘2) .

—2e4Pts (OTSWD@W + h.c.) + 2¢4 (WWwi + h.c.) —

4.1.2 Moduli stabilisation

Let us perform moduli stabilisation in two steps.

Step 1: We stabilise the ¢ and Z-moduli by imposing DyzaW = DgW = 0 thus
minimising the leading order term in the potential. We then substitute this solution in the
scalar potential obtaining Vj = 0 whereas the other contributions take the form:

~ = ~ _ 2t2 _
vy = e [2|W|26¢ — 214 (W@TSW + W@ﬁW) + i aTSW3TSW] ,
and:

Vp = e [Z K DaWyiDWiyi + 46 Do Wi Dg Wi
4

~ o 5 2 .
2606 (WDa W + hc.) + 26 (Wil + he.) — 22 1P
= 2
~2t, (Waadr,W + hec.) = tyes (WORLW + he.) + % or, Wy, W] ,

Step 2: We stabilise the T-moduli at order O(e) breaking supersymmetry. Writing
Ty = ts +ias, WET = [W§T|e®W and B = |B|e'?B, and setting elfes) = 1, the explicit form
of the scalar potential at O(e) is:

Al ‘A2| ts 6_/“‘9 |A3‘ 6_2“t5 ‘WSHP
_ Oy — pa, .41
1% SR cos(f0p — Ow — pas) v + WeTE 1, o) (4.16)
with: 8 2 g2
B
Av=—2 Al =2p0Bl, A=, (4.17)
2(¢)k, s

where we have defined WSt = (W) = (Whuy + Wye). The axion a, is minimised at
plas) = 0p — Oy —  so that (4.16) reduces to:

L[ A A teete Ay ] (W2

V= _
Vs Wt v (W2t (¢)

(4.18)

Minimising with respect to ts one finds:

V= |A2HW§H| (/J’ts — 1) t2 ey,ts ~ |A2HWSH| t2 euts — Skstg ’W(?H’ e/LtS’ (419)
sl Gt t 1) S 2a T B
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which implies:

% %
ts=In| — | —2Inty, ~ In|—
g <|Ao!> ts~O(1) (IM)

Note that we can trust our effective field theory when t5 > 1, that is when (V) > u = 27.
Substituting (4.19) and (4.20) in (4.18), we end up with:

3ks| WG|
plBl

z(V) with |Xo| = (4.20)

Weff’2 3k
V=4V — |Gyl z(V)? W5 , here Col = =22, 4.21
AV = (Col e (V)| Col = (4.21)
The extrema of V are located at:

ov 3

showing that A; has to be positive, i.e. B, > 0, if we want to have a minimum at large
volume, i.e. (V) > 27. Evaluating the second derivative at these points one finds:
0*V
oV?

Hence the scalar potential has a minimum only for:

>0 & 4o® — 152 +9<0. (4.23)

S <x(V) <3, (4.24)

provided one can find values of A\g that satisfy (4.22) for this range of values for V. However
these minima are not trustworthy since the blow-up mode t; is fixed below the string scale
as (ts) ~ z(V)/(2m) < 3/(27). Moreover, the above derivation assumed a regime z()) > 27
but leads to a condition x(V) < 3 for a minimum to exist, demonstrating the absence of a
minimum for the T-moduli in a controlled region of the scalar potential. This is consistent
with a numerical analysis of the scalar potential (4.18) which shows that in the range
3/4 < x < 3 the only critical point is a saddle point with one tachyonic direction.

4.2 Inclusion of o/ effects

Let us now try to improve this situation taking into account also o' corrections to the
Kihler potential described in section 2.2.1. Including both O(a'?) and O(a'3) effects, the
Kahler potential for the T-moduli receives the following corrections:

|cy| . Ysts +&/2
V2/3 )Y ’

where we have used eq. (2.21) for the expression for ¢s. These higher-derivative corrections

K~—-InV+

with s = Jop kY3 — [slky? (4.25)

break the no-scale structure as (neglecting threshold effects):

G 2c| | 27sts + 3
Y KUK Kj—3~ — 328 T (4.26)
T
The scalar potential (4.18) gets modified and reads:
A A ts A —2uts s 2 Weff 2
V= 1 - ‘Cb| o ’ 211‘ s e—ﬂts 4 | ?f‘ € v + 36/ ‘ 0 . (427)
V23 V58 WV (w2t V2 ()
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Minimising with respect to ts; we find:

eff |12 _
y = <1i\/1+4|A3|75(2ut3+1)> | Ao||[W5™ [t5 (uts — 1) s

| Ao[3 (uts — 1)? 2| As|(2pts + 1)

| A |[W5"T| C\ 2 : 8| Aslys  27s
~ —— |1 1+ — | t2efs th = = , (4.28
sl 44y TWitE ) ke with e= e, = 3 %)

where we focused only on the solution which for v = 0 correctly reduces to (4.19) since

the other solution can be shown to give rise to a maximum along the ¢, direction. Note
that we did not take an expansion for small ¢/t2 even if this quantity is suppressed by
puts > 1 since a large denominator might be compensated by a large value of the unknown
coefficient ~s. Performing the following approximation:

V V
s=In[— ) —-2Int;, ~ In|{—|= , 4.2
a “(w) n ts~oa>“<w> =V) (4.29)

| Aol c
AM=—1(1 1+ —
Al= 5 + +t§, ,

and substituting (4.28) in (4.27) we end up with (in the regime (V) > 1):

with:

(4.30)

3§ ’ eff‘Q
~ 4/3 _ /301 _ _ 3, 95 W
V ~ |:A1V ’Cb|V (1—-0x) ]C|a: + 2:| <¢>V2 )

where we have defined:

— ‘CO‘ CMS Vs

Note that if we switch off the o corrections by setting |cp] = ¢ = & = 0, the scalar
potential (4.30) correctly reduces to (4.21) since |A| — |Ag| and |C| — |Cp|.
Before trying to minimise this scalar potential, let us show two important facts:

e The quantity ¢ x is always smaller than unity since from (4.25) one finds that:

ki34,

e ~ el 1. (4.32)

s < |cb|k;/3 = ox <

Therefore the term in (4.30) proportional to |cp| has always a positive sign.

e If the condition |c|/t3 < 1 is not satisfied, there is no minimum for realistic values
of the underlying parameters. In fact, in this case the term proportional to |C| is
always sub-leading with respect to the term proportional to ¢ since for ¢ > 0:

3
|C| x? o\ el c\ t
R=———F<1(1 1+ )2 1 1+=)-2 4.33
|ep| VI3 — LRV t2) ¢ x <SUTYET t2) ¢’ (4.33)

which for ¢/t2 ~ O(1) reduces to R < O(1), whereas for ¢/t3 > 1 reduces to
R < +/t3/c < 1. On the other hand, for ¢ < 0, one has |¢|/t3 < 1 but if |¢|/t3 ~ O(1),
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the ratio R can be shown to reduce again to R < ei/ 3 /x < 1. Therefore in this case

the leading order scalar potential is given by (neglecting the term proportional to 9):

Ve |4y 18 e v 4 % |<V¢[j[>)1fi|22 ’ (4.34)
with: 32/3 32/3
2t = o> k’sfjg = =Rz =R (4.35)
However the potential (4.34) has a minimum only if:
£€> % ey V3 > sttief/?) > 1, (4.36)

which is never the case for ordinary CY three-folds with £ ~ O(1). As an illustrative
example, for V = 20, t, = 1.5 and ks = n/6 with n € N, one finds ¢ > 11n%/? >
11, corresponding to a CY with Euler number negative and very large in absolute
value: |x| = 2(hY? — hb1) > 4548, while most of the known CY manifolds have
x| S O(1000).

Hence we have shown that in order to have a trustable minimum we need to be in a
region where |c| < 3. In this case, the scalar potential (4.30) simplifies to:

(4.37)

eff |2
= [Al VS — | V(L= §) — | Col 2 + 35] W]

2] (e)v*°

where we have approximated |C| ~ |Cy|. Note that the sign of the numerical coefficient A;
is a priori undefined and depends on the sign of the underlying parameter .
The new extrema of V are located at:

3 5|cp 60z 30 9¢
A VA3 = 2 _Z Gl PRV I ) R 4.
1V 3|Colz* | x 5 + 5 1% 5 + 5 5 (4.38)

and the second derivative at these points is positive if:

5
u(z) = 126 — 5|ep| VI3 (1 — 8% + 25> —2|Colz(42® — 152 +9) > 0. (4.39)

Note that for |cp] = § = £ = 0 (4.38) and (4.39) correctly reduce to (4.22) and (4.23)
respectively. However we shall now show that by including o’ corrections we can find a
vacuum with z > 1 where we can trust the effective field theory.

The value of the vacuum energy is:

_weTp?
(V)=75 o2 v(z), (4.40)
where:
v(z) = —6¢ + |Cola? (4 — 9) + 3|cp| VL3 (1 - 45717 - 5) . (4.41)
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Let us perform the following tuning to get a Minkowski vacuum:

v(z) =0 if 66 =3l V3 (1 - 45395 + 5) + |Colz? (4 — 9), (4.42)
and substitute it in (4.39) obtaining:
_ 1/3 3
u(z) = |ep| V7 (1 —49) + 12|Colx | x — 3)> 0, (4.43)

which is automatically satisfied for 6 < 1 and = > 1. Substituting (4.42) also in the
vanishing of the first derivative (4.38), this simplifies to:

A4 V3 = | |VY3 (1 — 38) + 9| Co 22, (4.44)
showing that if we want to have a Minkowski minimum A; has to be positive, i.e. 8 > 0.

4.3 Minkowski solutions

Let us first define our use of the term ‘Minkowski solutions’. Owing to the lack of tuning
freedom in the heterotic three-form flux superpotential, achieving vacua with exponentially
small vacuum energy is a real challenge. Thus we shall use the terminology ‘Minkowski
vacuum’ to refer to a vacuum with a cosmological constant suppressed by at least a 1-loop
factor 1/(872) ~ 0.01 compared to the height of the barrier in the scalar potential (of order
mg /QM%,) which protects the T-moduli from run-away.

The solutions depend on seven underlying parameters: ks, ky, By, |B|, |cp], |x| and £. We
do not consider |[W¢f| as a free variable at this stage since we fix its value at |[W¢T| = 0.06
by the phenomenological requirement of obtaining the right GUT coupling corresponding
to (s) ~ (¢) ~ 2. Let us now describe a strategy to find the values of these underlying
parameters which give Minkowski vacua for desired values of the moduli and within the
regime of validity of all our approximations.

1. Choose the desired values for V and ¢, (so fixing the value of x = 27 ts). Then work

out the value of |B| as a function of ks from (4.20).

2. Choose the desired value of ¢, and work out the value of k; as a function of kg
from (4.1).

3. Determine |cp| as a function of ks, £ and |k| from (4.42).
4. Derive the value of f§, as a function of kg, & and |k| from (4.44).

5. Choose the values of ks, & and |k| so that all our approximations are under control,
i.e. €4 defined in (4.8) satisfies €5 < 1, €5 defined in (4.9) gives €5 < 1, ¢ defined
in (4.31) satisfies 6§ < 1 and ey = £/(2V) < 1. These values of kg, & and |k| then
give the values of ky,|B|,|cp| and B, knowing that this Minkowski vacuum is fully
consistent.
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Figure 2. V versus V assuming the parameters listed in the text which give rise to a near-Minkowski
vacuum with (V) = 20 and a cosmological constant of small magnitude compared to height of the
barrier set by mg/QMI%.

As an illustrative example, following this procedure we found a Minkowski vacuum (see
figure 2) located at:

@)~ (s)=2, (M=2, (=5, (t)=15, (4.45)
for the following choice of the microscopic parameters:

ky = ks =1/6, B, ~0.035, |WT =006, ¢, =075, c,=-0.75,
B~3, £€~149, pu=2r = ~y~041, k=0. (4.46)

Note that one can get dS or AdS solutions by varying [, either above or below its
benchmark value. Moreover, our approximations are under control since:

€p >~ 0.043, €s ~ 0.027, €q =~ 0.037, 6 ~0.032. (4.47)

We stress that at the minimum these four quantities are all of the same size: €y ~ €, ~
€o =~ 0. This has to be the case since they weight the relative strengths of loops, non-
perturbative and higher derivative effects which all compete to give a minimum.

Moreover, we point out that there seem to be problems with the o expansion since
we managed to obtain a minimum by tuning the underlying parameters in order to have
the O(a’?) term of the same order of magnitude of the O(a/3) term, and so higher order
o corrections might not be negligible.

However this might not be a problem if at least one of the following is valid:

e The O(a'?) corrections could be eliminated by a proper redefinition of the moduli.

e The coefficients of higher order o corrections are not tuned larger than unity, result-
ing in a o/ expansion which is under control. In fact, the o/ expansion parameter
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1/3

is of order qV~1/3 with ¢ an unknown coefficient. Thus O(a’*) contributions to the

scalar potential can be estimated as:
Va’4 N 2(]
Vs~ 3EYL/3

~ 0.16 for g=1. (4.48)

4.4 D-term potential

So far only F-terms have been taken into account. This could be consistent since moduli-
dependent D-terms might not be present in the absence of anomalous U(1)s, or they might
be cancelled by giving suitable VEVs to charged matter fields.

However let us see how D-terms might change the previous picture in the presence
of anomalous U(1)s but without introducing charged matter fields. Because of the U(1)-
invariance of the superpotential (4.5), both ® and T have to be neutral. Therefore the
only field which can be charged under an anomalous U(1) is T}, with gr, = 4c4(L) # 0.
From (2.31), this induces an FI-term of the form:

e\ /3
which gives the following D-term potential:
2/3
_ & p . _ q%b ky

This term has the same volume scaling as the first term in (4.37) which is the contribution
coming from threshold effects. However the ratio between these two terms scales as:

Vihreshold _ € |W§H|2
T p1/3 o ;2/3
VD V qu kb

<1, (4.51)

for e, < 1 and g7, ~ O(1). As an illustrative example, our explicit parameter choice would
give Vihreshold/Vp =~ 2 - 1074 q}f, showing that Vp is always dominant with respect to the
F-term potential (4.37). In this case, Vp would give a run-away for the volume direction
and destroy our moduli stabilisation scenario.

As we have already pointed out, this might not be the case if there are no anomalous
U(1)s or if the Fl-term is cancelled by a matter field VEV. There is however another way-
out to this D-term problem which relies on the possibility to fix all the moduli charged
under anomalous U(1)s in a completely supersymmetric way, so ensuring the vanishing of
the D-term potential. This requires g7, = 0 and the addition of a third Kahler modulus 7
which is charged under an anomalous U(1): g7, # 0. Let us describe this situation in the
next subsection.

4.4.1 D + F-term stabilisation
The Kahler and superpotential now read:

W = Waue(Z) + Ae MO=FT) | genTs (4.52)

Bo

K=—-InV—-In <I>+<f>+5(Tb+Tb) + Kes(2), (4.53)
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with
V=V — ket = kyt] — kot> — k.t (4.54)
Note that now ® has to get charged under an anomalous U(1) so that the hidden sector

gauge kinetic function fyiq = & — % T. becomes gauge invariant. In particular we will have
qo = % qr.. From (2.31), the FI-term looks like:

DeW D W
c 4.55
§=—qo W qr.. W ( )

implying that Vp = 0 if both ® and T, are fixed supersymmetrically. However we have
already seen that if all the Kéahler moduli are fixed supersymmetrically via threshold effects,
then perturbation theory breaks down in the hidden sector and the visible sector gauge
kinetic function becomes negative. A way-out proposed in section 3.2.2 was to include
worldsheet instantons but, given that we want to break supersymmetry at leading order
along T3 and Ty, in order to follow this possibility we should include a fourth modulus
with worldsheet instantons. Thus this case does not look very appealing since it requires
at least four moduli.

A simpler solution can be found by noticing that the problems with Re ( ﬁi(_iloor’) >

Re ( fﬁfge) and Re (fvis) < 0 could be avoided if only some but not all of the Kéhler moduli
are fixed supersymmetrically by threshold effects. We shall now prove that this is indeed
the case if the T-moduli fixed in this way are blow-up modes like ¢.. In fact, the solution

to Dp, W = 0 gives:
s 6s

Bc = _9 kcjktjtk = - V

This result, in turn, gives hidden and visible sector gauge kinetic functions of the form:
Re flfloop 3
hid N Bbtb _ Bctc c tc

= = —€4+3 = —€p+ 3, K1,
Re ( fixee) 25 2s $TTY o

k2. (4.56)

and:

t e k.t3
Re(fvis)=3<1+6bb+ﬁc > :$<1+6¢—3 VC> =s(14+€p—3€)~s>0.

5 Moduli mass spectrum, supersymmetry breaking and soft terms

Expanding the effective field theory around the vacua found in the previous section, we
can derive the moduli mass spectrum which turns out to be (see (4.29) and (4.31) for the
definitions of x and ¢):

M, ~ Mg, = M3/ T,

Mmyze =~ Mep =~ ms/2,

My, = m3/257

Mg, = 0. (5.1)
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Note that in the absence of Tp-dependent worldsheet instantons which would give a; a
mass of order mg, ~ Mpe "' ~ 10TeV for t, ~ 5, this axion might be a good QCD axion
candidate since it could remain a flat direction until standard QCD non-perturbative effects
give it a tiny mass.

Moreover, the stabilisation procedure described in the previous sections leads to vacua
which break supersymmetry spontaneously mainly along the Kéahler moduli directions. In
fact, from the general expression of the F-terms and the gravitino mass:

i K/2 1-ij 7 K/2 |”§ff|
F' = e KY D;W and mgjy = e/ Z|W| ~ Az (5.2)
we find that the Kaéhler moduli F-terms read:
F FTs ms3 /o
= _92 d ~ 5.3
& ms /o an i . (5.3)

On the other hand, the dilaton and the complex structure moduli are fixed supersymmetri-
cally at leading order. However, due to the fact that the prefactor of worldsheet instantons
and o/ effects are expected to depend on these moduli, they would also break supersym-
metry at sub-leading order developing F-terms whose magnitude can be estimated as:'

Dya oW =~ Dga oWy =~ 6 |[WET| = FZ5% ~ 5myy . (5.4)

Thus we can see that supersymmetry is mainly broken along the ¢;-direction since:

FTo FTs ¢,  FZ%°

~ > ~ = > ~ 4. (5.5)
TTL3/2 m3/2 x m3/2

The goldstino is therefore mainly the Tp-modulino which is eaten up by the gravitino in
the super-Higgs mechanism.

Soft supersymmetry breaking terms are generated in the visible sector via tree-level
gravitational interactions due to moduli mediation. Let us now derive their expressions:

e Gaugino masses: Their canonically normalised expression is given by:

1 : e Fh
—— FOifvis = — +9
2Re(fvis) 2fVIS 2(]5 tb

showing that the gaugino masses are suppressed with respect to the gravitino mass
by a factor of order § ~ 0.03.

My =

~ (5m3/2 s (56)

e Scalar masses: The canonically normalised scalar masses generated by gravity me-
diation read: .
MG o = m3 s — F'F10,0;In K, (5.7)

where K, is the Kihler metric for matter fields which we assumed to be diagonal.
K, is generically a function of all the moduli but we shall neglect its dependence
on the dilaton and the complex structure moduli since they give only a sub-leading

4 Assuming that there are no cancellations from shifts of the minimum due to sub-leading corrections.
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contribution to supersymmetry breaking. Hence we shall consider a Kéahler metric
for matter fields of the form K, ~ t"e tb_n”, where ng and ny are the so-called mod-
ular weights. In the type IIB set-up, it is possible to determine the value of n; by
requiring physical Yukawa couplings which do not depend on the large cycle due to
the localisation of the visible sector on one of the small cycles [58]. However, in the
heterotic framework the situation is different. For instance, in CY compactifications
close to the orbifold point the visible sector typically is constructed from split mul-
tiplets which partially live in the bulk and partially arise as twisted sector states
localised at orbifold fixed points. The value of the modular weights for the different
matter fields is then determined by the requirements of modular invariance. Hence,
they cannot be constrained by using an argument similar to the one in [58]. We shall

therefore leave them as undetermined parameters. The scalar masses turn out to be:

). (5.8)

ns
472

2 2
my = M3/ (1—nb—

showing that for x > 1, the modular weight n; has to be ny < 1 in order to avoid
tachyonic squarks and sleptons. If n, = 1, one has a leading order cancellation in
the scalar masses which therefore get generated by the F-terms of the small cycle ¢4
even if F7s < FTo (in this case one would need ny, < 0). This is indeed the case
in type IIB models because of the no-scale structure [59]. Given that the no-scale
cancellation holds in the heterotic case as well, we expect a similar cancellation to
occur in our case, i.e. n, = 1, with possibly the exception of twisted matter fields at
orbifold fixed points, i.e. n, < 1 for twisted states.

A-terms: The canonically normalised A-terms look like:
Aoy = F' [ K + 0,10 Yoy — 0,0 (KaRpK )| (5.9)

where Y,3, are the canonically unnormalised Yukawa couplings which can in prin-
ciple depend on all the moduli. Similarly to the K&hler metric for matter fields, we
introduce two modular weights, p, and ps, and we write the Yukawa couplings as
Yogy > t, 7 ts7°. Thus the A-terms take the form:

S S 5
Aa67:3m3/2 <1 +pb—77/b+p_n—> . (510)

2r 2z 3z
In the type IIB case, there is again a leading order cancellation (since n, = 1 and
pp = 0 given that the Yukawa couplings do not depend on the K&ahler moduli due to
the axionic shift-symmetry and the holomorphicity of W) which is again due to the
no-scale structure [59]. Similarly to the scalar masses, we expect this leading order
cancellation also in the heterotic case for matter fields living in the bulk.

p and Bu-term: The p-term can be generated by a standard Giudice-Masiero
term in the Kihler potential K O K(ts,t,)H,Hy which gives again p ~ ms /o and
Bu ~ mg /2°

-39 —



Summarising, we obtained a very specific pattern of soft terms with scalars heavier than
the gauginos and universal A-terms and p/Bpu-term of the order the gravitino mass:

mOSAam:u:Bzm3/2>>M1/225m3/2. (511)

The soft masses scale with m3/, and do not depend on the mechanism which stabilises the
complex structure and bundle moduli. Hence one can obtain TeV-scale supersymmetry by
considering either smooth CY models where all the complex structure moduli are fixed by
the holomorphicity of the gauge bundle or orbifold constructions with a small number of
untwisted Z-moduli (or better with no untwisted Z-moduli at all as in the case of some
non-Abelian orbifolds). On general Calabi-Yau manifolds, we expect the soft mass scale
to be of order mgz/5 ~ Mgyr due the fact that in the heterotic string there is not enough
freedom to tune the flux superpotential below values of O(0.1 — 0.01).

6 Anisotropic solutions

In this section we shall show how to generalise the previous results to obtain anisotropic
compactifications with 2 large and 4 small extra dimensions which allow for a right value of
the GUT scale.!® For this purpose, we shall focus on CY three-folds whose volume is [63]:

V = kytyts — kst . (6.1)

This CY admits a 4D K3 or T* divisor of volume t? fibered over a 2D P! base of volume
t, with an additional del Pezzo divisor of size t2. We shall now show how to fix the moduli
dynamically in the anisotropic region t, > t; ~ t,. We shall consider a hidden sector gauge
kinetic function of the form:

fria=S—-2Ty— 2T =9, with B8, =0. (6.2)

The superpotential looks exactly as the one in (4.5) whereas the Kéhler potential reads:

By

5 (Tb + Tb) + IBf (Tf + Tf) + Kes(Z) . (6.3)

K=—InV—-In|®+d+ >
Focusing on the limit where 1-loop effects are suppressed with respect to the tree-level
expression of the gauge kinetic function:

t t
eb5@<<1 and efEM<1, (6.4)

2¢ 2¢
the dilaton is again fixed at leading order by requiring DgW = 0. On the other hand
the Kahler moduli develop a subdominant potential via non-perturbative contributions, o/
corrections and threshold effects which break the no-scale structure as:

S OKUKKG —3=2(e+¢f) + O(2). (6.5)
T

5For anisotropic solutions in the type ITB case for the same kind of fibred CY manifolds see [60-62].
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The scalar potential has therefore the same expression as (4.16) but with a different coef-
ficient A; which is now moduli-dependent and looks like:

VB By Brty
Al(v,tf)f2<¢> (kbt§+ v (6.6)

where we have traded ¢, for V. This is the only term which depends on #; since the
rest of the potential depends just on V and t5. Hence we can fix ¢; just minimising
Aq(V,ty) obtaining:

25b )1/3 1/3 20
tr=|-— % & tr=—=1. 6.7
! (kb 5; £= (6.7)
Substituting this result in (6.6) we find that A; becomes:
3 2/3
A = Lbl/g (ﬁf> , (6.8)
2(o)k,”” \ 2

which is not moduli-dependent anymore and takes a form very similar to the one in (4.17).
We can therefore follow the same stabilisation procedure described in the previous sections
but now with the additional relation (6.7) which, allowing the moderate tuning 8¢ ~ 20 3,
would give an anisotropic solution with ¢, ~ 10¢;. For example for V ~ 20 and k;, = 1/2,
one would obtain ¢, ~ 16 > t; ~ 1.6.

We finally mention that this kind of fibred CY manifolds have been successfully used
in type IIB for deriving inflationary models from string theory where the inflaton is the
Kéhler modulus controlling the volume of the fibre [64]. It would be very interesting to
investigate if similar cosmological applications could also be present in the heterotic case.

7 Conclusions

The heterotic string on a CY manifold (or its various limiting cases such as orbifolds and
Gepner points) has been studied since the late eighties as a possible UV complete theory of
gravity that can realise a unified version of the SM. In the last decade there has been much
progress towards the goal of getting a realistic model with the correct spectrum. However
the major problem in getting phenomenologically viable solutions for the heterotic string
is that the gauge theory resides in the bulk, and so getting an acceptable model cannot be
decoupled from the problem of moduli stabilisation. Unfortunately a complete and deep
understanding of the mechanism which stabilises all the moduli in the heterotic string is
still lacking.

In this paper we tried to perform a systematic analysis of all the effects which can
develop a potential for the various moduli for the case of (0,2)-compactifications which
allow for MSSM-like model building and the generation of worldsheet instantons that are
crucial effects to fix the Kédhler moduli. According to the original Strominger’s analysis [20],
these compactifications violate the Kéahler condition dJ = 0 due to a non-zero H-flux at
O(d) since in the non-standard embedding the co-exact piece of the Chern-Simons term
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in H does not cancel. We then considered solutions to the 10D equations of motion with
constant dilaton and warp factor, corresponding to ‘special Hermitian manifolds’, which
represent the smallest deviations from smooth CY manifolds at O(«’) [40].

Let us summarise the various moduli stabilisation effects that we have taken

into account:

e Holomorphicity of the gauge bundle, D-terms and higher order perturbative contri-
butions to the superpotential: By demanding a supersymmetric gauge bundle, i.e. a
gauge bundle which satisfies the Hermitian Yang-Mills equations, the combined space
of complex structure and gauge bundle moduli reduces from a naive direct product
to a ‘cross-structure’ [33-36]. Therefore if the gauge bundle moduli are fixed at non-
zero VEVs by D-terms combined with higher order perturbative contributions to the
superpotential [4-8], the Z-moduli are automatically lifted. However, not all the
complex structure moduli might get frozen by this mechanism since, in general, the
sub-locus in complex structure moduli space where the gauge bundle is holomorphic
turns out to have dimension hiozl > (0. Hence 0 < h111021 < hY? flat Z-moduli are
generically left over.

o Fractional Chern-Simons invariants, gaugino condensation and threshold effects: The
remaining flat Z-directions could be lifted by turning on quantised background three-
form fluxes [17-19]. However we showed that, contrary to type IIB, this cannot be
done having at the same time a vanishing VEV of the tree-level flux superpoten-
tial Wy since setting the F-terms of the Z-moduli to zero corresponds to setting the
(1,2)-component of the H-flux to zero, while demanding Wy = 0 implies that also
the (3,0)-piece of H is vanishing. Hence, being real, the whole H-flux has to be
zero, resulting in the impossibility of fixing the remaining complex structure moduli.
Thus one needs Wy # 0 in order to fix the Z-moduli. However, due to the absence of
Ramond-Ramond fluxes, it is hard to tune Wy small enough to balance the exponen-
tially suppressed contribution from gaugino condensation which introduces an explicit
dependence on the dilaton [11-13] unless one turns on fractional Chern-Simons in-
variants (i.e. discrete Wilson lines) [17]. In this way both the dilaton and the complex
structure moduli can be stabilised supersymmetrically at non-perturbative level. The
Kéahler moduli could then be fixed by the inclusion of threshold corrections to the
gauge kinetic function [21, 22].

o Worldsheet instantons: The supersymmetric minimum obtained by including thresh-
old effects is not in the weak coupling regime where one can trust the effective field
theory. This problem can be avoided by considering also the contribution of 7-
dependent, worldsheet instantons which can give rise to reliable supersymmetric AdS
vacua [19].

e Higher derivative and loop corrections to the Kdhler potential: The last effects to be
taken into account are o’ corrections to the Kéahler potential [23-25], while string
loop effects can be estimated to give rise to negligible contributions to the scalar

— 42 —



potential [48-50]. These higher derivative corrections yield new stable vacua where
supersymmetry is spontaneously broken by the stabilisation mechanism which induces
non-zero F-terms for the Kéhler moduli, in a way very similar to type IIB LARGE
Volume Scenarios [26, 27]. These new vacua can be Minkowski due to the positive
contribution from threshold effects. However, due to the lack of tuning freedom in
W, it is very hard to achieve vacua with exponentially small vacuum energy. Thus
we used the term ‘Minkowski vacua’ to refer to solutions with a cosmological constant
suppressed by at least a loop factor with respect to the height of the barrier in the
scalar potential which prevents the Kahler moduli to run-away to infinity. Moreover,
this stabilisation mechanism allows for anisotropic compactifications with two extra
dimensions which are much larger than the other four. In this way, the unification
scale can be lowered down to the observed phenomenological value [28, 29|, fitting
very well with the picture of 6D orbifold GUTs [29, 30].

After showing the existence of this new kind of supersymmetry breaking vacua, we
estimated the size of the soft terms generated by gravity mediation. Interestingly, they fea-
ture universal scalar masses, A-terms and 1/ Bu-term of O(mg/2) and suppressed gaugino
masses at the %-level. Moreover, a potentially viable QCD axion candidate is given by the
axionic partner of the ‘large’ 2-cycle modulus. However, due to the lack of tuning freedom in
the flux superpotential Wy ~ O(0.1 —0.01), the gravitino mass mg,, = WoMp/+/2Re(S)V
becomes of order Mgy ~ 1016 GeV for Re(S) ~ 2 and V ~ 20. This is not a problem if one
does not believe in the solution of the hierarchy problem based on low-energy supersym-
metry, but it represents a generic prediction of weakly coupled heterotic compactifications
on internal manifolds which are smooth CY three-folds up to o effects.

However, our stabilisation procedure for the Kéhler moduli that leads to spontaneous
supersymmetry breaking, is completely independent on the supersymmetric mechanism
which is used to fix the dilaton and the complex structure moduli. Hence, if one is in-
stead interested in low-energy supersymmetry, our way to break supersymmetry along the
Kéhler moduli directions could still be used by focusing on different ways to freeze the S-
and Z-moduli:

1. In some particular examples all the complex structure moduli could be stabilised by
the requirement of a holomorphic gauge bundle [33-35]. In this case one could have
Wy = 0 and an exponentially small superpotential, leading to a TeV-scale gravitino
mass, could be generated by gaugino condensation.

2. In Abelian orbifold models the number of untwisted complex structure moduli is very
small. There are also some non-Abelian orbifolds with no Z-moduli at all. Hence in
this case it is rather likely that all the Z-moduli could be fixed by the holomorphicity
of the gauge bundle once all the singlets are fixed at non-zero VEVs by cancelling
Fl-terms or by the effect of higher order terms in W [4-8]. Again, mg/, could then
be lowered to the TeV-scale due to the exponential suppression coming from gaugino
condensation [31, 32].
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3. The flux superpotential could have enough tuning freedom in the presence of fluxes
which are the equivalent of type IIB Ramond-Ramond fluxes. This is the case of
non-complex manifolds with new geometric fluxes where the H flux gets modified to
H = H +idJ [40, 42-45].16

We finally stress that, even if these models could give low-energy supersymmetry, the pos-
sibility to tune the cosmological constant to the observed value still remains a challenge,
in particular in the cases without a large flux discretuum.
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A Dimensional reduction of 10D heterotic action

The 10D heterotic supergravity action in string frame for energies below the mass of the
first excited string state M = ¢! with £; = 27v/o/ contains bosonic terms of the form:

1 o
S D /dlox —Ge™ % <R— 4TrF2>

(27r)70/4
M3, 10 —2¢ 1 10 —2¢ 2
=—F [d72vV-Ge "R -~ [ d7zv-Ge “TrF”. (A1)
2 297,
Comparing the first with the second line in (A.1), we find:
2
8 _ _ 8 2 _ _ —6
MIO = W = 47TMS and 910 = OZ/M180 == 47TMS . (AQ)
Compactifying on a 6D CY three-fold X, the 4D Planck scale Mp turns out to be:
M2 = e 29 M8 Vol(X) = dn g2V M2, (A.3)

where we measured the internal volume in units of M ! as Vol(X) = V5 and we explicitly
included factors of the string coupling gs = e!??. On the other hand, the 4D gauge coupling
constant becomes:

_ _ 47 Vol(X) _
g = dmg;* = 2w 9% V. (A.4)

163ee also [65].
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The tree-level expression of the gauge kinetic function f = S requires Re(S) = 912,
implying the following normalisation of the definition of the dilaton field:

S = ﬁ (e*%v + ia) . (A.5)

From (A.4), we immediately realise that there is a tension between large volume and weak
coupling for the physical value agt, ~ 25:

V= g2agiy ~ g225 < 25 for gs S 1. (A.6)

On top of this problem, isotropic compactifications cannot yield the right value of the GUT
scale Mgy ~ 2.1-10'6 GeV which is given by the Kaluza-Klein scale My, = MS/Vl/B. In
fact, combining (A.3) with (A.4), one finds that the string scale is fixed to be very high:

o
47raGUT 1007

M? =

s

~ (1.35-10'7 GeV)? (A.7)

In turn, for V < 25, the GUT scale becomes too high: Mgy = Mgk > 8 - 10'° GeV. The
situation can be improved by focusing on anisotropic compactifications with d large extra
dimensions of size L = xfs with > 1 and (6 — d) small dimensions of string size | = /5.
The internal volume then becomes Vol(X) = L4(6—4) = 246 = V¢S implying that the
Kaluza-Klein scale now becomes My, = M;/xz = Ms/Vl/d. Clearly, for the case d = 6,
we recover the isotropic situation. The case with d = 1 is not very interesting since CY
manifolds do not admit non-trivial Wilson lines to perform the GUT breaking. We shall

therefore focus on the case d = 2 where we get the promising result:

M,
* >2.7-10'0 GeV. A8
N (A.8)
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