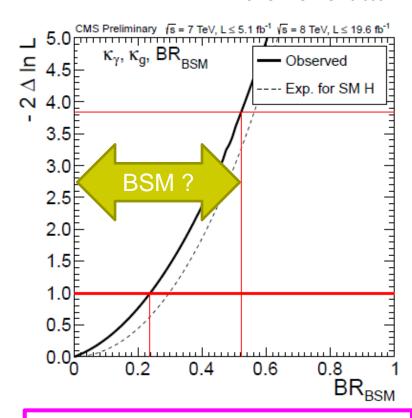
Higgs Searches Beyond the Standard Model

Rainer Mankel

Deutsches Elektronen-Synchrotron (DESY) 汉堡 on behalf of the ATLAS, CDF, CMS and D0 Collaborations

> PIC2013 Conference, IHEP Beijing, 3-7 Sept 2013



Introduction

CMS PAS HIG-13-005

- Most relevant questions after discovery of a Higgs boson at ~125 GeV:
 - properties of this Higgs boson, couplings etc → see talks by James, Romain & Elisabetta
 - <u>structure</u> of the Higgs sector
- At the level of current measurements, the observed state is compatible with the Standard Model Higgs
 - but SM features quadratically divergent self-energy corrections at high energies (Hierarchy problem)
 - many other open questions: dark matter, naturalness ("μ problem"), CP violation in early universe
- Even with SM-like tree-level production mechanisms, there is still plenty of room for non-SM decays of the H(125)
 - BR_{BSM}<52% at 95% CL

Searching additional Higgs states is potentially the fastest way of answering these questions

Extended Higgs Sectors

MSSM

- two complex scalar doublet fields
- five physical Higgs bosons

2HDM Models

- more general formulation of model with two scalar fields
 - MSSM is a type-II 2HDM
- CP violation and FCNC possible

Standard Model

- single complex scalar doublet field
- one physical Higgs state (H)

NMSSM

- two complex scalar doublet fields + additional singlet
- seven physical Higgs states

Additional SM-like Higgs

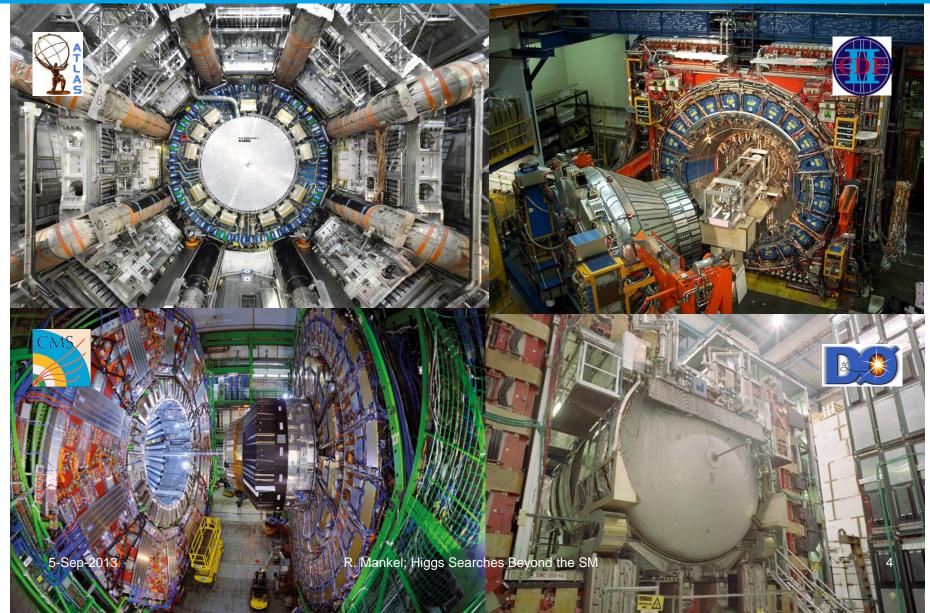
high mass searches

Fermiophobic

not coupling to fermions

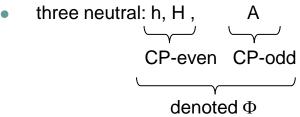
Hidden Sector

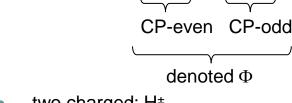
- invisible Higgs
- dark SUSY


Many others

. . .

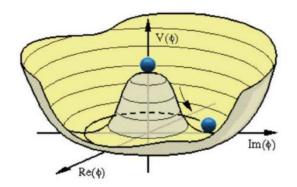
The Experiments


MSSM Higgs Bosons

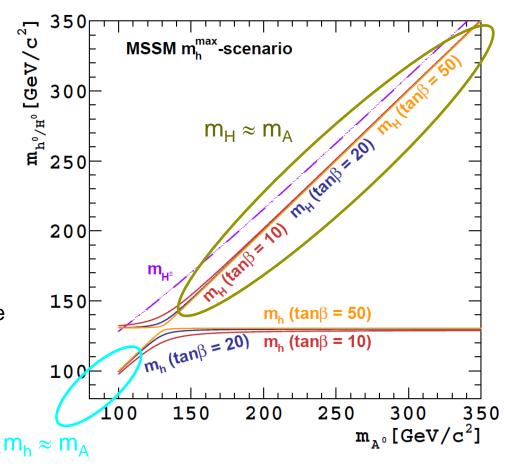


MSSM Higgs Bosons

- MSSM features two complex Higgs doublets
- Five physical Higgs bosons

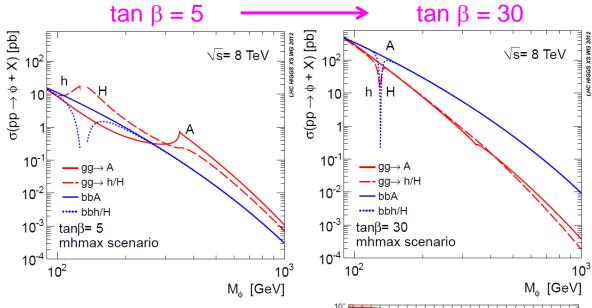


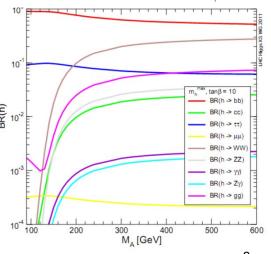
- $\tan \beta$ (ratio of vacuum expectation values of the two Higgs doublets)
- Beyond tree level, additional parameters enter via radiative corrections
 - benchmark scenarios to compare different measurements (by default "m_hmax")



Higgs Masses in the MSSM

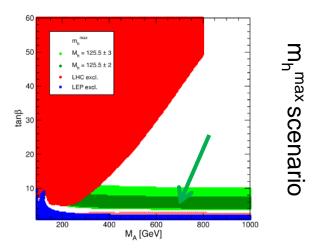
- The mass of the CP-odd Higgs boson A is usually ~degenerate with one of the CP-even bosons
 - $m_A \approx m_H \text{ for } m_A >> m_h^{max}$
 - $m_A \approx m_h$ for $m_A \ll m_h^{max}$
- With the exception of the μμ channel, this degeneracy cannot be resolved within the mass resolution
 - visible cross section effectively doubles
- → Together with the effect of the Higgs coupling to b quarks, visible cross sections in b-associated production are typically enhanced by a factor of ≈ 2 tan² β

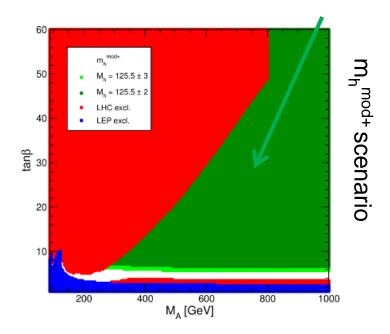



MSSM Higgs Production & Decay

- Strong enhancement of cross section with increasing tan β
 - in particular due to associated production

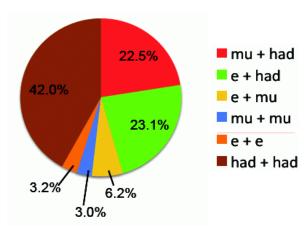
- Dominant decays of the neutral MSSM Higgs boson (at large tan β):
 - bb (~ 90%)
 - ττ (~ 10%)
- → Unlike the SM, these decay modes may play important rôle even at high masses



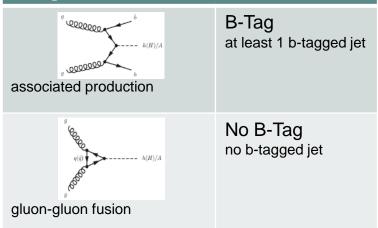

MSSM & the 125 GeV Higgs Observation

M. Carena et al.; arXiv:1302.7033

- Evaluate impact of H(125) in m_h^{mod±} scenarios
 - re-tuned version of m_h^{max} scenario, suits better the observed Higgs mass
 - theoretical uncertainties taken into account

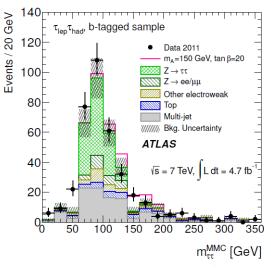

- The H(125) observation does not exclude a heavy MSSM Higgs in wide range of tan β
- At large M_A (>>m_Z) the "light" MSSM Higgs boson (h) becomes standard model-like (decoupling limit) → direct searches are essential
- Both SM and MSSM fit the current set of H(125) measurements ~equally well

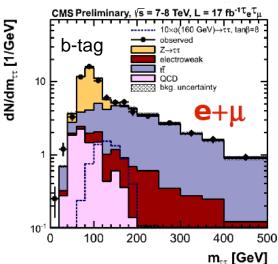
P. Bechtle et al., arXiv:1211.1955

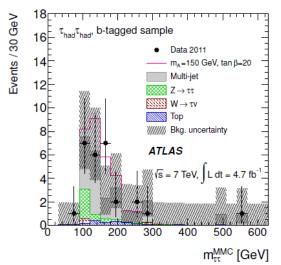


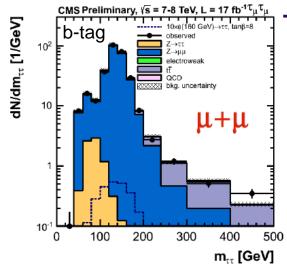
$\Phi \rightarrow \tau \tau$ Search

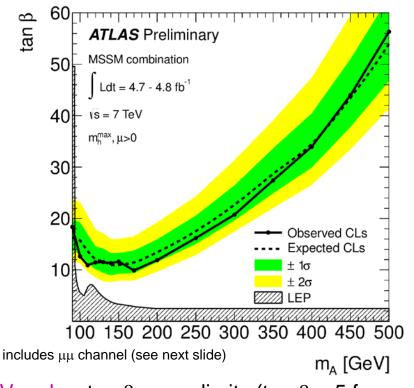
Production mechanisms & event categories

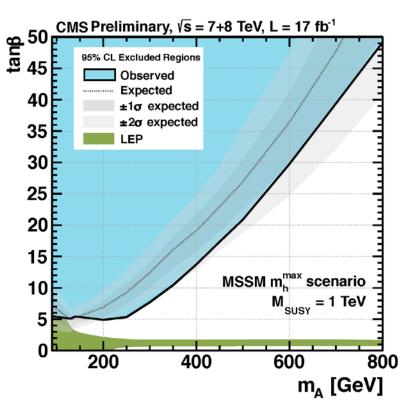

- Good compromise between relatively large BR and manageable backgrounds
- To-date, analyses cover five of six possible ττ decay patterns
 - e+μ, e+had, μ+had, had+had (ATLAS), μ+μ (CMS)
- Mass of τ pair is reconstructed from visible τ decay products and missing E_T
 - CMS: likelihood technique
 - ATLAS: "Missing Mass Calculator" *
- Main backgrounds (in broad strokes may differ from channel to channel):
 - $Z \rightarrow \tau \tau$:
 - embedding technique: take Z→μμ from data, replace μ's by simulated τ decays
 - Z→ee / μμ
 - $t\bar{t}$ and di-boson
 - QCD multijet, W+jets:


* A. Elagin et al., Nucl.Instrum.Meth. A654 (2011) 481-489



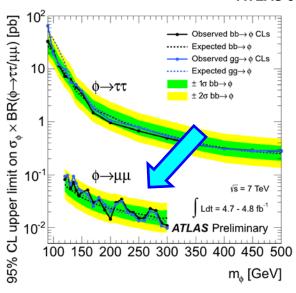



ATLAS JHEP 1302 (2013) 095 CMS PAS HIG-12-050

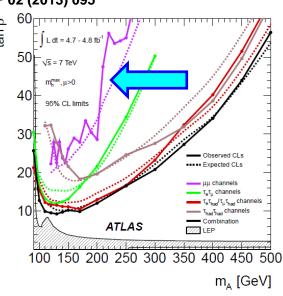

- → Background compositions differ significantly across the various decay channels
 - All distributions well described by background hypothesis

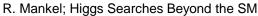
$\Phi \rightarrow \tau \tau$: Results

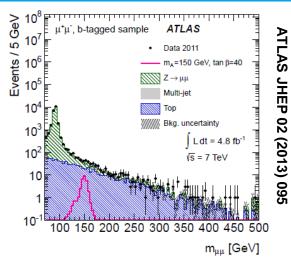
- → Very low tan β upper limits (tan β < 5 for m_A<250 GeV!)
 - touching the LEP constraint at low m_A
- → Addition of 8 TeV data → extension of mass scale up to 800 GeV (CMS)

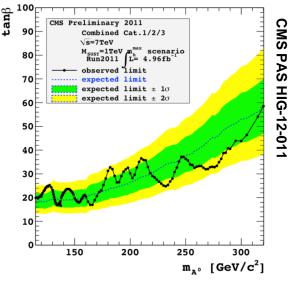


Φ → μμ Search

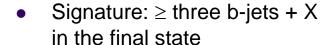


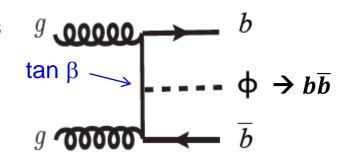

- Low BR, but also excellent mass resolution (close to Γ_{Φ}) and manageable BG
- Dominant backgrounds: Drell-Yan, bbZ⁰, top
- \rightarrow Limits reach to σ * BR in the 20-100 fb range
 - \rightarrow significant constraints in (m_A, tan β) plane


ATLAS JHEP 02 (2013) 095



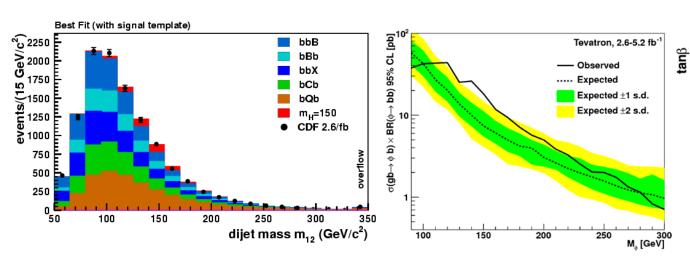
5-Sep-2013

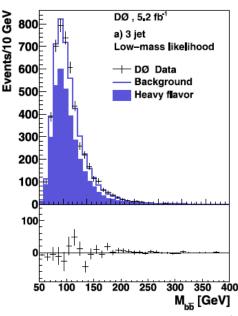


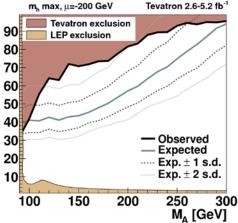

$\Phi \rightarrow b\bar{b}$ Search

- Largest expected BR, but very difficult channel
 - huge background from multi-jet QCD
- Search for associated production with at least one additional b quark
 - \rightarrow enhancement if tan $\beta > 1$

one of the most challenging triggers

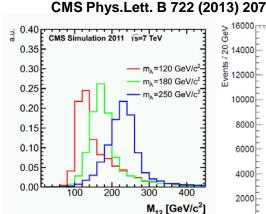


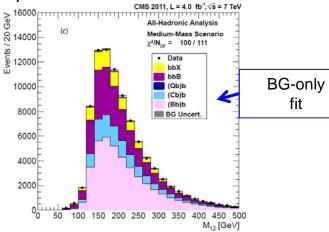

$\Phi \rightarrow b\bar{b}$: Tevatron Measurements

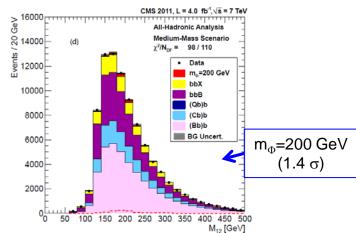


CDF+D0 Phys.Rev. D86 (2012) 091101

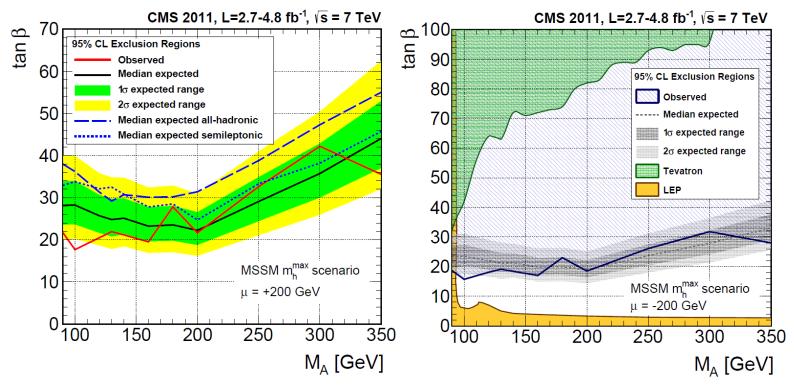
- Search for MSSM Higgs boson decaying to b quarks, and produced with at least one additional b jet
- Background treatment:
 - CDF: mass + global b-tag templates, derived from double btag sample with btag efficiency weights. Combination fitted to data.
 - D0: fractional contributions of multi-jet processes determined by fitting p_T distributions from simulation to the data.
- No signal seen over background expectation
 - modest excesses of ~2.8σ (CDF) and ~2.5σ (D0)





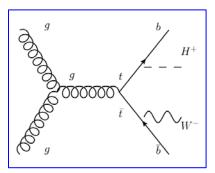

CMS $\Phi \rightarrow b\bar{b}$ Search

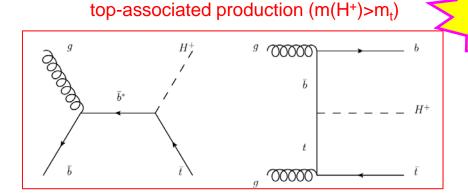
- CMS analysis searches in all-hadronic (shown) and semi-leptonic signatures (see backup)
- All-hadronic analyses inspired by CDF method
- Background-only fit with shapes determined from double-btag sample gives excellent agreement with triplebtag data
- No signal observed
- First measurement of this kind at the LHC



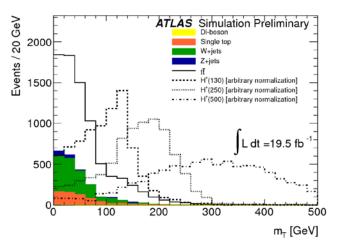
CMS Phys.Lett. B 722 (2013) 207

- For comparison with Tevatron, CMS results also given for μ = -200 GeV (right)
- → Already with 2011 data, CMS has significantly higher sensitivity
- → CMS does not confirm ~2σ-level excesses seen by CDF + D0

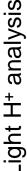

H[±] Search (H⁺ $\rightarrow \tau \nu_{\tau}$ Mode)

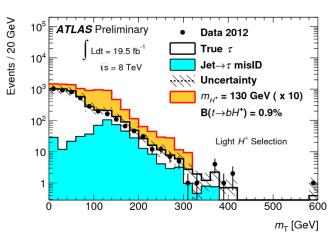


• $H^+ \rightarrow \tau v_{\tau}$ dominant decay mode for tan $\beta > 5$ and $m(H^+) < m_t$


ATLAS CONF-2013-090

- Main production modes:
 - top decays (m(H⁺)<m_t)


- Fully hadronic final states (ATLAS):
 - veto on other leptons
 - 3-4 jets (≥1 b-tagged)
 - large MET
- Discriminating variable m_T
 (= transverse invariant mass of τ + MET)
- Backgrounds: $t\bar{t}$, single-top, W/Z+jets, di-bosons, QCD



H⁺ \rightarrow τν_τ Search (cont'd)

Heavy H⁺ analysis

Data 2012

 $\mathsf{Jet}{ o} au$ misID

 m_{H^+} = 250 GeV (x 10)

 $tan(\beta) = 50$, MSSM m^{max}

Heavy H⁺ Selection

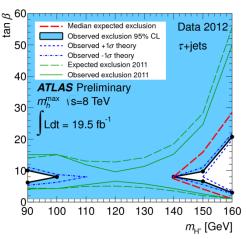
500

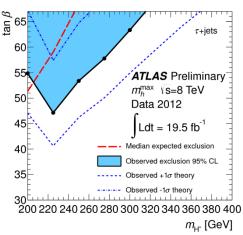
 m_{T} [GeV]

Uncertainty

True τ

ATLAS Preliminary


100


 $Ldt = 19.5 \text{ fb}^{-1}$

s = 8 TeV

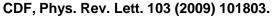
200

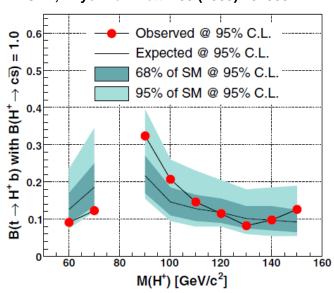
300

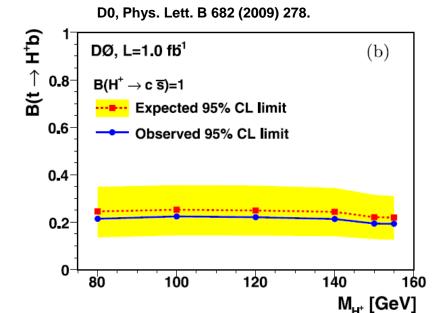
ATLAS CONF-2013-090

- Full 2012 dataset used
- Mass ranges 90-160, 180-600 GeV covered
- No evidence for H⁺ found
- At low m(H+), large parts of MSSM parameter space excluded

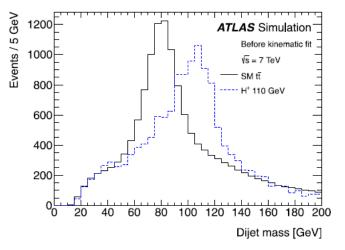
10²

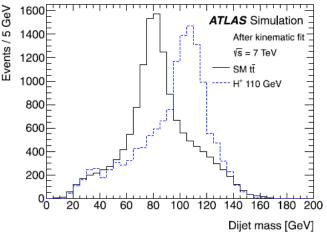

10




Light H[±] Search in cs

- For tan β <1, $H^{\pm} \rightarrow c\bar{s}$ becomes the dominant decay mode (~70% for $m_{H^{\pm}}$ ~110 GeV)
- First investigation of this process by CDF and D0 at the Tevatron collider
 - no indication for H⁺ signal
 - → upper limits on B(t \rightarrow H⁺ b) around 10-30%, assuming B(H⁺ \rightarrow $c\bar{s}$)=100%
- In the mean time, has been measured by ATLAS at the LHC

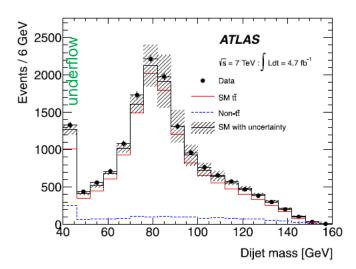

Light H[±] Search in $c\overline{s}$ (cont'd)

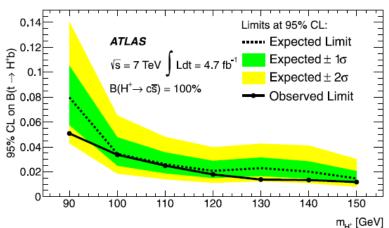


- Same topology as $t\bar{t}$ decays in lepton + jets channel
- Search for second peak in the di-jet mass distribution
- Event selection:
 - isolated lepton, 4 jets (two with b-tag)
 - MET
- Kinematic fit for mass reconstruction is essential
- Significant improvement of separation between standard ttbar background and signal (σ_m~12 GeV)

g \bar{S} \bar{S} \bar{S} \bar{V}_{ℓ}

ATLAS Collab., Eur. Phys. J. C 73 (2013) 2465.

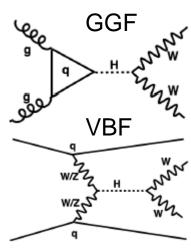

Light H[±] Search in $c\overline{s}$ (cont'd)

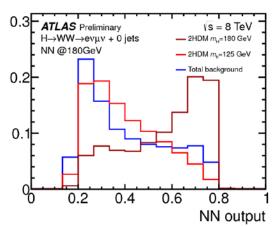


Main backgrounds:

- SM $t\bar{t}$
- QCD multi-jet (data-driven, shape from semi-isolated lepton control region)
- W/Z+jets, single top
- Observed mass spectrum well described by background estimation
 - no indication for H⁺ signal
- Observed limits between 1-5 %
- \rightarrow Most stringent results to date in $c\bar{s}$ channel

ATLAS Collab., Eur. Phys. J. C 73 (2013) 2465.

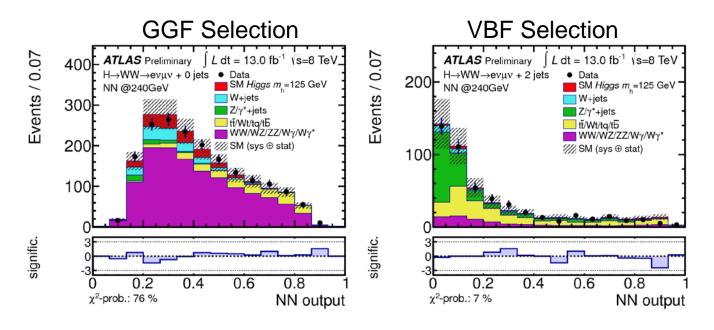

Two Higgs Doublet Model (2HDM)


Generic 2HDM Higgs Search

- Phenomenological approach: simple extension of SM Higgs sector by second complex Higgs doublet
 - five Higgs bosons: h, H, A, H[±]
 - can accommodate CP violation (as opposed to MSSM at tree level)
 → possible explanation of baryon asymmetry in universe?
- Examples of 2HDM models with natural flavor conservation:
 - Type I: all quarks couple only to one Higgs doublet
 - Type-II: up-type quarks (Q=+2/3) couple to one, down-type quarks (Q=-1/3) couple to the other Higgs doublet
 - tan β : ratio of VEVs. α : scalar mixing angle
- ATLAS analysis: h / H → WW^(*)→eνμν, assume m_h=125 GeV
 - pseudoscalar A does not decay to W pairs
 - exactly 2 leptons of opposite charge, E_{T,rel}^{miss}
 - gluon-gluon fusion (GGF) selection: zero jets
 - vector-boson fusion (VBF) selection: two jets
 - neural network combines kinematic variables to enhance S/B
 - trained for each mass point

ATLAS CONF-2013-027

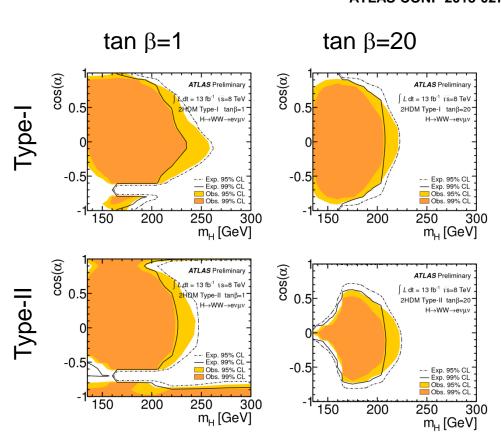
event fraction / 0.07



2HDM Higgs Search: Results

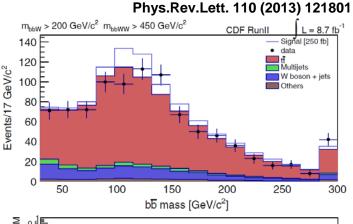
- H(125) treated as "background"
- → No indication of a signal (would appear at large NN output)

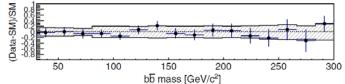
ATLAS CONF-2013-027

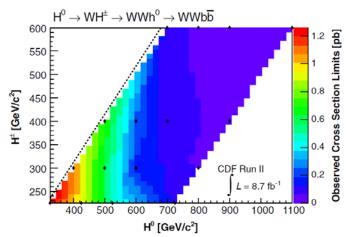


2HDM Higgs Search: Results

ATLAS CONF-2013-027

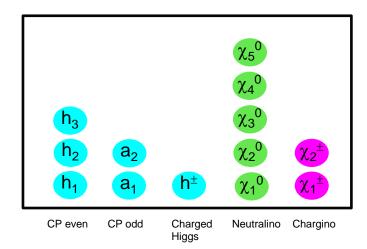

- Interpretation: exclusion contours in the cos α m_H plane for different values of tan β
 - different results for Type-I and Type-II 2HDM models
- For low masses (< 200 GeV), significant parts of the cos α range are excluded




2HDM Search in Cascade Decays

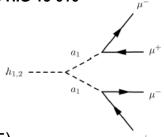
- Search for a heavy scalar H⁰ with a cascade decay:
 - $H^0 \rightarrow H^+W^- \rightarrow (h^0W^+) W^- \rightarrow (b\bar{b}) W^+W^-$
 - one W decaying leptonically
 - final state similar to ttbar events
 - 1 lepton, ≥4 jets, ≥1 b-tags, MET>20 GeV
- Dominant backgrounds:
 - $t\bar{t}$ production modeled by MC (PYTHIA)
 - W+jets background modeled with ALPGEN/PYTHIA
- Reconstruct 1 W from lepton+MET and the other from jet pair with matching mass
 - search signal in m_{bb}
- Cross section upper limits obtained scanning the space of H[±] and H⁰ masses
 - assume B(H⁰→H+W⁻)=B(H+→h⁰W+)=100%
 - → limits range between 1.3-0.015 pb
 - first measurement of this kind

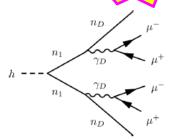
NMSSM Higgs Bosons

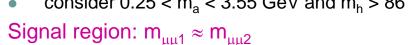

The NMSSM Higgs Sector

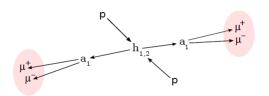
- Two complex Higgs doublets + additional scalar field
- Physical states are mixtures: h₁, h₂, h₃, a₁, a₂, h[±]

- Requires less fine tuning for Higgs mass, solves "μ problem" of MSSM
- → Rich phenomenology



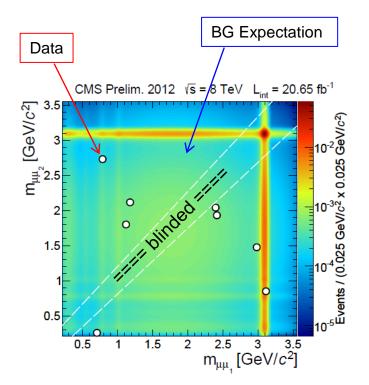

$h_{1,2} \rightarrow aa \rightarrow (μμ) (μμ) Search$


CMS PAS HIG-13-010

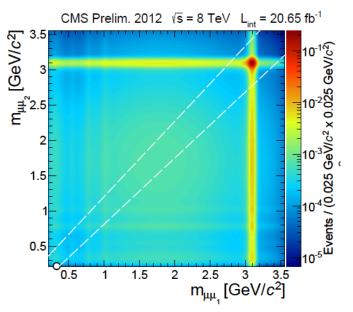

Search for a non-standard Higgs decay into two very light bosons, resulting in two boosted pairs of muons

- NMSSM interpretation: $h_{1,2} \rightarrow a_1 a_1 \rightarrow (\mu \mu) (\mu \mu)$
 - either h₁ or h₂ could correspond to observed H(125)
 - a₁ is a new light CP-odd Higgs boson (m<2m₂)
- Dark SUSY interpretation: $h \rightarrow 2 n_1 \rightarrow 2 n_D + 2 \gamma_D \rightarrow 2 n_D + (\mu\mu) (\mu\mu)$
 - models motivated by excesses in positron spectra observed by satellite experiments
 - cold dark matter with a mass scale of ~1 TeV
 - n_1 is lightest visible neutralino, n_D is light dark fermion, and γ_D light (massive) dark photon that weakly couples to SM particles
- Search for events with two isolated, boosted muon pairs
 - consider $0.25 < m_a < 3.55$ GeV and $m_h > 86$ GeV

- Main backgrounds:
 - direct double-J/w production
 - $b\bar{b}$ production with subsequent di-muon decays (double-semileptonic or resonances)



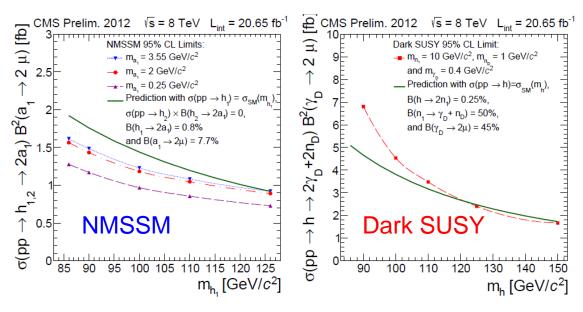
$h_{1,2} \rightarrow aa \rightarrow (μμ) (μμ)$: Results



- $b\overline{b}$ background from bb-enriched control sample, double-J/ ψ production from PYTHIA
- → 8 events observed in off-diagonal sideband
- → After unblinding, only 1 event is observed in the diagonal signal region
 - expected background: 3.8 ± 2.1 events

CMS PAS HIG-13-010

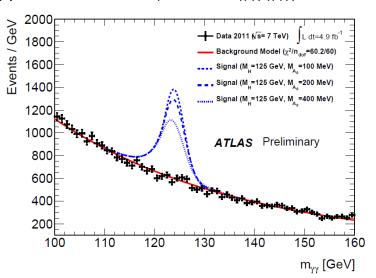
after unblinding (signal region):

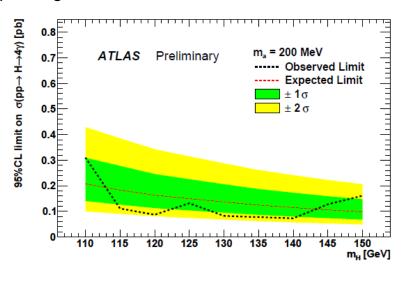


$h_{1.2} \rightarrow aa \rightarrow (\mu\mu) (\mu\mu)$: Results

CMS PAS HIG-13-010

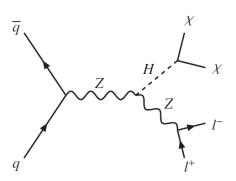
- Results are interpreted in context of NMSSM and dark-SUSY benchmark models
 - signal efficiencies depend on assumptions for either m_a or m_h
- → NMSSM: upper limits vs m_{h1} and m_{a1}
 - m_{h2} unrestricted → conservative assumption on efficiency
 - for NMSSM prediction, assume that only h₁ decays into 2a₁
- → Dark SUSY: upper limits vs m_h
- Best experimental limits in this signature

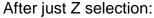


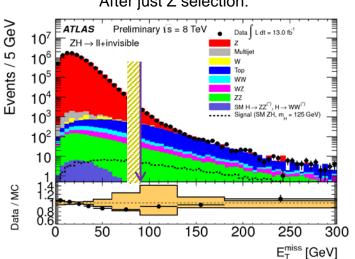

H(125) Decays to Light NMSSM Pseudo-Scalars

- If very light NMSSM CP-odd Higgs bosons exist, they might be observed in the decay
 H(125) → a a → (γγ)(γγ)
- Here: assume m_a=100-400 MeV
 - di-photon system would be highly boosted. Potential background for SM H $\rightarrow \gamma \gamma$ analysis
- Analysis similar to SM H→ γγ
 - additional selection based on shower shape variables & calorimetric isolation
- No signal observed
 - upper limits of $\sigma^*BR(H\rightarrow aa\rightarrow (\gamma\gamma)(\gamma\gamma))$ in 0.1-0.2 pb range

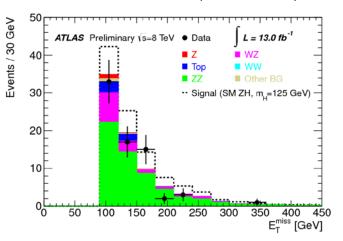
ATLAS CONF-2012-079


Exotic Higgs Bosons


Invisible Higgs



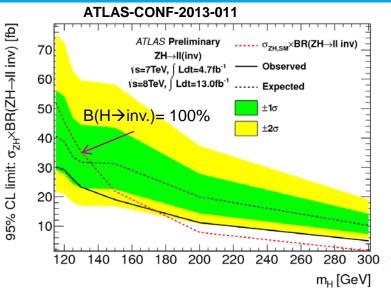
- If the Higgs would decay with a significant fraction to invisible particles, this might be detectable in associated production with a Z boson
 - look for events with $Z \rightarrow I^+I^-$ plus missing E_T , and little else
- Main backgrounds:
 - $ZZ \rightarrow ||vv, ZW \rightarrow || ||v, WW \rightarrow ||v|||v$
 - Z+jets



ATLAS-CONF-2013-011

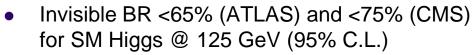
After final selection (8 TeV shown):

- azimuthal separation
- MET balancing
- veto on additional jets

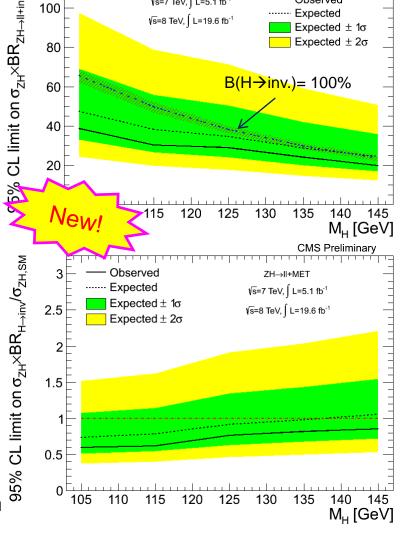

Invisible Higgs: Results



CMS Preliminary


4/4/4/r $\sigma_{ZH.SM} \times BR_{ZH \rightarrow ||+in|}$

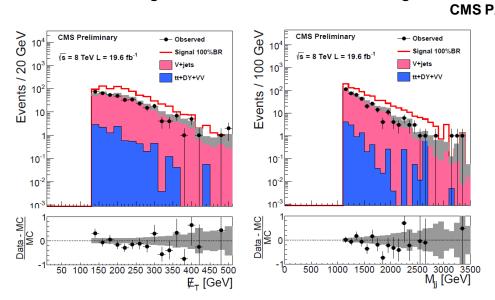
Observed

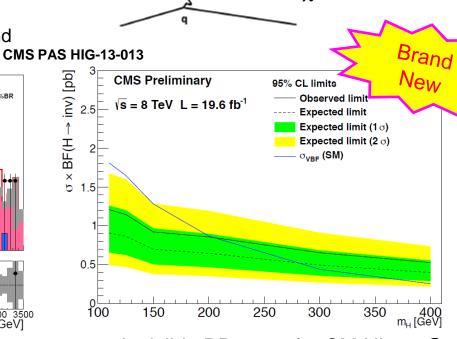


120

Leaves plenty of room for invisible decay modes

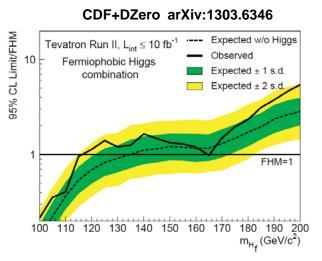
CMS PAS HIG-13-018

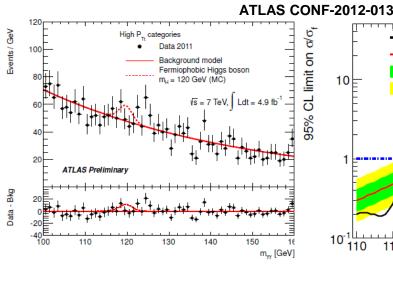

√s=7 TeV, L=5.1 fb-1

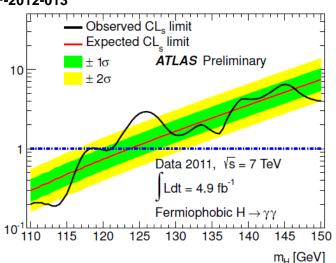

Invisible Higgs (cont'd)

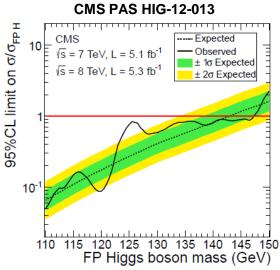
- Invisible Higgs can also be searched in VBF
 - cross section higher than in ZH production
 - special VBF+MET triggers
 - large efforts to reduce QCD background

Data in good agreement with SM backgrounds (mainly V+jets)


→ Invisible BR<69% for SM Higgs @ 125 GeV (95% C.L.)

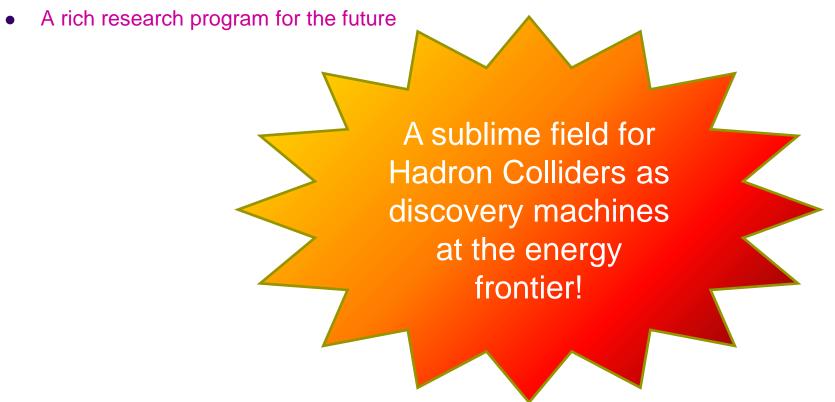



Fermio-Phobic Higgs



- If a Higgs boson does not couple to fermions
 - production via gluon-gluon fusion impossible
 - standard production channel is vector boson fusion (VBF) or vector-boson associated production (VH)
 - → BRs for di-boson modes enhanced
- Analysis largely similar to SM analysis
- → Fermio-phobic Higgs excluded within m_H= 100-147 GeV

Summary


- Observation of SM-like features of the H(125) state does not imply that the Higgs sector must have SM structure
 - best way of clarification: direct search for additional Higgs signatures
- A broad attack is launched to clarify whether the Higgs sector reaches beyond the Standard Model.
 - MSSM: at low m_A (<140 GeV) LHC & LEP limits close. Large m_A and tan β still possible. Improved constraints for H[±]
 - 2HDM: constraints in (cos α , tan β) space. First searches in cascade decays
 - NMSSM: wide open range of possibilities.
 - only few channels/signatures addressed so far.
 - already relatively stringent limits for light CP-odd Higgs bosons
 - additional analyses are underway.
 - also Dark SUSY interpretation possible
 - Invisible Higgs: first limits obtained in associated production and VBF. Still large BR(H→inv) possible.
 - Fermio-phobic Higgs excluded within 100-147 GeV

Outlook

- Non-SM Higgs searches have just scratched the surface
 - many LHC BSM analyses still need to be updated with full 8 TeV statistics
 - many additional new analyses underway
 - 13 TeV running will further extend the reach towards higher masses

