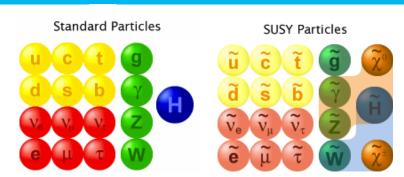

Searches for R-parity Violated Supersymmetry at CMS

On behalf of the CMS Collaboration

Altan Cakir
DESY
EPS-HEP 2013,
Stockholm, Sweden.



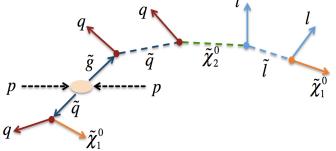
Supersymmetry and R-parity

- O Weak scale supersymmetry (SUSY) is one of the most studied extensions of the Standard Model (SM).
- SUSY postulates super-partners for all SM particles:

SM fermions ⇔ SUSY bosons SM bosons ⇔ SUSY fermions

quarks leptons gauge bosons

squarks sleptons gauginos


- Definition: R-parity \rightarrow R_p = $(-1)^{3B+L+2s}$ (B)aryon and (L)epton number and s for particle spin
- In case of a R-parity conserving theory

 \rightarrow SM particle fields : $R_p = +1$

 \rightarrow SUSY particle field: $R_p = -1$

phenomenologically means:

- → Superpartners produced in pairs
- → Lightest Supersymmetric particle (LSP) stable
- > Proton stabilized

Generic SUSY Searches: R-parity conserved scenario Details can be seen in the following talks:

- Direct stop search, Hongxuan Liu
- Search for multiple W and b quarks, Keith Ulmer
- Searches for Gauginos and Sleptons, L. Schutska,
- Search for natural SUSY, S. Sekmen,
- Search for inclusive SUSY, C. Autermann

If R-parity is not conserved?

R-Parity Violation in Supersymmetry?

- Proton decay involves violating both lepton and baryon number simultaneously, no single renormalizable R-parity violating (RPV) coupling leads to proton decay.
 - ✓ R-parity violation → one set of the R-parity violating couplings are non-zero!

The most general superpotential
$$\rightarrow$$
 W = W_{MSSM} + W_{RPV}

$$W_{MSSM} = h^{e}_{ij}L_{i}H_{1}\overline{E}_{j} + h^{d}_{ij}Q_{i}H_{1}\overline{D}_{j} + h^{u}_{ij}Q_{i}H_{2}\overline{U}_{j} + \mu H_{1}H_{2}$$

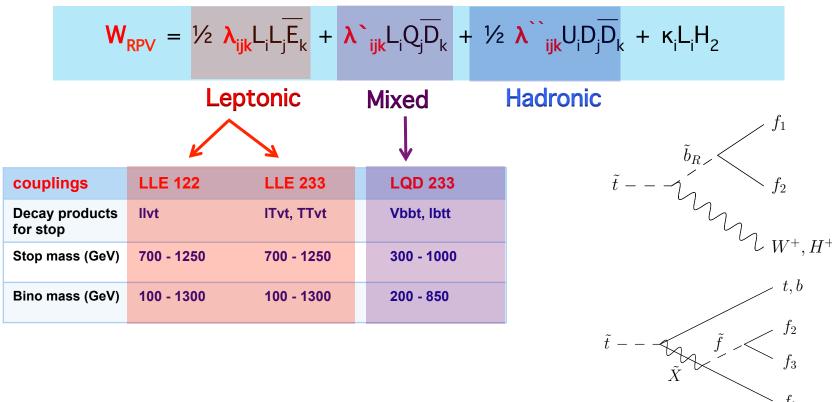
$$\mathbf{W}_{RPV} = \frac{1}{2} \frac{\lambda_{ijk} L_i L_j \overline{E}_k}{\lambda_{ijk} L_i Q_j \overline{D}_k} + \frac{1}{2} \frac{\lambda_{ijk} U_i D_j \overline{D}_k}{\lambda_{ijk} U_i D_j \overline{D}_k} + \kappa_i L_i H_2$$

- RPV couplings can violate lepton and baryon number conservation
- Can result in two, three and four body decays of supersymmetric particles to Standard Model particles
- Couplings chosen to have prompt decay, and to satisfy constraints from neutrino mass and proton decay.
- \star L_i(Q_j) are lepton(quark) SU(2)_L doublet, $\overline{E}_j(\overline{D}_j, \overline{U}_j)$ are the electron (down- and up-quark) SU(2)_L singlet, λ_{ijk} , λ_{ijk} , λ_{ijk} , λ_{ijk} are Yukawa couplings, κ mass parameter.

Searches for R-parity violated Supersymmetry at CMS

- Search for stop in R-parity-violating supersymmetry with three or more leptons and b-tags → CMS-PAS-13-003*
- ② Search for RPV SUSY in the 4-lepton final state in pp collisions at 8 TeV → CMS-PAS-13-010*

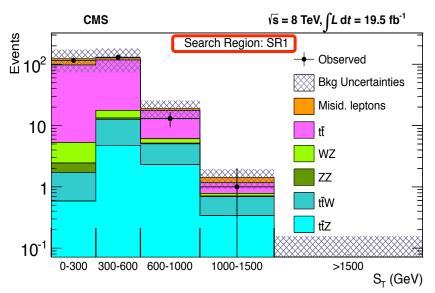
Total weight : 14000 tonnes


Overall diameter : 15.0 m
Overall length : 28.7 m
Magnetic field : 3.8 T

1 Stop in RPV Supersymmetry

- Focus on stop pair production, where stop mass changes between 300 GeV to 1250 GeV
- > Search for RPV couplings that produce multi-lepton final states

1 Event Classification and Results

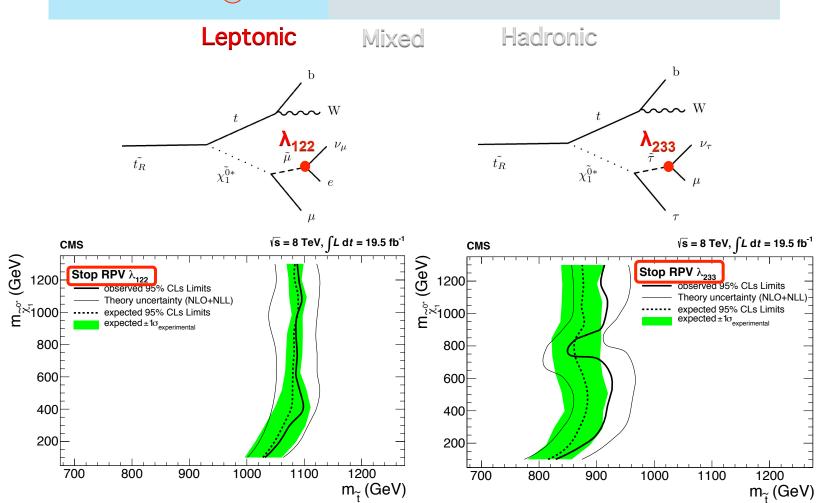

- Using 19.5/fb, full data set from 2012 CMS data
- \triangleright Light lepton p_T must pass 20/10/10(/10) GeV threshold
- Require at least one tagged b-quark jet
- Remove events with OSSF* di-lepton mass on Z and below 12 GeV J/Ψ events
- \triangleright Define search regions in different S_T bins,

$$S_T = MET + HT + P_T^{leptons}$$

MET = Missing Transverse Energy

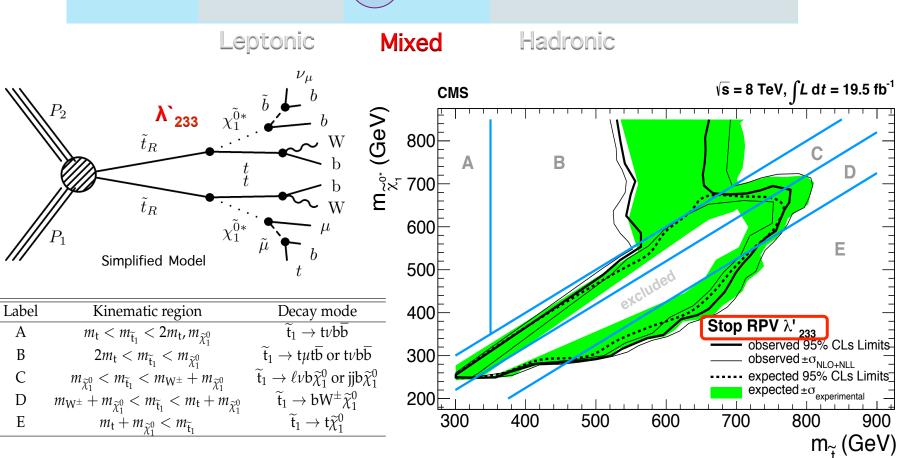
HT = Scalar sum of all selected Jet P_{τ}

 $P_T^{leptons}$ = Selected leptons P_T


	-2K.		44.										
SR	$N_{\rm L}$	ľ	N_{τ}	$0 < S_{\rm T} < 300$		$300 < S_{\rm T} < 600$		$600 < S_{\rm T} < 1000$		$1000 < S_{\rm T} < 1500$		$S_{\rm T} > 1500$	
				obs	exp	obs	exp	obs	exp	obs	exp	obs	exp
SR1	3		0	116	123 ± 50	130	127 ± 54	13	18.9 ± 6.7	1	1.43 ± 0.51	0	0.208 ± 0.096
SR2	3	2	≥ 1	710	698 ± 287	746	837 ± 423	83	97 ± 48	3	6.9 ± 3.9	0	0.73 ± 0.49
SR3	4	Ш	0	0	0.186 ± 0.074	1	0.43 ± 0.22	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.021
SR4	4	2	≥ 1	1	0.89 ± 0.42	0	1.31 ± 0.48	0	0.39 ± 0.19	0	0.019 ± 0.026	0	0.000 ± 0.021
SR5	3	Ш	0	_	_	_	_	165	174 ± 53	16	21.4 ± 8.4	5	2.18 ± 0.99
SR6	3	2	≥ 1	_	_	_	_	276	249 ± 80	17	19.9 ± 6.8	0	1.84 ± 0.83
SR7	4	Ш	0	_	_	_	_	5	8.2 ± 2.6	2	0.96 ± 0.37	0	0.113 ± 0.056
SR8	4	2	≥ 1	_	_	_	_	2	3.8 ± 1.3	0	0.34 ± 0.16	0	0.040 ± 0.033

1 Interpretation for RPV Stop SUSY Search

$$\mathbf{W}_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \frac{1}{2} \lambda_{ijk} U_i D_j \overline{D}_k + \kappa_i L_i H_2$$



1 Interpretation for RPV Stop SUSY Search

$$\mathbf{W}_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \frac{1}{2} \lambda_{ijk} U_i D_j \overline{D}_k + \kappa_i L_i H_2$$

2 RPV in Supersymmetry in 4-lepton Final State

- Selection of 4 isolated leptons in the event is already a strong requirement for SM processes
- 4 leptons requirement needs high lepton identification and reconstruction efficiency!
- \triangleright The lepton p_T must pass 20/10/10/10 GeV threshold
- \triangleright No MET, S_{τ} and b-quark jet requirement decouple from generic SUSY (RPC) searches
- > ZZ production is the dominant SM background.

$$\mathbf{W}_{RPV} = \frac{1}{2} \left(\frac{\lambda_{ijk} L_i L_j E_k}{\lambda_{ijk} L_i Q_j D_k} + \frac{1}{2} \lambda_{ijk} U_i D_j D_k + \kappa_i L_i H_2 \right)$$

Leptonic

Mixed

Hadronic

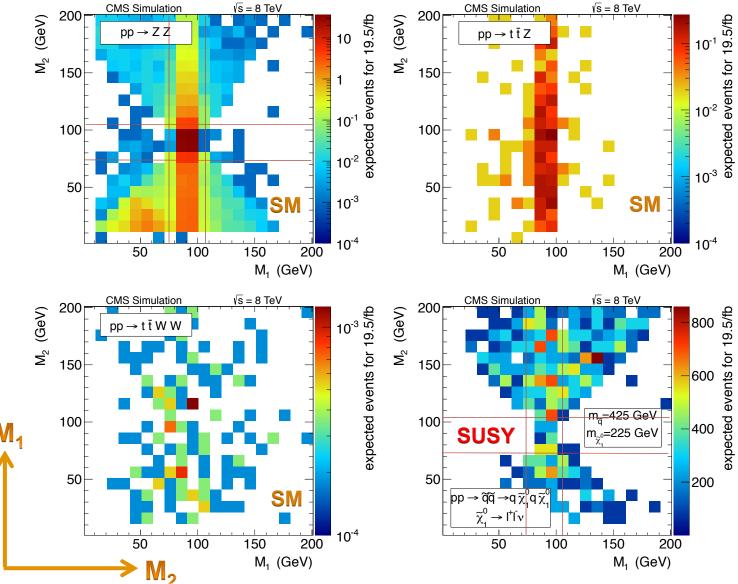
λ -term	neutralino LSP decay mode
$\lambda_{121} = -\lambda_{211}$	$e\mu\nu_e + ee\nu_\mu$
$\lambda_{122} = -\lambda_{212}$	$\mu\mu\nu_e + \mu e \nu_\mu$
$\lambda_{123} = -\lambda_{231}$	$ au\mu u_e + au e u_\mu$
$\lambda_{131} = -\lambda_{311}$	$e au v_e + e e v_ au$
$\lambda_{132} = -\lambda_{312}$	$\mu \tau \nu_e + \mu e \nu_{\tau}$
$\lambda_{133} = -\lambda_{331}$	$ au au u_e + au e u_ au$
$\lambda_{231} = -\lambda_{321}$	$e \tau \nu_{\mu} + e \mu \nu_{\tau}$
$\lambda_{232} = -\lambda_{322}$	$\mu \tau \nu_{\mu} + \mu \mu \nu_{\tau}$
$\lambda_{233} = -\lambda_{323}$	$ au au u_{\mu} + au\mu u_{ au}$

 \rightarrow Select OSSF pairs and find closest to M_z

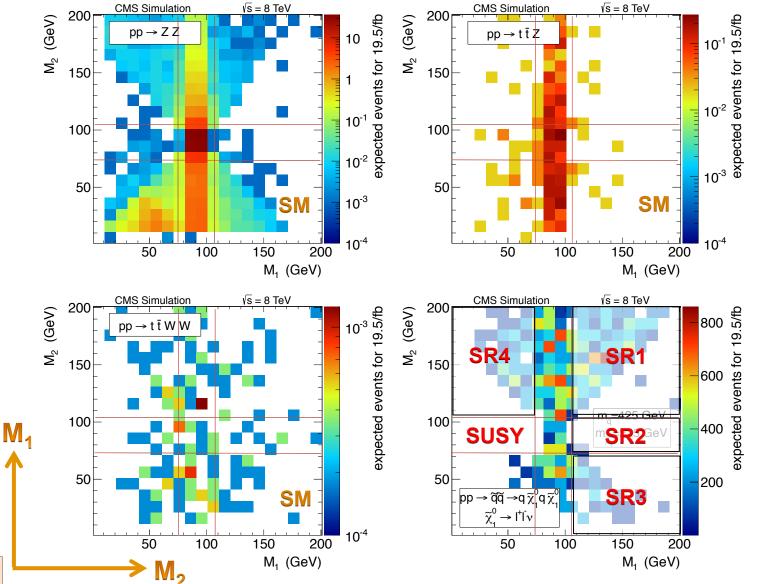
→ Another OS (OF or SF) pair

 M_1 M_2

Define 2D plot $(M_1 \text{ vs } M_2)$ for different OS regions


$$0 - 75 - 105 - Infinity$$

→ 9 analyses regions

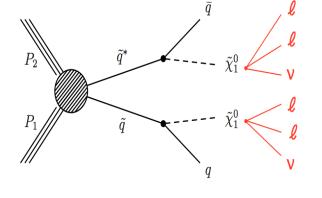


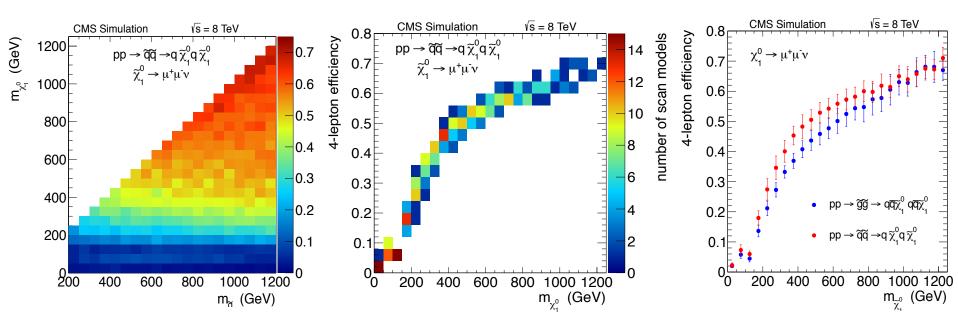
2 Backgrounds and SUSY Signal

2 Backgrounds and SUSY Signal

2 Results

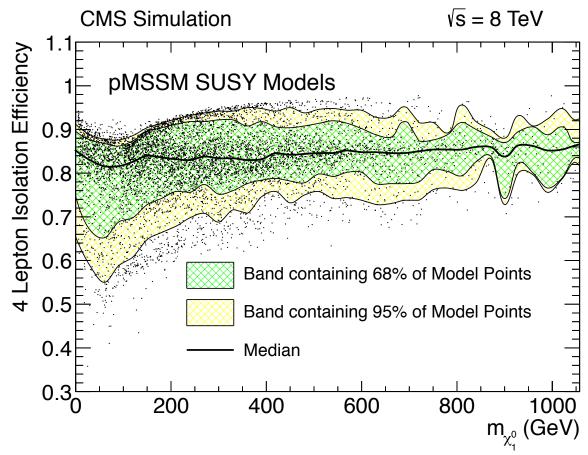
Expected background contributions from different SM sources and experimentally observed events in all analysis regions.


		$M_1 < 75 \; GeV$	$75 < M_1 < 105 \ GeV$	$M_1 > 105 \; GeV$	
	ZZ	0.76 ± 0.18	15±4	0.30 ± 0.07	
	rare	0.28 ± 0.13	2.7±1.0	0.12 ± 0.05	
$M_2 > 105 \ GeV$	fakes	$0.4 {\pm} 0.4$	0.7 ± 0.7	0.05 ± 0.05	
	all backgrounds	$1.4 {\pm} 0.5$	18±4	$0.47{\pm}0.10$	
	observed	0	20	0	
	ZZ	0.10 ± 0.03	150*	0.05 ± 0.01	
	rare	0.12 ± 0.05	2.5±1.2	0.06 ± 0.03	
$75 < M_2 < 105 \ GeV$	fakes	0.3 ± 0.3	0.6 ± 0.6	0.05 ± 0.05	
	all backgrounds	$0.52 {\pm} 0.34$	153*	0.16 ± 0.06	
	observed	0	160	0	
	ZZ	9.8±2.0	32±8	0.98 ± 0.20	
	rare	$0.31 {\pm} 0.14$	2.5±1.2	0.011 ± 0.005	
$M_2 < 75 \; GeV$	fakes	0.3 ± 0.3	0.8 ± 0.8	0.06 ± 0.06	
	all backgrounds	$10.4{\pm}2.0$	35±8	1.0 ± 0.2	
	observed	14	30	1	


- \triangleright Irreducible SM background \rightarrow estimated from MC
- \triangleright Fake leptons \rightarrow data driven estimation method

2 4-lepton efficiency for neutralino dynamics

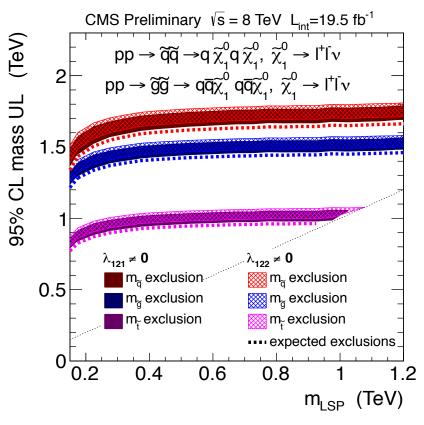
- Two extreme cases are taken into account:
 - Neutralino is produced in 2-body decay of a directly produced squark → The most energetic neutralino
 - 2. Neutralino produced at rest \rightarrow The most soft neutralino
- No significant difference in efficiency for both cases

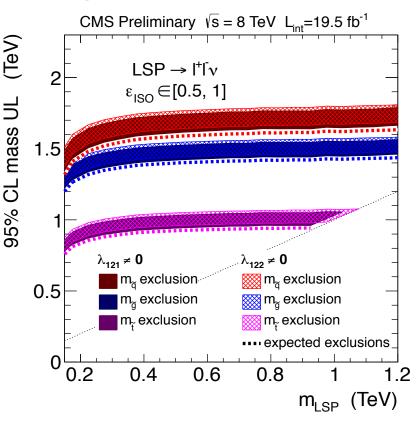

Efficiency is driven by neutralino mass via signal region selection

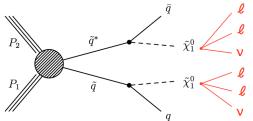
Altan Cakir | Searches for R-parity Supersymmetry at CMS | EPS-HEP 201:

2 Interpretation of pMSSM Model

> pMSSM model points (~7300), which represents properties of generic MSSM, chosen with flat parameter priors at Electro-weak scale




4-lepton isolation efficiency fits very well between 0.5 and 1.



② General interpretation

Mass exclusions for different SUSY production mechanisms

Generic RPV SUSY cross section limit

Conclusions

- CMS has an active program searching for R-parity violated SUSY.
- No significant excess observed over Standard Model expectations for multi-lepton final states
 - → Both analyses are used to exclude regions of SUSY parameters space, where RPV couplings are non-zero. RPV Stop search puts limits on the **stop** and **bino** masses.
- pMSSM model are used to study the impact of generic component on Rparity violated term signatures
 - Results are applicable to generic set of MSSM SUSY models and simplified models.

Backup slides

> LATER

