

Nd³⁺ environment and solubility in aluminoborosilicate glasses

Daniel Caurant, Odile Majérus, Isabelle Giboire, Arnaud Quintas, Thibault Charpentier, Jean-Luc Dussossoy

Laboratoire de Chimie de la Matière Condensée de Paris – Chimie Paristech (ENSCP), CNRS UMR 7574

11 rue P et M Curie, 75005 Paris, France
CEA/DSM/IRAMIS/SIS2M, Saclay, France
Laboratoire de Développement des Matériaux de Conditionnement,
DEN/SECM/LDMC, Centre de Marcoule, 17171 Bagnols-sur-Cèze, France

Context: research for nuclear glasses with high waste loading

- Rare earths (RE) are a significant part of the fission products (FP) and good simulants of trivalent actinides
- RE oxide concentration is ~ 4 wt% in the current nuclear glass (R7T7). It will amount to ~ 10 wt% in future nuclear glasses with higher waste loading

Chemical family	weight (kg/U)
Alkalis (Cs, Rb)	3
Alkaline-earths (Sr, Ba)	2.4
Rare-earths	10.2
Transition metals (Mo, Zr, Tc)	7.7
Chalcogens (Se, Te)	0.5
Halogens (I, Br)	0.2
Noble metals (Ru, Rh, Pd)	3.9
Others (Ag, Cd, Sn, Sb)	0.1

Context: research for nuclear glasses with high waste loading

- Rare earths (RE) are a significant part of the fission products (FP) and good simulants of trivalent actinides
- RE oxide concentration is ~ 4 wt% in the current nuclear glass (R7T7). It will amount to ~ 10 wt% in future nuclear glasses with higher waste loading

New glass compositions must avoid crystallization of big crystals during melt cooling

Chemical family	weight (kg/U)
Alkalis (Cs, Rb)	3
Alkaline-earths (Sr, Ba)	2.4
Rare-earths	10.2
Transition metals (Mo, Zr, Tc)	7.7
Chalcogens (Se, Te)	0.5
Halogens (I, Br)	0.2
Noble metals (Ru, Rh, Pd)	3.9
Others (Ag, Cd, Sn, Sb)	0.1

Aims of the study and method

- → Characterizing the Nd³+ environment in a model glass (A)
- → Studying the impact of Nd₂O₃ content on the aluminoborosilicate network structure and on the crystallization properties
- → Draw structure crystallization relationships and test compositional variations to improve the solubility of Nd³+ in the glass

Aims of the study and method

- → Characterizing the Nd³+ environment in a model glass (A)
- → Studying the impact of Nd₂O₃ content on the aluminoborosilicate network structure and on the crystallization properties
- → Draw structure crystallization relationships and test compositional variations to improve the solubility of Nd³+ in the glass

Use of glass series and spectroscopic tools (NMR, Raman, Visabsorption, EXAFS)

- Simple reference glasses
- •CaO/ Na₂O ratio and alkali type
- Nd₂O₃ content from 0 to 30 wt% (7.5 mol%)

Focus on the Nd³⁺ environment and crystallization

Reference glasses

Glass	Composition (mol%)	
Na-silicate	74.38 SiO ₂ - 21.29 Na ₂ O - 4.33 Nd ₂ O ₃	NBO's
Na-rich borate	$64 \mathrm{B_2O_3} - 35 \mathrm{Na_2O} - 1 \mathrm{Nd_2O_3}$	INDU 5
Na-poor borate	79 B ₂ O ₃ - 20 Na ₂ O - 1 Nd ₂ O ₃	BO's and
Nd aluminosilicate	75 SiO ₂ - 15 Al ₂ O ₃ - 10 Nd ₂ O ₃	NBO's
Nd metaborate	75 B ₂ O ₃ - 25 Nd ₂ O ₃	NBO S

Reference glasses

Glass	Composition (mol%)	
Na-silicate	74.38 SiO ₂ - 21.29 Na ₂ O - 4.33 Nd ₂ O ₃	NBO's
Na-rich borate	64 B ₂ O ₃ - 35 Na ₂ O – 1 Nd ₂ O ₃	INDO 5
Na-poor borate	79 B ₂ O ₃ - 20 Na ₂ O - 1 Nd ₂ O ₃	BO's and
Nd aluminosilicate	75 SiO ₂ - 15 Al ₂ O ₃ - 10 Nd ₂ O ₃	
Nd metaborate	75 B ₂ O ₃ - 25 Nd ₂ O ₃	NBO's

Study by optical absorption spectroscopy at low temperature

(Gatterer et al. JNCS 231 (1998) 189; Dymnikov et al. JNCS 215 (1997) 83)

Nd L₃-edge EXAFS at 77 K

NBO richenvironment

- Well-defined coordination sphere
- 6 to 8 NBO's
- Mean dNd-O between 2.44 Å and 2.50 Å depending on Ca²⁺/Na⁺ ratio or alkali type
- Consistency between dNd-O bond distance and nephelauxetic effect

Nd L₃-edge EXAFS at 77 K

- Well-defined coordination sphere
- 6 to 8 NBO's
- Mean dNd-O between 2.44 Å and 2.50 Å depending on Ca²⁺/Na⁺ ratio or alkali type
- Consistency between dNd-O bond distance and nephelauxetic effect

Pauling rules and Bond Valence -Bond Length model of oxides (Brese & O'Keefe, Acta Cryst. B, 1991) From litterature From **EXAFS** 1.1 Si⁴⁺ data Nd3+ mmmmmmm

Pauling rules and Bond Valence -Bond Length model of oxides (Brese & O'Keefe, Acta Cryst. B, 1991) From litterature Nd3+ Total valence on NBO = 1.5

Pauling rules and Bond Valence -Bond Length model of oxides (Brese & O'Keefe, Acta Cryst. B, 1991) From litterature From Ca²⁺ **EXAFS** data 0.35 Nd3+ 0.21 Na⁺ **NBO** richenvironment

Pauling rules and Bond Valence -Bond Length model of oxides (Brese & O'Keefe, Acta Cryst. B, 1991) From litterature From Ca²⁺ **EXAFS** data 0.35 Nd3+ mmmmmmm 0.21 Na⁺ **NBO** richenvironment Total valence on NBO = 2.06

Nd L₃-edge EXAFS at 77 K

No evidence for Ca²⁺ or Na⁺ preferential charge compensation

Majérus et al., JNCS 2008

With increasing % Nd₂O₃

Low-frequency shift of

• Depolymerized BO3

band

• Q³ band

B-O-Si band is affected

Raman spectra (λ_{exc} = 488 nm) on glass A series with 0 to 30 wt% Nd₂O₃

Raman spectra (λ_{exc} = 488 nm) on glass A series with 0 to 30 wt% Nd₂O₃

La₂O₃ incorporation has little effect on AlO₄ units, that are charge compensated by Na⁺ ions

¹¹B MAS NMR, $B_0 = 11.75 \text{ T}$

BO4 fraction 60 % 42 % 30 %

Summary of Nd₂O₃ incorporation into the model glass

- → Incorporation in depolymerized areas enriched in NBO/Na⁺ and Ca²⁺
- → Depolymerization of the silicate network (creation of NBO), principally by formation of Q² units
- → Destruction of BO₄ units as BO₃ + NBO
- → No change of AlO₄ units

Consistent with the formation of the $Nd(O)_7$ coordination sphere

Summary of Nd₂O₃ incorporation into the model glass

Consistent with the formation of the $Nd(O)_7$ coordination sphere

Summary of Nd₂O₃ incorporation into the model glass

 $Nd_2O_3 + 4 Na_2O$ $\rightarrow 2 (Nd^{3+} + 3 NBO + 4 NBO) + 8 Na^{+}$

Nd(O)₇⁴⁻

4 moles of Na₂O/CaO are necessary to incoporate 1 mole Nd₂O₃

Availability of charge compensating cations as a function of Nd₂O₃ content

Number of $Na_2O + CaO$ necessary to form the $Nd(O)_7$ coordination sphere

Number of $Na_2O + CaO$ avalable taking into account the charge compensation of $(AlO_4)^-$, $(ZrO_6)^{2-}$ and $(BO_4)^-$ units

Availability of charge compensating cations as a function of Nd₂O₃ content

Crystallization study

DTA at 10°C/min of glass powder, 80-125 µm

Crystallization study

DTA at 10°C/min of glass powder, 80-125 µm

Crystallization of a Nd-silicate apatite beyond 4 mol% - 16 wt% Nd₂O₃

Crystallization study

Slow cooling from the melt at 6°C/min

Nd0

Nd 1,3

Nd2,5

Nd5

Nd 10

Nd16

Nd₂₀

Nd25

Nd30

Crystallization of a Nd-silicate apatite beyond 4 mol% - 16 wt% Nd₂O₃

Summary and composition changes

Beyond 4 mol% (16 wt%) Nd₂O₃, Nd³⁺ ions:

- → Are bonded to NBO's and to BO's
- → And/or share their NBO's through clustering in the glass structure No conclusive evidence from EXAFS and optical absorption spectra. Nd³+ luminescence decay study is under way.

Nd L₃-edge EXAFS at 77 K

Summary and composition changes

Beyond 4 mol% (16 wt%) Nd₂O₃, Nd³⁺ ions:

- → Are bonded to NBO's and to BO's
- → And/or share their NBO's through clustering in the glass structure No conclusive evidence from EXAFS and optical absorption spectra. Nd³+ luminescence decay study is under way.

Nd L₃-edge EXAFS at 77 K

Relationship between this composition threshold and the crystallization of Nd-silicate apatite

What happens when CaO and Na₂O are lacking

- → In Al₂O₃ enriched glass?
- → In B₂O₃ enriched glass?
- O. Majérus et al., JNCS. 357 (2011) 2744-2751

Nd³⁺ in peraluminous glasses

$$R = \frac{Na_2O + CaO}{Na_2O + CaO + Al_2O_3}$$

A glasses with R varying from 1 to 0.35 $(15.4 \text{ mol}\% \text{ Al}_2\text{O}_3)$

Nd³⁺ in peraluminous glasses

$$R = \frac{Na_2O + CaO}{Na_2O + CaO + Al_2O_3}$$

A glasses with R varying from 1 to 0.35 (15.4 mol% Al_2O_3)

Nd³⁺ in peraluminous glasses

$$R = \frac{Na_2O + CaO}{Na_2O + CaO + Al_2O_3}$$

A glasses with R varying from 1 to 0.35 $(15.4 \text{ mol}\% \text{ Al}_2\text{O}_3)$

When R < 0.5 Nd³⁺ become charge compensators of (AlO₄)⁻ units Confirmed by ²⁷Al MAS NMR

Nd³⁺ solubilization in the glass

Slow cooling from the melt at 6°C/min

Conclusions

Model glass A (mol%): $SiO_2 - Al_2O_3 - B_2O_3 - Na_2O - CaO - ZrO_2 - Nd_2O_3$ 61.8 3.0 9.0 14.4 6.3 1.9 3.6

- A well-defined 6-8 O coordination sphere is inferred from the Nd³⁺ spectroscopic data (optical spectroscopy and EXAFS)
- Compensation of the excess negative charge of the Nd(O)₇ complex is provided by Na⁺ and Ca²⁺ ions. Good agreement of the mean Nd-O distance and the BV-BL calculations considering the Nd(O)₇ model
- Nd₂O₃ incorporate within the depolymerized areas and create NBO's mostly as Q² units
- There is an obvious relationship between the composition threshold where modifier oxides are « lacking » to form the Nd(O)₇ complex and the crystallization of Nd-silicate apatite
- Nd³+ ions can play different structural roles in the aluminoborosilicate system with very different compositions to that of glass A (peraluminous, LaBS glasses, etc)

Thank you for your kind attention !

Many thanks to HASYLAB staff (Germany), Rita Baddour and J-P. Pereira-Ramos (ICMPE, CNRS Thiais)

