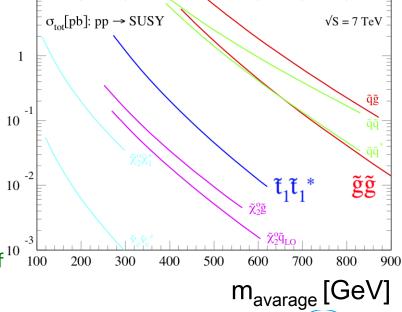
Searches for SUSY in events with 3rd generation particles at CMS

On behalf of the CMS Collaboration

Altan CAKIR
DESY
ICHEP 2012, 05 July 2012,
Melbourne, Australia



SUSY in the 3rd Generation

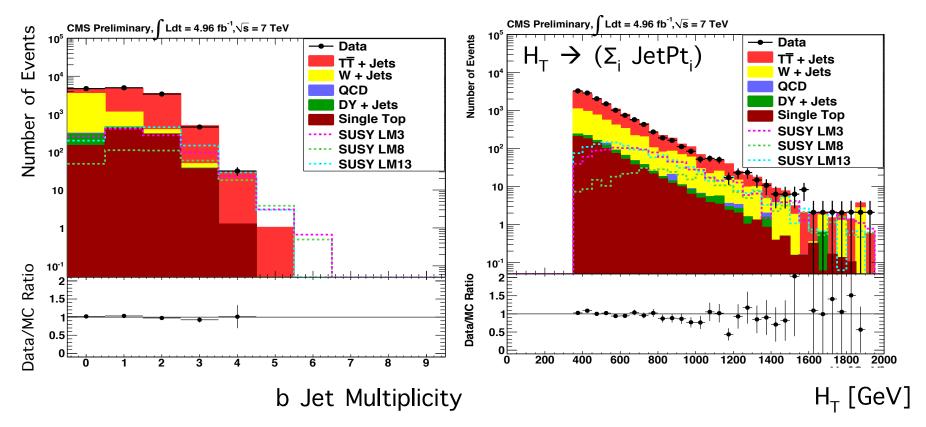
- SUSY can solve many problems intrinsic to SM:
 - Hierarchy problem
 - Unification of forces at a high energy scale
- If R-parity is conserved: Lightest SUSY particle (LSP) is stable
 - → natural Dark Matter (DM) candidate
- In the third generation SUSY particles \rightarrow sizeable mixing

 \tilde{t}_1 and \tilde{b}_1 are lighter than the other squarks $\tilde{\tau}_1$ is lighter than the other sleptons

- → 3rd generation sfermions:
 - Can be relatively light
 - Can be produced in pairs with high cross section or appear in the gluino cascade decay
 - Produce b, t or τ in their decay
 - Good prospects for experimental observation of 10 3rd generation SUSY particles

Searching for 3rd Generation SUSY in CMS*

- Search for Supersymmetry in Final States with a **Single Lepton, B-jets**, and Missing Transverse Energy in Proton-Proton Collisions at $\sqrt{s} = 7$ TeV PAS-SUS-11-028
- Search for supersymmetry in events with a **single lepton** and jets using templates PAS-SUS-11-027
- Search for physics beyond the standard model in events with **tau leptons** in the presence of multijets and large momentum imbalance in pp collisions at \sqrt{s} = 7 TeV PAS-SUS-12-004
- Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \sqrt{s} =8 TeV CMS-SUS-12-017
- Search for new physics in events with **b-quark jets** and missing transverse energy in pp collisions at \sqrt{s} =7 TeV PAS-SUS-12-003
 - **☞** For Alpha_{Tb} and M_{T2b} analyses \rightarrow see Seema Sharma's talk!
 - * https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

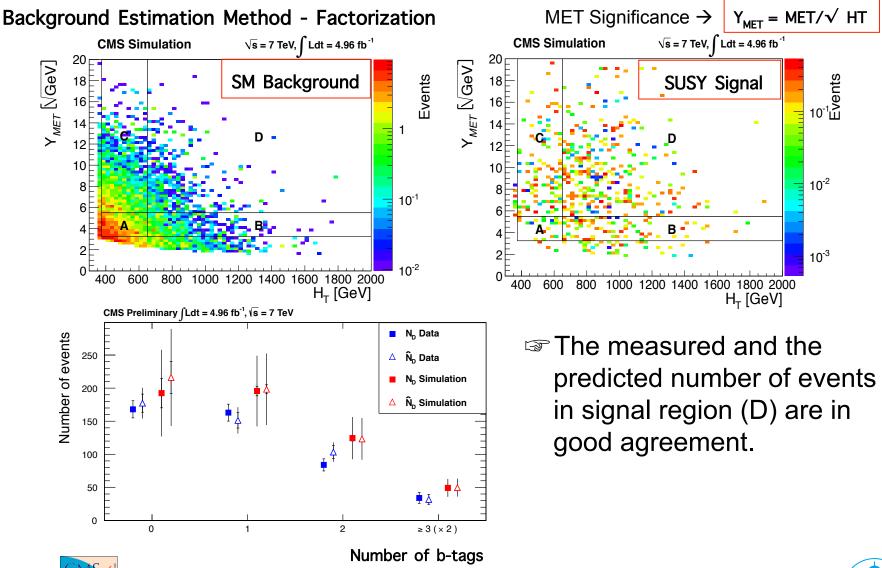


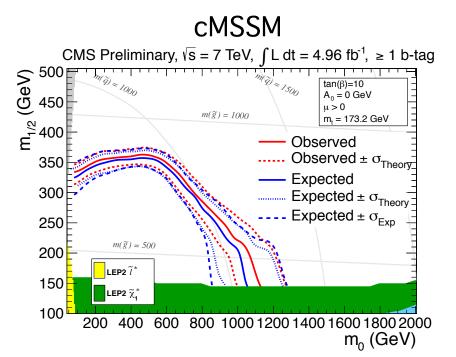
Search for SUSY in Final States with a Single Lepton, B-jets, and Missing Transverse Energy in Proton-Proton Collisions at $\sqrt{s} = 7$ TeV PAS-

PAS-SUS-11-028

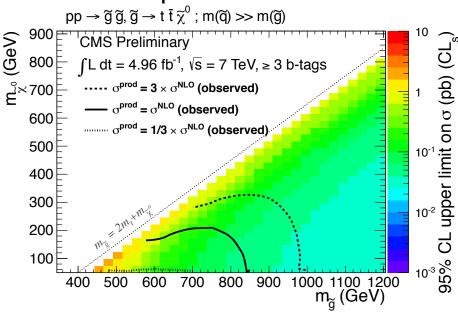
The analysis is performed in three channels according to the number of b-tags: **exactly** one b-tag, exactly two b-tags and three or more b-tags.

 H_T > 375 GeV, Njets ≥ 4 and one exact isolated lepton (e, μ) (left)


→ Nbjets ≥ 1 required for H_T plot (right)


Search for SUSY in Final States with a Single Lepton, B-jets, and Missing Transverse Energy in Proton-Proton Collisions at $\sqrt{s} = \frac{7 \text{ TeV}}{\text{PAS-S}}$

PAS-SUS-11-028



Interpretation of the results

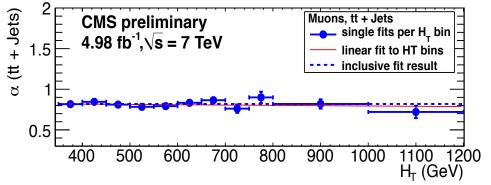
Simplified Model

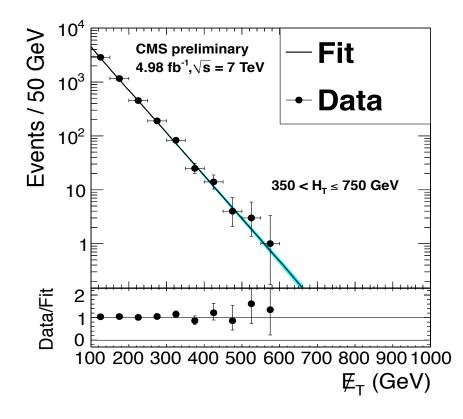
- Limits are set using the CLs method with a test statistic given by a profile likelihood ratio.
- The limits are based on ≥ 1 btag and ≥ 3 btag for cMSSM and SMS models, respectively.

☑No deviation from the SM has been found

PAS-SUS-11-028

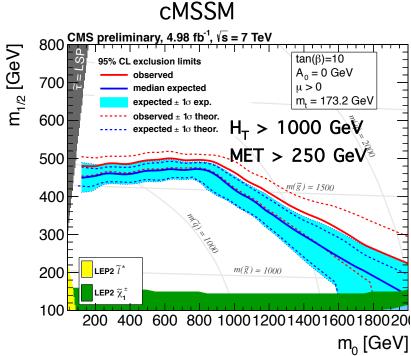
☑Upper limits have been set on production cross-sections for both models.

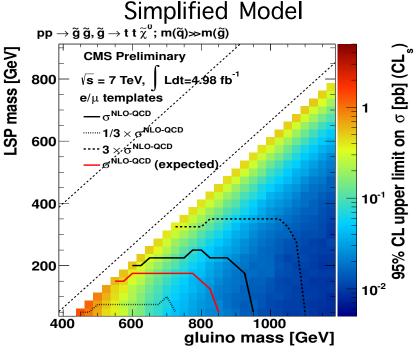

The analysis is done as a function of the number of identified b-quark (including 0-btag) jets in the event.


Methodology for Background Estimation

The dominant SM backgrounds (Wjets, TTjets) can be obtained from data:

- Use hadronic component of events
- \circ Fit the parameters of a model for the genuine MET in a control region defined by $H_{\scriptscriptstyle T}$
- Apply individual MET models for W⁺jets, W⁻jets and TTjets
- Use W+jets/TTJets ratios for events with 0,1 or
 ≥2 tagged bjets determined using template fit.


The fitted parameter α as obtained from data:



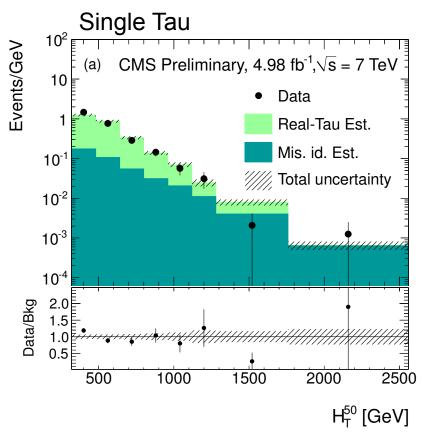
Interpretation of the results

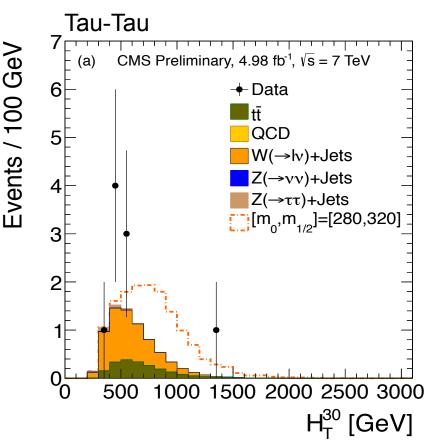
The observed and expected median limits are based on **all btags bins** (0,1,2 btag).

The signal region is defined by HT > 750 GeV and MET > 250 GeV with at least 2 b-jet bin.

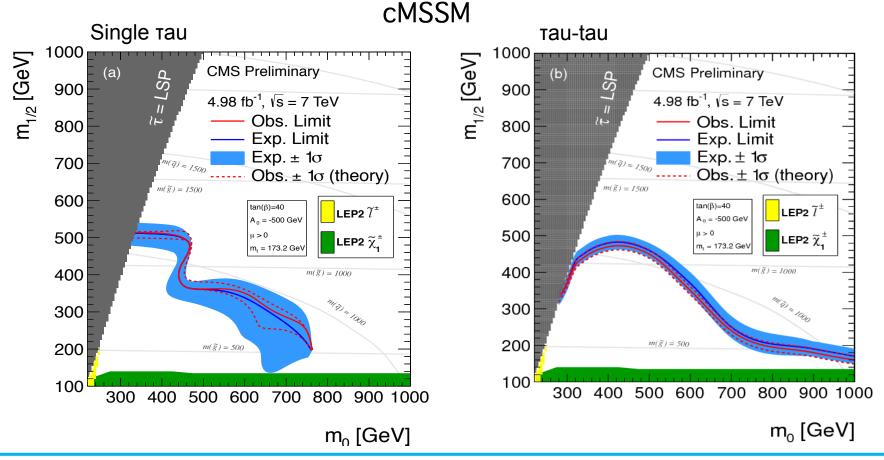
☑No excess has been observed

PAS-SUS-11-027

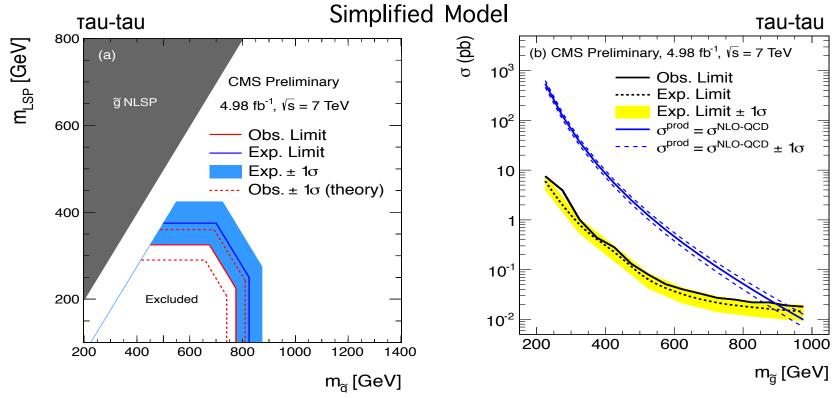

 \square The simplified model is excluded using the ≥ 2 b-jet bin.



Search for physics SUSY in events with tau leptons in the presence of multijets and large momentum imbalance in pp collisions at \sqrt{s} = 7 TeV PAS-SUS-12-004


The analysis is performed with one or more hadronically decaying τ -leptons, highly energetic jets and large momentum imbalance in the final state.

Interpretation of the results

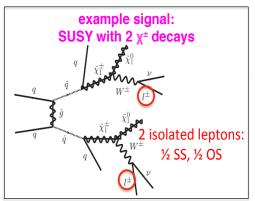

☑ Tau-tau analyses sensitive to higher m₀

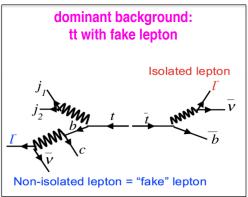
PAS-SUS-12-004

Interpretation of the results

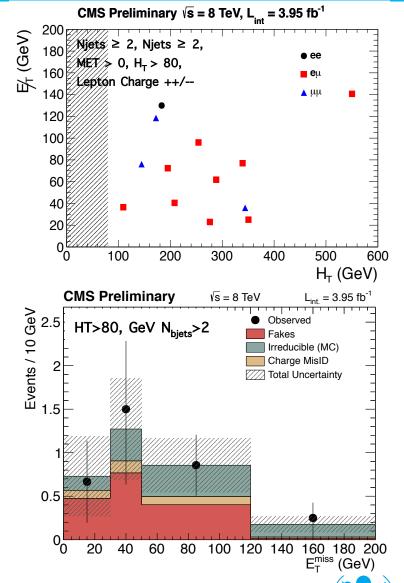
95% CL cross section upper limits for the limits on the mass of the gluino and the LSP (left) and cross section upper limits as a function of gluino mass in the GMSB

☑ No excess beyond the SM expectations has been found for both single and di-tau final states.

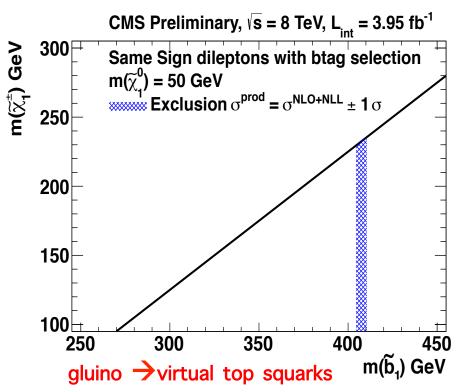

PAS-SUS-12-004

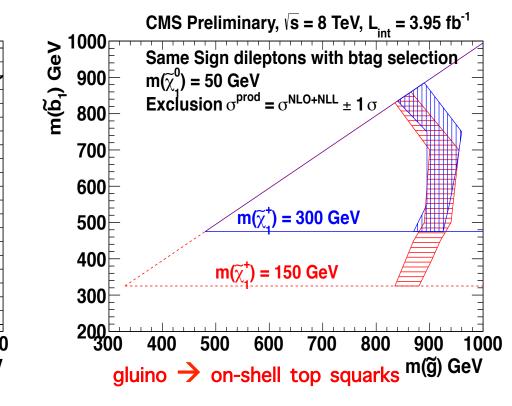


Dominant SM backgrounds:


- ttbar with "fake" leptons → fake ratio / isolation extrapolation
- Charge mis-reconstruction → use Z`s for charge
- Rare SM processes with high P_⊤ leptons and bjets → estimate from MC

Background Estimation


- \Box Define pre-selection regions in MET H_T
 - ✓ Validate data-driven background estimates with ~10-100 events
- Define search regions by adding MET, H_T requirements -> Data driven techniques

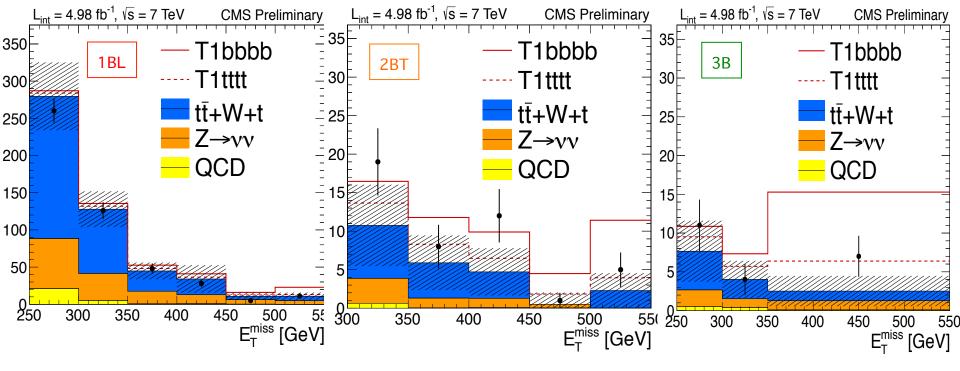


Interpretation of the results

Simplified Model

Gluinos have been excluded with masses up to approximately 900 GeV

Lower limit on the bottom squark mass of 407 GeV.


PAS-SUS-12-017

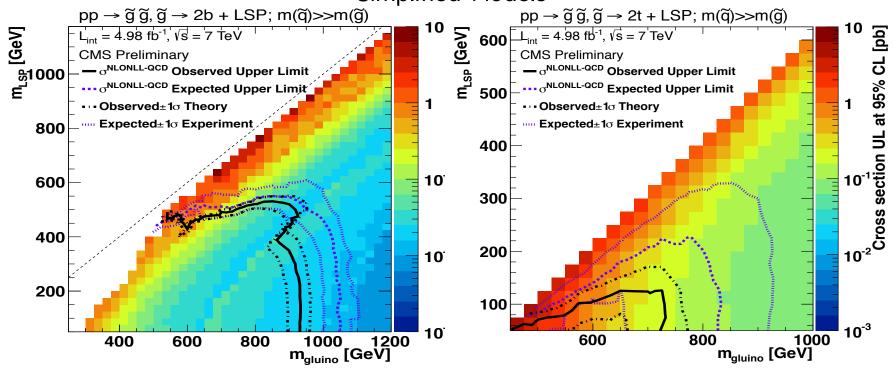
→ For multiple bottom final states → see Pablo Arbol`s talk!

The SM background estimates from the data-based background procedures in comparison with the observed number of events in data.

1BL → 1B-Loose selection

HT > 400 GeV, MET > 250 GeV Nbjets ≥ 1

2BT → 2B-Tight selection


HT > 600 GeV, MET > 300 GeV Nbjets ≥ 2

 $3B \rightarrow 3B$ selection

HT > 400 GeV, MET > 200 GeV Nbjets ≥ 3

95% CL observed cross section upper limits for multi top and bottom quarks final states.

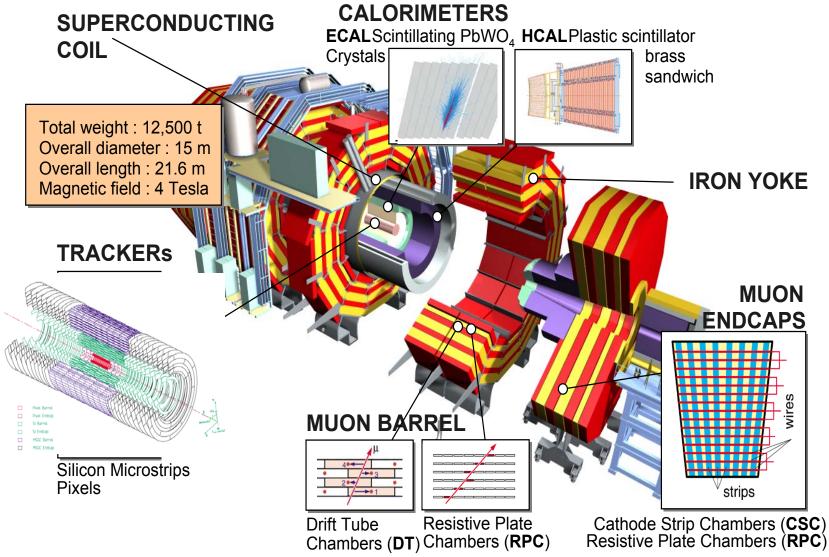
☑ No excess beyond the SM expectations

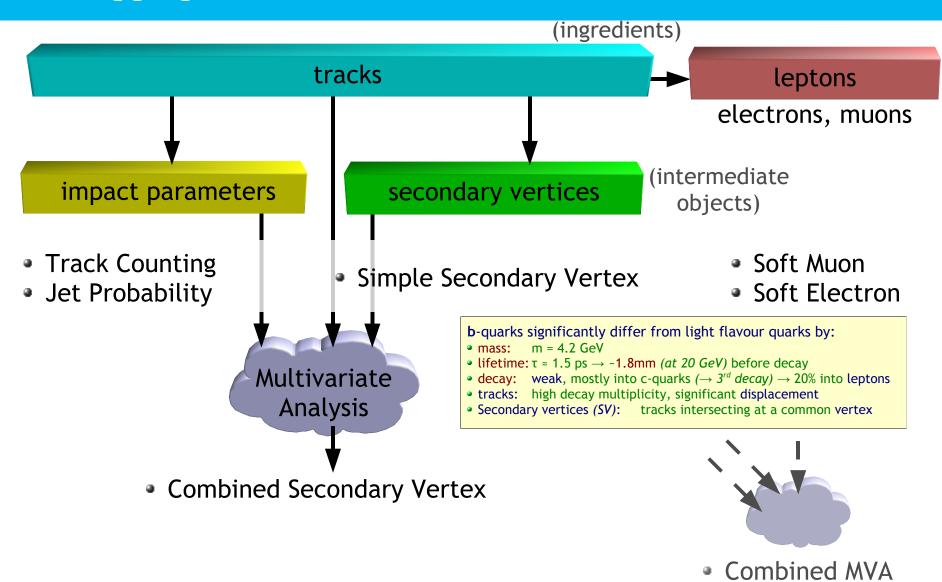
PAS-SUS-12-003

Set limits on new physics in the context of the b-jet rich simplified model

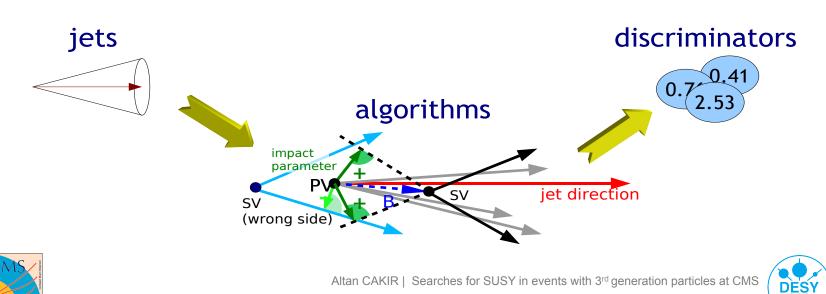
Summary

- Tariety of searches for SUSY events with 3rd generation squarks and sleptons
- Exploring signatures with heavy quarks or tau leptons using L = 4.98/fb data at $\sqrt{s} = 7$ TeV (2011) and L = 3.95/fb data at $\sqrt{s} = 8$ TeV (2012) in the CMS Collaboration
 - \square 1 lepton + 1 and 3 bjets \rightarrow cMSSM and simplified model (multiple top quarks)
 - \square 1 lepton + 0,1,2 bjets \rightarrow cMSSM and simplified model (multiple top quarks)
 - \square 1 or 2 tau leptons \rightarrow GMSB scenario and simplified model (multiple tau leptons)
 - \square 2 lepton (SS) + 2 bjets \rightarrow cMSSM and simplified model (multiple top quarks)
 - \square 0 lepton + 1,2,3 bjets \rightarrow cMSSM and simplified models (multiple top and bottom quarks)
- \checkmark No significant excess observed over SM expectations \rightarrow Limits on the masses of the sparticles in a various SUSY scenarios




Compact Muon Solenoid (CMS) Experiment

B-Tagging Schema



B-Tagging Algorithm

"Track Counting" algorithm: This is a very simple tag, exploiting the long lifetime of B hadrons. It calculates the signed impact parameter significance of all good tracks, and orders them by decreasing significance. Its b tag discriminator is defined as the significance of the N'th track. It comes in two variations for N = 2 (high efficiency) or N = 3 (high purity).

"Combined Secondary Vertex" algorithm: This sophisticated and complex tag exploits all known variables, which can distinguish b from non-b jets. Its goal is to provide optimal b tag performance, by combining information about impact parameter significance, the secondary vertex and jet kinematics.

ICHEP 2012, Melbourne, Australia | Page 20

- > Factorization method (also called ABCD method) is used:
- > Hypothesis: H_T and Y_{MET} are not strongly correlated

Control regions

Signal

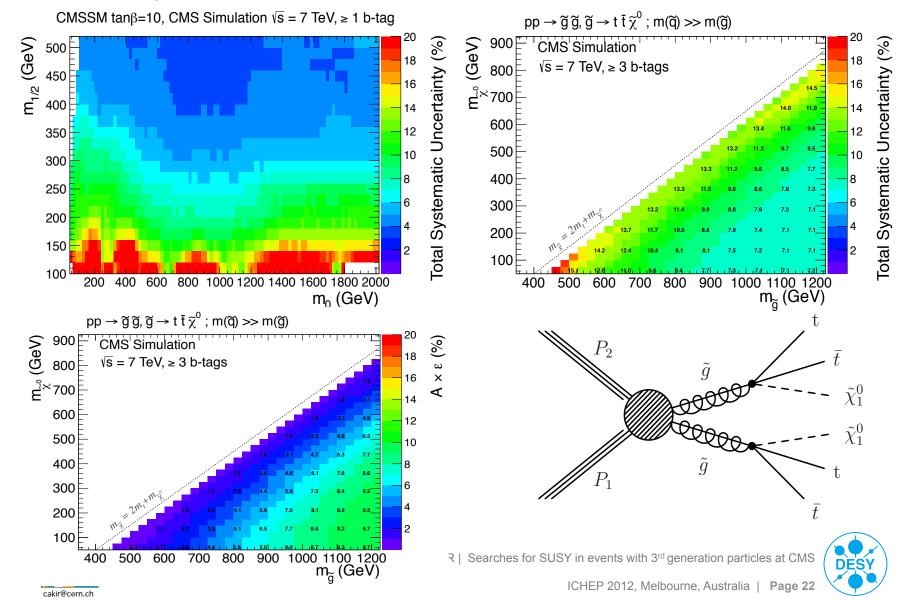
region

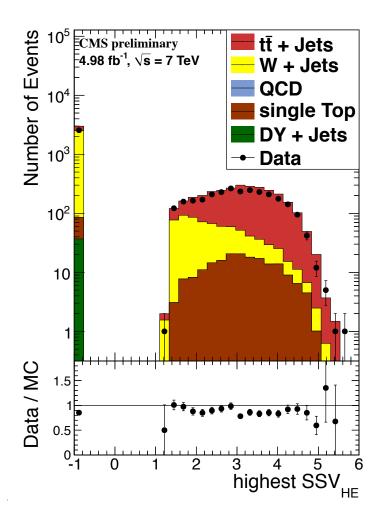
$$k := \frac{N_A \times N_D}{N_B \times N_C} \quad \hat{N}_D := k \frac{N_B \times N_C}{N_A}$$

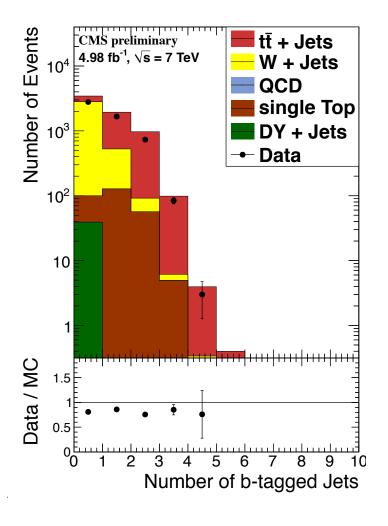
K≠1 to account for correlation where *K* is taken from *MC*

 1.20 ± 0.13

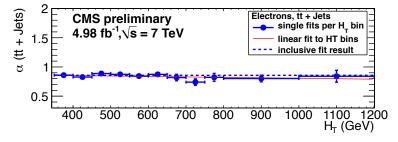
Variation	Δκ	Δκ	Δκ	Δκ	Δκ	
	(0 b-tags)	(1 b-tag)	(2 b-tags)	$(\geq 3 \text{ b-tags})$	$(\geq 1 \text{ b-tags})$	
JES	±7.5%	±2.2%	±1.4%	±4.0%	±1.5%	
JER	±4.2%	±1.7%	±1.8%	±5.5%	±1.1%	
$p_{\mathrm{T}}^{\mathrm{lepton}}$	±0.6%	±1.5%	±0.7%	±1.2%	±0.7%	
Uncl. energy	±3.1%	±0.3%	±0.7%	±0.8%	±0.4%	
Pile-up	±1.7%	±0.5%	±1.1%	±0.9%	±0.8%	
B-tag SF	±0.3%	±0.1%	±0.1%	±0.1%	±0.0%	
Mis-tag SF	±0.0%	±0.1%	±0.0%	±0.1%	±0.1%	
Cross-sect. var.	±3.4%	±1.0%	±2.0%	±1.4%	±0.4%	
0b-data	±10.0%	±10.0%	±10.0%	±10.0%	±10.0%	
Total syst. uncert.	±14.1%	±10.6%	±10.5%	±12.3%	±10.3%	
Stat. error	±11.8%	±4.9%	±4.6%	±6.2%	±3.3%	

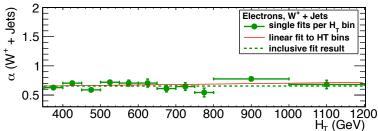

Regions Boundaries						
H_{τ}	Y_{MET}					
A: 375 < H _T < 650	$3.25 < Y_{MET} < 5.5$					
B: 650 < H _T	$3.25 < Y_{MET} < 5.5$					
$C: 375 < H_{\tau} < 650$	$5.5 < Y_{MET}$					
D: 650 < H _T	5.5 < Y _{MET}					

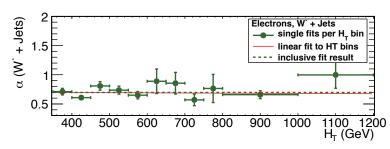

Variation	ΔN_D	ΔN_D	ΔN_D	ΔN_D	ΔN_D
	(0 b-tags)	(1 b-tag)	(2 b-tags)	$(\geq 3 \text{ b-tags})$	$(\geq 1 \text{ b-tags})$
JES	±26.3 %	±20.9 %	±17.9 %	±17.1 %	±19.6 %
JER	±7.7 %	±6.1 %	±7.0 %	±9.5 %	±6.7 %
p_{T} lepton	±2.3 %	±1.8 %	±2.0 %	±2.2 %	±1.9 %
Uncl. energy	±2.1 %	±0.3 %	±0.3 %	±0.3 %	±0.3 %
Pile-up	±0.2 %	±0.7 %	±0.3 %	±0.2 %	±0.5 %
B-tag SF	±2.3 %	±0.9 %	±3.8 %	±7.4 %	±1.5 %
Mis-tag SF	±1.9 %	±0.6 %	±1.1 %	±5.7 %	±1.2 %
Model uncert.	±16.0 %	±16.0 %	±16.0 %	±16.0 %	±16.0 %
Lep. trig. & ID	±3.0 %	±3.0 %	±3.0 %	±3.0 %	±3.0 %
Lumi. uncert.	±2.2 %	±2.2 %	±2.2 %	±2.2 %	±2.2 %
Total uncert.	±32.2 %	±27.3 %	±25.7 %	±27.3 %	±26.6 %
Stat. error	±8.4 %	±3.4 %	±3.1 %	±4.3 %	±2.2 %

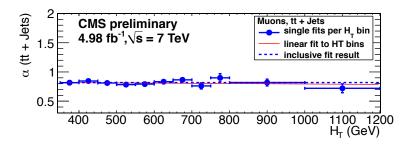


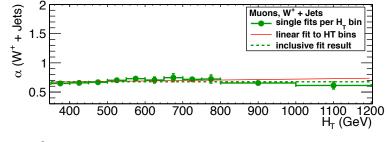
Systematical uncertainties for cMSSM and simplified model

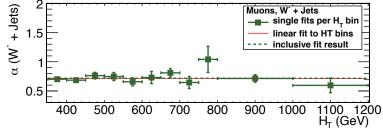


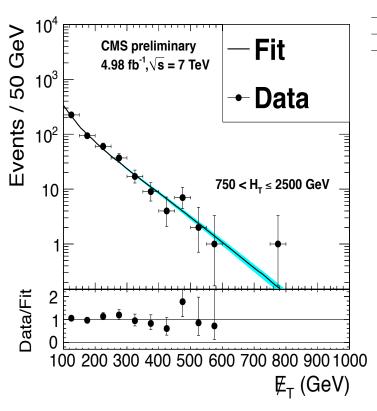


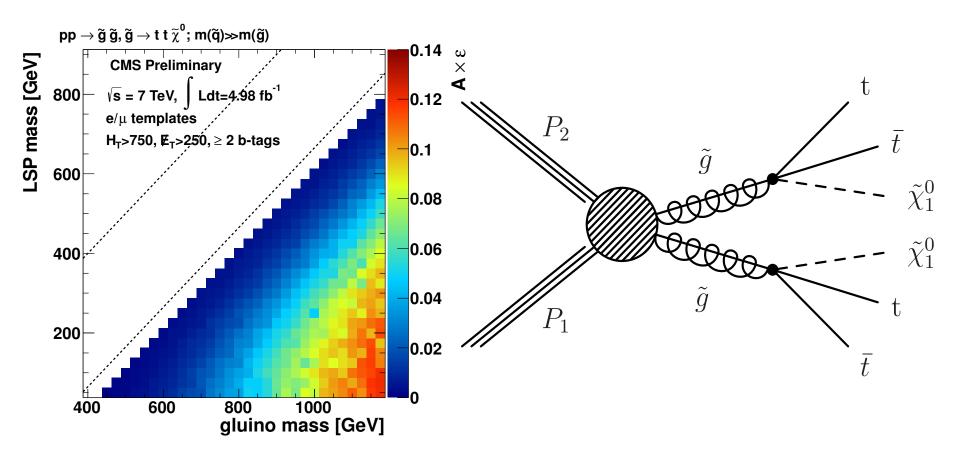



It is the complete MET model for an HT interval/bin.


$$\mathcal{M}_{i}(x) \sim x \exp(-\alpha x^{0.5}) \times (1 + \operatorname{erf}(x; b_{0} + b_{1}H_{T,i}, c_{0} + c_{1}H_{T,i})) \times (1 - \operatorname{erf}(x; b_{0} + b_{1}H_{T,i+1}, c_{0} + c_{1}H_{T,i+1})).$$

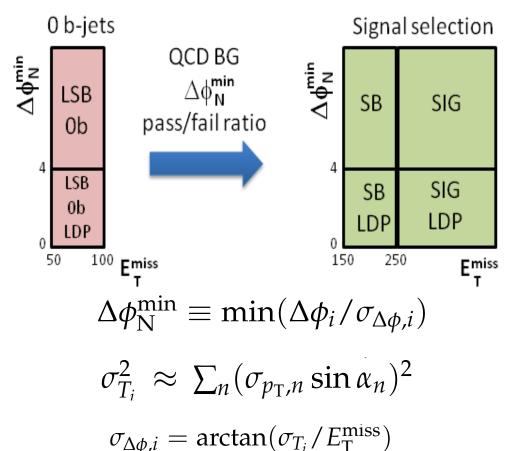


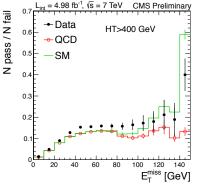


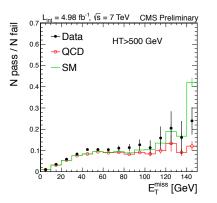


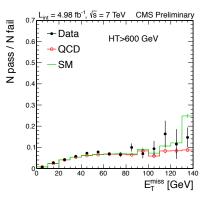
*	μ channel			e channel			
Source	total	0-tag	≥ 1-tag	total	0-tag	≥ 1-tag	
Jet and $E_{\rm T}^{\rm miss}$ scale	6.0 %	7.5 %	7.2 %	3.1 %	5.6 %	2.1 %	
W polarization (1), $\pm 10\%$	0.5 %	0.6 %	0.1 %	1.3 %	1.8 %	0.2 %	
$\mathrm{W^-}$ polarization (2), $\pm 5\%$	0.3 %	0.5 %	0.1 %	0.5 %	0.5 %	0.2 %	
$\mathrm{W^{+}}$ polarization (2), $\pm 5\%$	0.1 %	0.2 %	0.1 %	0.1 %	0.1 %	0.1 %	
W polarization (3), \pm 10%	0.0 %	0.1 %	0.0 %	0.5 %	0.6 %	0.2 %	
vary lep. eff. at low p_T	0.4 %	0.3 %	0.6 %	0.6 %	1.3 %	0.7 %	
vary lep. eff. in endcaps	0.2 %	0.2 %	0.1 %	0.6 %	0.8 %	0.4~%	
vary pile-up	0.1 %	0.1 %	0.2 %	0.3 %	1.5 %	0.4~%	
Non-leading bkg \pm 50%	0.7 %	0.4~%	0.4 %	4.0 %	3.0 %	6.2 %	
dilep. contr $\pm 50\%$	0.1 %	0.5 %	0.7 %	0.6 %	1.2 %	0.6 %	
$\sigma($ t $ar{ t t}$ $)$, \pm 32%	1.2 %	2.3 %	1.6 %	0.7 %	1.8 %	2.0 %	
$\sigma(\text{W+jets})$, \pm 32%	1.3 %	2.9 %	2.3 %	2.6 %	1.6 %	2.8 %	
exponent t $ar{ t t} \pm 10\%$	1.6 %	0.2 %	5.3 %	1.8 %	0.3 %	4.8 %	
exponent W ⁺ +jets \pm 10%	3.5 %	4.4~%	1.3 %	3.6 %	4.6 %	1.5 %	
exponent W $^-$ +jets \pm 10%	0.7 %	0.8 %	0.3 %	0.9 %	1.4 %	0.9 %	
α slope t t	11.0 %	2.4 %	29.3 %	14.8 %	5.0 %	34.3 %	
α slope W ⁺ +jets	15.9 %	20.6 %	6.0 %	16.5 %	22.2 %	5.1 %	
α slope W ⁻ +jets	4.9 %	8.2 %	2.0 %	5.6 %	8.7 %	0.5 %	
Variation of Érfc.	4.1 %	4.6 %	2.9 %	3.1 %	3.2 %	2.7 %	

	μ channel				e channel					
Source	total	0-tag	1-tag	≥ 1-tag	\geq 2-tag	total	0-tag	1-tag	≥ 1-tag	≥ 2-tag
W+jets/tt̄ ratio	2.9 %	2.1 %	6.1 %	4.8 %	2.4 %	1.1 %	2.4 %	2.6 %	2.3 %	2.3 %
b-tagging efficiency $\pm 1\sigma$	2.0 %	1.5 %	2.2 %	1.3 %	5.1 %	2.2 %	1.6 %	0.8 %	1.7 %	3.6 %
mistag rate $\pm 1\sigma$	0.4 %	0.4 %	0.7 %	0.9 %	0.6 %	0.3 %	0.4 %	0.4 %	0.2 %	0.1 %



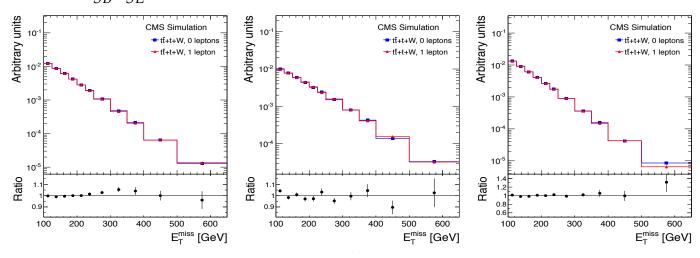





SB=Side Band, LSB=Low Side Band LDP=Low Delta Phi, SIG=Signal

QCD background

$$\begin{split} N_{SIG}^{QCD} &= \frac{N_{LSB}}{N_{LSB-LDP}} \times (N_{SIG-LDP} - N_{SIG-LDP}^{top,MC} - N_{SIG-LDP}^{EW,MC}), \\ N_{SB}^{QCD} &= \frac{N_{LSB}}{N_{LSB-LDP}} \times (N_{SB-LDP} - N_{SB-LDP}^{top,MC} - N_{SB-LDP}^{EW,MC}), \end{split}$$



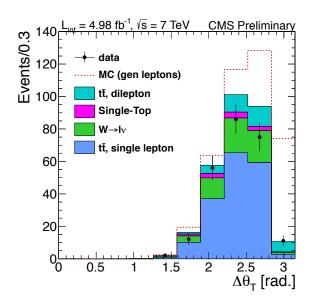
Top and W+jets background (nominal)

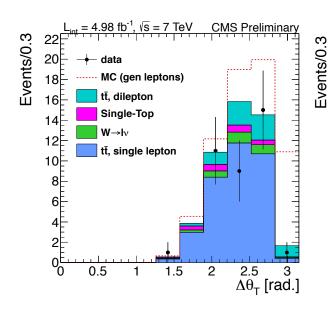
$$N_{SIG}^{top+W} = \frac{N_{SIG-SL}}{N_{SB-SL}} \times (N_{SB} - N_{SB}^{Z \to \nu \overline{\nu}} - N_{SB}^{QCD} - N_{SB}^{other,MC}).$$

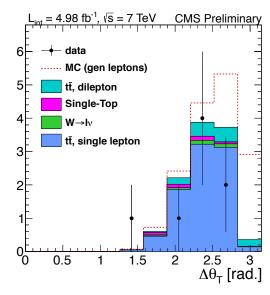
Z +jets background

Z→µµ-to-vv replacement

BR
$$(Z \to \nu \overline{\nu})$$
 /BR $(Z \to \mu^+ \mu^-) = 5.95 \pm 0.02$
 $\epsilon = \mathcal{A} \cdot \epsilon_{\text{trig}} \cdot \epsilon_{\ell \, \text{reco}}^2 \cdot \epsilon_{\ell \, \text{sel'}}^2$

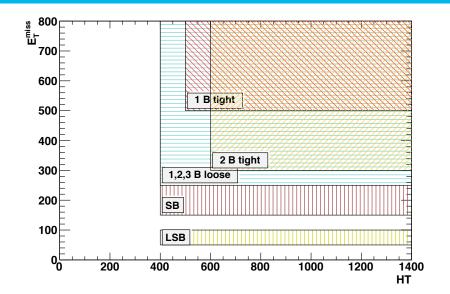

	1BL	1BT	2BL	2BT	3B
Scale factors	20 (17)	20 (17)	61 (49)	61 (49)	105 (144)
$ extstyle Z ightarrow \ell^+\ell^-$ background	8 (10)	8 (10)	8 (10)	8 (10)	8 (10)
Acceptance	3 (3)	8 (6)	3 (3)	4 (4)	3 (3)
Lepton selection efficiency	4 (5)	4 (5)	4 (5)	4 (5)	4 (5)
Trigger efficiency	5 (5)	5 (5)	5 (5)	5 (5)	5 (5)
MC closure	19 (11)	19 (11)	19 (11)	19 (11)	19 (11)
Total	30 (24)	30 (25)	65 (52)	65 (52)	107 (145)

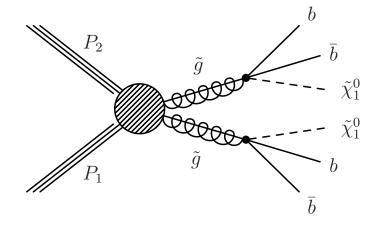


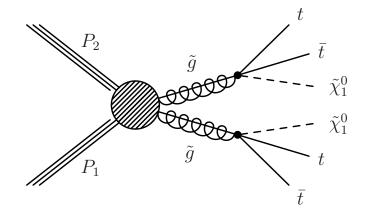


Top and W+jets background ($E_{\rm T}^{\rm miss}$ -reweighting)

- 1. top or W+jets events in which exactly one W decays into an e or μ , or into a τ that decays into an e or μ , while the other W (if any) decays hadronically;
- 2. top or W+jets events in which exactly one W decays into a hadronically-decaying τ , while the other W (if any) decays hadronically;
- 3. It events in which both W bosons decay into an e, μ or τ , with the τ decaying either leptonically or hadronically.



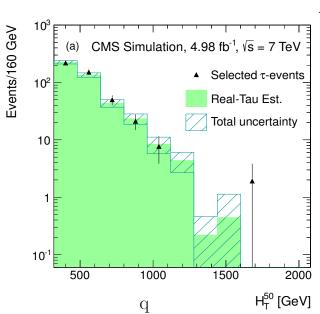


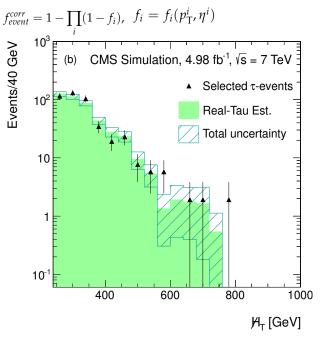


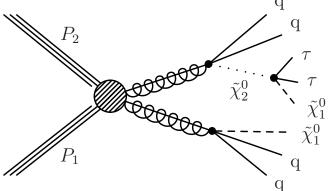
Signal region		H_{T} (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	N _{bjets}
1b-loose	1BL	> 400	> 250	≥ 1
1b-tight	1BT	> 500	> 500	≥ 1
2b-loose	2BL	> 400	> 250	≥ 2
2b-tight	2BT	> 600	> 300	≥ 2
3b	3B	> 400	> 250	≥ 3

PAS-SUS-12-004 (needs to be improved – later!)

Background Estimate for Single Tau Analysis


Estimate of Fake-Tau Background


Several energy corrections will be applied before the computation of HT and MHT.


lied before the The fake rates f_i of jet i are used as individual events weights in the following form:

 $f_{event}^{corr} = \frac{p_{\mu}^{W} \times \epsilon_{\tau}^{ID} \times f_{\tau}^{bf(hadr)}}{\epsilon_{\mu}^{reco} \times \epsilon_{\mu}^{iso}}$

- Muon reconstruction efficiency
- Muon isolation efficiency
- Muons produced in tau decays
- Tau reconstruction efficiency
- Tau hadronic branching fraction

Simplified Model for multi tau states

PAS-SUS-12-004 (needs to be improved – later!)

Background Estimate for Di-Tau Analysis

We measure correction factors and/or selection efficiencies in control regions (CRs) and use these values to extrapolate to the region where we expect to observe our signal. A novel approach is to use the observed jet multiplicity in each CR along with measured jet $\rightarrow \tau h$ misidentification rate to calculate the yield in the signal regions (SR).

$$N_{\textit{Background}}^{\textit{SR}} = N_{\textit{Background}}^{\textit{CR}} [\alpha_{\tau\tau} \mathcal{P}(0) + \alpha_{\tau j} \mathcal{P}(1) + \alpha_{jj} \mathcal{P}(2)]$$

$$\begin{array}{ll} \textbf{tt estimation} \\ N_{t\bar{t}}^{Signal} & = & A_{\tau+j} \frac{N_{t\bar{t}}^{CR}}{P(2 \ b\text{-jets})} \varepsilon^{\tau} \text{ iso } \sum_{N=1}^{\infty} P(N) \sum_{n=1}^{N} C(N,n) f^{n} (1-f)^{N-n} \\ & + & A_{j+j} \frac{N_{t\bar{t}}^{CR}}{P(2 \ b\text{-jets})} \sum_{M=2}^{\infty} P(M) \sum_{m=2}^{M} C(M,m) f^{m} (1-f)^{M-m} \end{array}$$

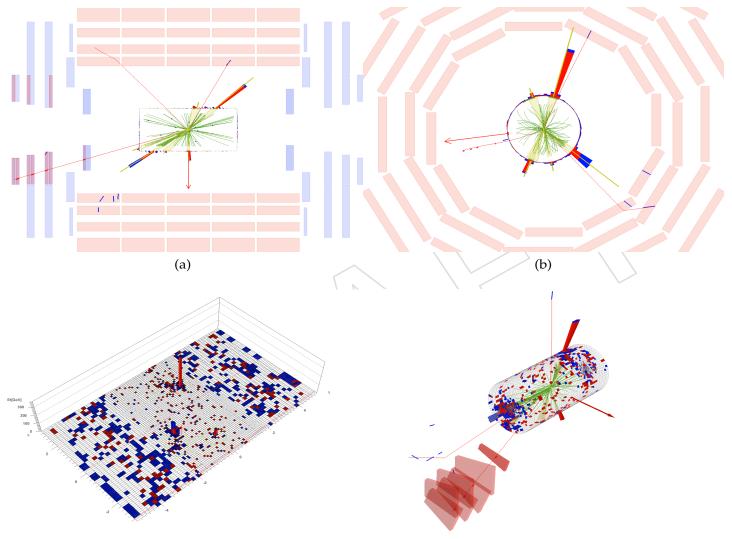
$7 \rightarrow vv$ estimation

$$N_{Z \rightarrow \nu\nu + jets}^{Signal} = \frac{N_{Z \rightarrow \mu\mu + jets}^{CR}}{A_{\mu}^{2} \varepsilon_{\mu}^{2}} \frac{B(Z \rightarrow \nu\nu)}{B(Z \rightarrow \mu\mu)} \frac{\varepsilon_{H_{\rm T}}^{Trigger}}{\varepsilon_{\mu\tau}^{Trigger}} \varepsilon_{\mu\tau}^{H_{\rm T}} \sum_{N=2}^{\infty} P(N) \sum_{n=2}^{N} C(N, n) f^{n} (1 - f)^{N - n}$$

$Z \rightarrow \tau \tau$ estimation

$$\begin{split} N_{Z \to \tau\tau}^{Signal} &= N_{Z \to \mu\mu}^{CR} R \varepsilon^{I\!\!M_T} \frac{A_\tau^2 \varepsilon_\tau^2}{A_\mu^2 \varepsilon_\mu^2} \\ &+ N_{Z \to \mu\mu}^{CR} R \varepsilon^{I\!\!M_T} \frac{A_\tau^2 (2\varepsilon_\tau (1-\varepsilon_\tau))}{A_\mu^2 \varepsilon_\mu^2} \sum_{N=1}^\infty P(N) \sum_{n=1}^N C(N,n) f^n (1-f)^{N-n} \\ &+ N_{Z \to \mu\mu}^{CR} R \varepsilon^{I\!\!M_T} \frac{2A_\tau (1-A_\tau)\varepsilon_\tau}{A_\mu^2 \varepsilon_\mu^2} \sum_{N=1}^\infty P(M) \sum_{m=1}^M C(M,m) f^m (1-f)^{M-m} \\ &+ N_{Z \to \mu\mu}^{CR} R \varepsilon^{I\!\!M_T} \frac{2A_\tau (1-A_\tau)\varepsilon_\tau}{A_\mu^2 \varepsilon_\mu^2} \sum_{N=1}^\infty P(M) \sum_{m=1}^M C(M,m) f^m (1-f)^{M-m} \\ &+ N_{Z \to \mu\mu}^{CR} R \varepsilon^{I\!\!M_T} \frac{(1-A_\tau)^2}{A_\mu^2 \varepsilon_\mu^2} \sum_{K=2}^\infty P(K) \sum_{k=2}^K C(K,k) f^k (1-f)^{K-k} \end{split}$$

W+Jets estimation


$$N_{W+jets}^{Signal} = A_{\tau+j} \frac{N_{W+jets}^{\text{After subtraction}}}{P(0 \text{ b-jets})} \varepsilon^{\tau \text{ iso}} \sum_{N=1}^{\infty} P(N) \sum_{n=1}^{N} C(N,n) f^{n} (1-f)^{N-n}$$

$$+ A_{j+j} \frac{N_{W+jets}^{\text{After subtraction}}}{P(0 \text{ b-jets})} \sum_{M=2}^{\infty} P(M) \sum_{m=2}^{M} C(M,m) f^{m} (1-f)^{M-m}$$

$$R = \frac{B(Z \to \tau\tau)B(\tau \to \tau_h)}{B(Z \to \mu\mu)} \frac{\varepsilon_{H_T}^{Trig}}{\varepsilon_{\mu\tau}^{Trig}}$$

