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Abstract

Dijet production has been studied in neutral current deep inelastic e+p scattering for 470
< Q2 < 20000 GeV2 with the ZEUS detector at HERA using an integrated luminosity of
38.4 pb−1. Dijet differential cross sections are presented in a kinematic region where both
theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD
calculations describe the measured differential cross sections well. A QCD analysis of the
measured dijet fraction as a function of Q2 allows both a precise determination of αs(MZ)
and a test of the energy-scale dependence of the strong coupling constant. A detailed
analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections
arising from the parton distribution functions of the proton. The value of αs(MZ), as
determined from the QCD fit, is αs(MZ) = 0.1166±0.0019 (stat.)+0.0024

−0.0033 (exp.)+0.0057
−0.0044 (th.).

Zusammenfassung

Die Erzeugung von Zwei-Jet-Ereignissen wurde in tiefunelastischer e+p Streuung fuer 470
< Q2 < 20000 GeV2 mit dem ZEUS Detektor bei HERA untersucht. Dafür wurden
Ereignisse des neutralen Stroms mit einer integrierten Luminosität von 38.4 pb−1 verwen-
det. Die differentielle Wirkungsquerschnitte der Zweit-Jet-Produktion wurden in einem
kinematischen Bereich untersucht, in dem sowohl theoretische als auch experimentelle Un-
sicherheiten gering sind. Die gemessenen differentiellen Wirkungsquerschnitte konnten gut
durch Next-to-leading-order (NLO) QCD-Berechnungen beschrieben werden. Eine QCD-
Analyse der gemessenen Rate von Zweit-Jet-Ereignissen als Funktion von Q2 erlaubte
sowohl eine genaue Bestimmung der Kopplungskonstanten αs(MZ) der starken Wechsel-
wirkung, als auch einen Test ihrer Abhängigkeit von der Energieskala. Die Unsicherheiten
der Vorhersagen der NLO QCD-Berechnungen für die untersuchten Wirkungsquerschnitte
sind durch die Verteilungsfunktionen der Partonen im Proton bedingt. Diese detailierte
Analyse erlaubt eine verbesserte Abschätzung dieser Unsicherheiten. αs(MZ) wurde mit
Hilfe der QCD-Analyse zu αs(MZ) = 0.1166 ± 0.0019 (stat.)+0.0024

−0.0033 (exp.)+0.0057
−0.0044 (th.)

bestimmt.
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Chapter 1

Introduction

Experimental studies of Quantum Chromodynamics (QCD) in the high-energy regime have now
left the phase of crude testing of QCD, and have stepped into the phase of rather accurate
measurements. Results obtained in the last few years at the LEP, TEVATRON, and HERA
colliders have overall strengthened our belief that QCD is indeed the best candidate for a theory
of the strong interactions.

A priori, the strong coupling constant is the only parameter relevant to the high-energy
regime of QCD that needs to be determined, as, in principle, everything else can be calculated
from first principles. The strong coupling is one of the fundamental ‘constants’ of nature,
and, as such, there is no limit to the accuracy with which we would like to know its value.
Beside setting the overall precision of any fixed-order perturbative QCD (pQCD) calculation,
an accurate knowledge of αs is, for example, necessary to extract electroweak parameters from
precise e+e− data, as well as to explore scenarios in which all forces of nature are unified at some
large energy scale. Upon closer scrutiny, one quickly realises that this ideal situation is far from
reality. Since the observable final states are made out of hadrons, and not of quarks and gluons,
understanding of the interface between perturbative (hard) and non-perturbative (soft) QCD
cannot be escaped even when we consider high-energy processes. This is particularly true for
colliders where at least one of the initial interacting particles is a proton. As a result, ancillary
information such as parton densities in the proton and Monte Carlo hadronisation models, is
needed for all practical cases.

The vast physics program being presently carried out at the electron-proton collider HERA
is playing a major role in the above mentioned activity of testing of QCD, as well as in revealing
new information on the structure of the proton. Very precise measurements of the neutral
current inclusive e+p and e−p cross sections, performed by the H1 and ZEUS collaborations,
have enormously improved our knowledge of the partonic structure of the proton, resulting in
such an important discovery as the steep rise of the sea and gluon densities in the proton at low
values of the x-Bjorken (xBj) variable. The interpretation of these measurements at the lowest
attainable values of xBj and Q2 (xBj ∼ 10−7 for Q2 ∼ 0.05 GeV2), where Q2 is the virtuality of
the exchanged boson, presently challenges our understanding of QCD. On the other hand, pQCD
analyses of these very precise data, when restricted to phase-space regions characterized by not
too small values of Q2 and xBj are now beginning to allow the simultaneous determination of
the parton densities in the proton and of the strong coupling constant with significant precision.

In addition to this considerable progress achieved in the measurements of the inclusive cross
sections and their interpretation within the framework of pQCD, the last couple of years have
also witnessed a remarkable progress in the description of more exclusive observables, namely
multi-jet cross sections in neutral current (NC) deep inelastic scatering (DIS) at HERA. These
observables are perfectly suited to test the dynamics of the underlying QCD hard processes and,
due to their direct sensitivity to αs and (in the low xBj region) the gluon density in the proton,

1



2 CHAPTER 1. INTRODUCTION

to provide complementary information on the strong coupling and the gluon density.
This dissertation presents a study of dijet production in NC DIS at HERA at high Q2 and

a determination of the strong coupling constant αs. Measurements of the differential cross
sections for dijet production are presented and compared with next-to-leading-order (NLO)
pQCD predictions, after correcting the latter for hadronisation effects. The phase-space region
is restricted to high-Q2 values, 470 < Q2 < 20000 GeV2. In this region, the experimental
uncertainties in the reconstruction of both the scattered positron and the hadronic final state
are smaller than at lower Q2. In addition, the theoretical uncertainties due to the modelling of
the hadronic final state, to the parton distribution functions (PDFs) of the proton, and to the
higher-order contributions are minimised.

The comparison of the differential cross sections with the NLO calculations has allowed the
test of the description of dijet production by the underlying QCD hard processes. A QCD analy-
sis has been performed that takes fully into account the correlation between the value of αs(MZ)
used in the determination of the proton PDFs and that used in the calculation of the partonic
cross sections. Furthermore, a detailed study of the uncertainties in the theoretical predictions
has been carried out which includes the statistical and correlated systematic uncertainties from
the data sets used in the determination of the proton PDFs. The QCD analysis results into a
precise determination of αs(MZ) as well as a study of the energy-scale dependence of the strong
coupling constant[1].

*****

This dissertation is organised as follows:
The next chapter gives a short description of the basic calculational framework of pQCD.

The important concepts of renormalised strong coupling constant, parton distribution functions
of the proton, infrared (IR) singularities and IR-safe observables, as well as the subleties present
in the calculation of NLO jet cross sections are discussed there. The chapter also contains a
short review of the recent most precise determinations of the strong coupling constant.

The third chapter describes the calculation of all the NLO predictions used in the comparison
with the measured inclusive and dijet cross sections. Particular emphasis is placed on an accurate
evaluation of theoretical uncertainties and a phase-space region is selected in order to minimise
them. In particular, a novel result is represented by one of the first attempts to fully quantify
the uncertainties of the NLO jet cross sections arising from the uncertainties in the parton
distribution functions of the proton.

A short description of the HERA collider and the ZEUS detector is presented in chapter 4.
In chapter 5 we give a complete description of the measurement of the inclusive and dijet

differential cross sections and their associated uncertainties. Starting from the selection of
the event samples, the quality of the reconstruction of the kinematic and jet variables and the
unfolding procedure are discussed, followed by a detailed study of the main sources of systematic
uncertainty.

Chapter 6 presents the final results on the measured cross sections and the comparison with
the QCD predictions. In this chapter we also describe the QCD analysis performed in order to
determine the strong coupling constant, which is determined both at the reference scale provided
by Z0 boson mass and as a function of Q.

The last chapter summarise the results obtained and ends this thesis with an outlook.



Chapter 2

Theoretical framework

In this chapter we introduce the concepts of renormalized strong coupling constant and parton
densities functions of the proton and give an overview of the general structure of DIS cross
sections in pQCD. Emphasis is placed on the description of a general algorithm which has been
developed in order to overcome the complex pattern of infrared (soft and collinear) singularities
encountered in the calculation of NLO pQCD jet cross sections. The chapter ends with a short
review of the recent most precise determinations of the strong coupling constant.

2.1 The strong coupling constant

2.1.1 QCD and asymptotic freedom

Quantum Chromodynamics, the non-Abelian gauge field theory which describes the interactions
of coloured quarks and gluons, emerged as viable theory of the strong interaction in the 1970s as
the result of the assembling of many theoretical ideas and experimental results. It is nowadays
regarded as one of the cornerstones of the Standard Model of elementary particles and their
interactions.

The most fundamental tenet of QCD is that hadrons are color-singlet bound states of quarks,
anti-quarks and gluons. A quark of specific flavor (such as a charm quark) comes in three colors;
gluons, the spin-one gauge bosons carriers of the colour interaction, come in eight colours.

The Lagrangian density of QCD is of a Yang-Mills type and is given (up to gauge-fixing
terms) by:

LQCD = −1

4
F (a)

µν F
(a)µν +

∑

q

ψ
i
q

(
i /Dij −mq

)
ψj

q , (2.1)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν (2.2)

is the gluon field strength tensor,

(Dµ)ij = δij∂µ − igsA
a
µT

a
ij (2.3)

is the gauge covariant derivative, T a are the SU(3) representation matrices (normalized so that
tr (T aT b) = δab/2), and the fabc are the structure constants of SU(3) defining its associated
algebra. The ψi

q(x) are the 4-component dirac spinors associated with each quark field of color
i and flavor q, and the Aa

ν are the gluon fields. In the Eq. (2.1) the sum on q is over the six
different flavors (u, d, s, c, b, t) of quarks. It is the third non-Abelian term on the right-hand-
side of Eq. (2.2) which distinguishes QCD from Quantum Electrodynamics (QED), giving rise
to triplet and quartic gluon self-interactions and ultimately, as we will see, to the property of
asymptotic freedom.

3
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At the classical level, and in the limit in which quark-mass effects can be negleted, the
QCD Lagrangian depends on a single dimensionless parameter: this is the gauge coupling, gs,
which determines the strength of the interaction between coloured quanta. The strong coupling

constant is defined, in analogy with the fine structure constant of QED, as

αs =
g2
s

4π
. (2.4)

Predictions for a QCD observable associated to a given scattering process are obtained by
perturbative methods using the Feynman rules which can be derived from the QCD lagrangian
density. As is typical in a quantum field theory, Feynman diagrams containing loops produce
ultraviolet (UV) divergences (originating from the integration over the unconstraint loop mo-
menta) which need to be removed via a renormalisation procedure. As a consequence of the
renormalisation of the theory the strong coupling constant αs become dependent, on a calcu-
lable manner, to an additional momentum scale: the renormalisation scale µR. This quantity
can be regarded as the momentum scale at which the subtractions needed to remove the UV
divergencies are performed. Since µR is an arbitrary and unphysical parameter, the value of any
physical observable R (if calculated to all orders in αs) has to be independent of µR. This simple
physics requirement is expressed mathematically by the renormalisation group equation

µ2
R

∂R

∂µ2
R

=

[
µ2

R

∂

∂µ2
R

+ µ2
R

∂αs

∂µ2
R

∂

∂αs

]
R = 0, (2.5)

which clearly show that, in order to keep the observable R independent from µR, a change in
the subtraction point (µR) must be compensated by an appropriate change in the renormalized
strong coupling constant αs(µR).

The renormalisation scale dependence of the strong coupling constant is determined by the
Callan-Symanzik β-function of QCD which is defined by:

µ2
R

d

dµ2
R

a(µR) = β (a(µR)) , (2.6)

where in the Eq. (2.6) we have defined the couplant a(µR) = αs(µR)/π. The β-function is
calculated by performing a perturbative expansion in powers of a:

β (a(µR)) = −
∑

i≥0

βi (a(µR))i+2 , (2.7)

and then extracting the coefficients, βi, from the higher-order (loop) corrections to the bare
vertices of the theory.

The calculation of the one-loop coefficient, β0, performed almost 30 years ago [2] has led to
the discovery of the property of asymptotic freedom of QCD:

a(µR) → 0 as µR → ∞. (2.8)

The renormalized strong coupling constant, according to asymptotic freedom, gets smaller at
high energies, and it is only in this domain that high-precision tests, similar to those in QED,
can be performed using the methods of perturbation theory.

One of the triumphs of modern particle physics and quantum field theory has been indeed,
mostly thanks to the property of asymptotic freedom, the extend to which QCD has successfully
accounted for the strong interaction processes observed at colliders; most notably the striking
phenomenon of hadronic jet production and the short-distance partonic structure of the proton.
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2.1.2 The renormalised strong coupling constant

The Callan-Symanzik β-function of QCD is presently known to four-loops accuracy1

µ2
R

d

dµ2
R

a = β (a) = −
∑

i≥0

βi (a)i+2 = −β0a
2 − β1a

3 − β2a
4 − β3a

5 + O(a6). (2.9)

The coefficients are given by [2, 3, 4, 5]

β0 =
1

4

[
11 − 2

3
nf

]
,

β1 =
1

16

[
102 − 38

3
nf

]
,

β2 =
1

64

[
2857

2
− 5033

18
nf +

325

54
n2

f

]
, (2.10)

β3 =
1

256

[
149753

6
+ 3564ζ3 +

(
−1078361

162
− 6508

27
ζ3

)
nf

+

(
50065

162
+

6472

81
ζ3

)
n2

f +
1093

729
n3

f

]
.

where nf is the number of active flavours, and ζ is Riemann’s zeta function with values ζ2 = π2/6
and ζ3 ≈ 1.202 057.

In the class of schemes where the beta function is mass independent, which includes the
minimal subtraction (MS) schemes of dimensional regularization [6], β0 and β1 [3] are universal.
The results for β2 [4] and β3 [5] are available in the modified MS (MS) scheme [7]. For the
reader’s convenience, the coefficients of the beta function, βi (i = 0, . . . , 3), are listed for the nf

values of practical interest in Table 2.1.
In solving the Eq. (2.9) for αs, a constant of integration has to be introduced: this is the

fundamental constant of QCD that must be determined from experiment. The most sensible
choice for this constant is the value of αs at a fixed-reference scale µref

R . It has become standard
to choose µref

R = MZ , where MZ = 91.1882 GeV is the mass of the Z0 boson which is very
precisely measured (∆MZ = ±0.0022 GeV), safely in the perturbative region (αs(MZ) ≪ 1),
and far away from the quark thresholds (mb ≪MZ ≪ mt).

It is also convenient to introduce an additional dimensional parameter, Λ, which provides a
direct parameterisation of the µR dependence of αs. Integrating Eq. (2.9) leads to

ln
µ2

R

Λ2
=

∫
da

β(a)

=
1

β0

[
1

a
+ b1 ln a+ (b2 − b21)a+

(
b3
2

− b1b2 +
b31
2

)
a2

]
+ C, (2.11)

where an expansion in a has been performed, and to simplify the notation we have defined
bi = βi/β0 (i = 1, 2, 3). The integration constant is here conveniently split into Λ, the so-called
asymptotic scale parameter, and C. The conventional MS definition of Λ, which we shall adopt
in the following, corresponds to choosing C = (b1/β0) ln β0 [8, 9].

Iteratively solving Eq. (2.11) yields [10]

a =
1

β0L
− b1 lnL

(β0L)2
+

1

(β0L)3
[
b21(ln2 L− lnL− 1) + b2

]

+
1

(β0L)4

[
b31

(
− ln3 L+

5

2
ln2 L+ 2 lnL− 1

2

)
− 3b1b2 lnL+

b3
2

]
, (2.12)

1In the following we will omit the label µR in the couplant, a(µR), wherever confusion is impossible.
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where L = ln(µ2
R/Λ

2) and terms of O(1/L5) have been neglected. The property of asymptotic
freedom is immediately manifest in the Eq. (2.12) already at 1-loop accuracy (i.e. b1 = b2 =
b3 = 0): αs depends logarithmically on µR and slowly approches zero as µR becomes large.

QCD matching conditions at flavour thresholds

In the discussion above we have ignored quark-mass effects, i.e., we have assumed an idealized
situation where quarks of mass greater than µR are negleted completely.

When considering heavy-quark effects in MS-like renormalization schemes, particular care
must be placed, however, in the implementation of the matching conditions across heavy-flavour
thresholds. This is due to the fact that in MS-like schemes, the Appelquist-Carazzone decoupling
theorem [11] does not in general apply to quantities that do not represent physical observables,
such as the β-function or the coupling constant, i.e., quarks with masses much larger than the
considered energy scale do not automatically decouple. The standard procedure to circumvent
this problem is to render decoupling explicit by using the language of effective field theory.
Let us consider QCD with nl = nf − 1 massless quark flavours and one heavy flavour h, with
mass mh which is supposed to be much larger than the energy scale. One can construct an
effective nl-flavour theory by requiring consistency with the full nf -flavour theory2 at an energy

scale comparable to mh, the heavy-quark threshold µ
(nf )
R = O(mh). This leads to a nontrivial

matching condition between the couplings and light masses, mq, of the two theories. Although,

α
(nl)
s (mh) = α

(nf )
s (mh) and m

(nl)
q (mh) = m

(nf )
q (mh) at leading and next-to-leading order, this

relation does not generally hold at higher orders in the MS scheme.

The connection between the strong coupling constant in the effective and the full theory is
given by

α(nf−1)
s (µ) = ζ2

gα
(nf )
s (µ) , (2.13)

where ζg is known up to the three-loop order [10, 15]:

(
ζMS
g

)2
= 1 +

α
(nf )
s (µ)

π

(
−1

6
ln
µ2

m2
h

)
+

(
α

(nf )
s (µ)

π

)2(
11

72
− 11

24
ln
µ2

m2
h

+
1

36
ln2 µ

2

m2
h

)

+

(
α

(nf )
s (µ)

π

)3 [
564731

124416
− 82043

27648
ζ3 −

955

576
ln
µ2

m2
h

+
53

576
ln2 µ2

m2
h

− 1

216
ln3 µ2

m2
h

+ nl

(
− 2633

31104
+

67

576
ln
µ2

m2
h

− 1

36
ln2 µ2

m2
h

)]
. (2.14)

In this equation the MS mass mh(µ) is chosen for the parameterization of the heavy quark mass.
From the Eq. (2.14) and (2.12) is then straigthforward to derive the relation between Λ(nf−1)

and Λ(nf ).

Solutions of the renormalisation group equation

There are various approaches that can be used to compute αs(µR) when a(µref
R ) is given for a

fixed number of flavours:

a) In the first approach αs(µR) is evaluated by solving numerically the differential equation
Eq. (2.9) using αs(MZ) as initial condition.

2By requiring consistency here we mean that the values α
(nf−1)
s and α

(nf )
s should be related so that a physical

quantity calculated in both ‘theories’ gives the same result.
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b) In this method a two-steps procedure is applied. First the quantity Λ is calculated from
Eq. (2.11) with µR = MZ , and then the Eq. (2.12) is used to obtain αs(µR) at any other
scale µR.

c) The third approach, which is also the one adopted by the Particle Data Group (PDG),
exploits the Eq. (2.12) both to determine Λ (via an iterative procedure) and then to
compute αs(µR).

The first method has the advantage to give an exact (numerical) solution of the renormalisation
group equation avoiding altogether the introduction of the Λ parameter at intermediate steps.
The other approaches do use the Λ parameter (and are hence dependent on the exact definition
of Λ, as the MS given above), but have the advantage of providing an explicit parameterisation
of the µR-dependence of αs; here Λ plays the role of a universal parameter which sets the
characteristic scale of QCD.

In Tab. 2.2 the influence of the adopted evolution equation and number of loops included,

is studied in the evaluation of α
(5)
s at the scale provided by the bottom mass, mb = 4.7 GeV,

using α
(5)
s (MZ) as an input. It can be seen that the inclusion of β1 leads to a significant

jump in α
(5)
s (Mb) whereas the effect of the three- and four-loop coefficients, i.e. β2 and β3, is

only marginal. Similar conclusions are drawn from Fig. 2.1 where the strong coupling constant
αs(µR) (at 1-, 2-, and 3-loop accuracy) is plotted in the region 5 < µR < 110 GeV, assuming
αs(MZ) = 0.118, and using the approach c) described above for the evolution.

In all the NLO pQCD calculations presented in this thesis the running of the strong coupling
constant has been calculated using the method c) outlined above with the Eq. (2.12) truncated
(for consistency reasons) at two loops.

2.2 General structure of the DIS cross sections in NLO pQCD

In this section we describe the general structure of the NLO QCD cross sections in NC DIS.
Emphasis is placed in describing those properties that a particular physical observable has to
fulfil in order to be perturbatively calculable in QCD.

2.2.1 QCD-improved parton model and factorisation

The calculational framework for computing a generic cross section in a deep inelastic e+p hard-
scattering process (i.e. a process characterized by the presence of at least a large momentum
scale) is based on the QCD-improved parton model. According to this model, as quantitatively
expressed by the factorization theorems of QCD[16] and perturbation theory, a NC DIS differ-
ential cross section3, dσ, can be written as

dσ =
∑

a=q,q,g

∫
dxfa(x, µ2

F)dσ̂a(xP,αs(µR), µ2
R, µ

2
F) · (1 + δhad) . (2.15)

The cross section has the form of a convolution, with respect to the fraction x of the proton
four-momentum (P ) taken by the incoming parton, of the partonic hard cross sections (dσ̂a)
with the parton distribution functions (fa(x, µ2

F)) of the colliding proton. The partonic cross
sections describe the short-distance structure of the interaction and are calculable, thanks to the
property of asymptotic freedom of QCD, as power series expansions in the renormalization scale

3Unless indicated otherwise in the following we will use the same symbol dσ to indicate both the DIS inclusive
(dσtot) and the dijet (dσ2+1) differential cross sections. The same symbols with the superscript NLO will indicate
only the perturbative component (the first term on the right-hand side of Eq. 2.15) which does not contain
non-perturbative (δhadr) contributions.
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(µR) dependent strong coupling constant. The parton distribution functions (PDFs) contain
the description of the long-distance structure of the incoming proton. Although they are not
predicted by pQCD their evolution with the factorization scale (µF) at which they are probed
follows the DGLAP equations [17].

We have isolated into δhad, in the Eq. (2.15), the contribution of the hadronisation processes
that account for transformation of the final state partons into the observed colourless hadrons.
These effects take place long after the hard scattering and involve long distances (small momen-
tum transfers) and as such can not be described within the realm of pQCD. One is hence forced
to use QCD-inspired phenomenological models.

In the following, we will describe only the perturbative component of the cross section and
leave the discussion of these non perturbative effects to the next chapter.

2.2.2 Parton densities

The predictive power of the factorization formula Eq. (2.15) follows from the universality of
the parton densities: once extracted from the data in one process (or more generally in a set
of processes), they can be used to derive an absolute prediction for any other hard-scattering
process, provided the corresponding partonic cross sections are known.

The dependence of the parton densities fa(x, µ2
F) on the momentum fraction x and their

absolute value at any fixed scale µ2
F are not computable in perturbation theory. However, their

scale dependence is perturbatively controlled by the DGLAP evolution equations:

∂ fa(x, µ2
F)

∂ lnµ2
F

=
αs(µR)

2π

∑

b=q,q,g

∫ 1

x

dz

z
Pab(αs(µ

2
R), z) fa(x/z, µ2

F) . (2.16)

The kernels Pab(αs, z) are the Altarelli–Parisi (AP) splitting functions. As the partonic cross
sections (to be discussed in the next section), they are computable as power series expansions
in αs:

Pab(αs, z) = P
(0)
ab (z) +

αs(µR)

2π

[
P

(1)
ab (z) − β0 ln

µ2
F

µ2
R

P
(0)
ab (z)

]
+ O(α2

s ) , (2.17)

where P
(0)
ab (z) and P

(1)
ab (z) are the LO and NLO splitting functions[18] respectively, and β0 is

defined in Eq.(2.10).

The parton densities are determined by performing global DGLAP fits to data from deep-
inelastic scattering, Drell–Yan (DY), prompt-photon and jet production. The method con-
sists in parameterizing the parton densities at some input scale Q0 and then adjusting the
parameters to fit the evolved PDFs to the data. The parameters are usually constrained by
imposing the positivity of the parton densities (fa(x, µ2

F) ≥ 0) and the momentum sum rule
(
∑

a

∫ 1
0 dxx fa(x, µ2

F) = 1). Having determined fa(x,Q2
0) at a given input scale µ2

F = Q2
0, the

evolution equations (Eq. (2.16)) can be used to compute the parton densities at different per-
turbative scales µ2

F and momentum fractions x.

All densities decrease at large x. At small x, the valence quark densities vanish and the gluon
density dominates. The sea-quark densities also increase at small x because they are driven by
the strong rise of the gluon density and the splitting of gluons in qq̄ pairs. Note that the quark
densities are not flavour-symmetric either in the valence sector (uv 6= dv) or in the sea sector
(ū 6= d̄).

In the next chapter we will review in detail the present knowledge on the parton densities,
and discuss the important issue of their theoretical and experimental associated uncertainties.
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2.2.3 Partonic cross sections

Basic structure

The calculation of hard-scattering cross sections requires, besides that of the parton densities,
the knowledge of the partonic cross sections dσ̂a. The latters are expressed as a power series
expansion in the renormalized strong coupling constant, and are evaluated by calculating the
relevant Feynman diagrams up to a given order in αs. The NLO pQCD partonic cross sections
are obtained truncating the perturbative series after the second term:

dσ̂a
NLO =dσ̂(0)

a + dσ̂(1)
a . (2.18)

The LO cross section dσ̂(0) is obtained by integrating the fully exclusive Born-level cross
section dσ̂B over the phase space for the corresponding physical observable. Let us suppose that
this LO calculation involves m partons with momenta pk (k = 1, ...,m) in the final state (see
Fig. 2.2). Thus, we write

dσ̂(0)
a =

∫

m
dσ̂B

a , (2.19)

where the Born-level cross section is:

dσ̂B
a = dΦ(m)({pk}) |Mm({pk})|2 F (m)

J ({pk}) , (2.20)

and dΦ(m) and Mm denote the full phase space and the tree-level QCD matrix element to
produce m final-state partons, respectively. These are the factors that depend on the process.

The function F
(m)
J defines the physical quantity that we want to compute, possibly including

the experimental cuts. Thus, for example, in the case of a jet cross section, F
(m)
J is the functional

representation (in terms of the four-momenta of the m partons in the final state) of the adopted

jet algorithm. We will discuss shortly below the requirements that F
(m)
J has to fulfill in order

to be able to compute finite cross sections.
The evaluation of the LO cross section does not present any particular difficulty. Even if

dσ̂(0) cannot be computed analytically (because Mm is too cumbersome or the phase-space cuts

in F
(m)
J are very involved), one can straightforwardly use numerical integration techniques, for

instance, a Monte Carlo program where the function F
(m)
J is given as ‘user routine’.

To calculate the NLO contribution, dσ̂
(1)
a , one has to consider the exclusive cross section dσR

a

with m + 1 partons in the final state (real corrections) and the one-loop correction dσV
a to the

process with m partons in the final state (virtual corrections):

dσ̂(1)
a =

∫

m+1
dσ̂R

a +

∫

m
dσ̂V

a +

∫

m
dσ̂C

a . (2.21)

The exclusive cross sections dσ̂R
a and dσ̂V

a have the same structure as the Born-level cross section
in Eq. (2.20):

dσ̂R
a = dΦ(m+1) |Mm+1({pk})|2 F (m+1)

J ({pk}) , (2.22)

dσ̂V
a = dΦ(m) |Mm({pk})|2(1−loop) F

(m)
J ({pk}) , (2.23)

where |Mm|2(1−loop) denotes the renormalized QCD amplitude to produce m final-state partons
evaluated in the one-loop approximation:

|Mm|2(1−loop) = Mm · (Mloop
m )∗ + Mloop

m · (Mm)∗ , (2.24)

and dΦ(m+1) and Mm+1 indicate the phase-space and matrix element to produce the m+1 final
state partons, respectively.

The third contribution, dσ̂C
a , in the Eq. (2.21) is the collinear-subtraction counterterm that

arises from the redefinition of the bare parton densities into factorisation-scale dependent PDFs;
We will explain the origin of this term shortly below.



10 CHAPTER 2. THEORETICAL FRAMEWORK

Infrared singularities and infrared safe observables

As is well known, the calculations of the virtual4 and real cross sections leads to a rather
complicated pattern of soft and collinear singularities. These singularities arise from phase-
space regions characterized by a parton (either virtual, that is exchanged in a loop, or real, that
is emitted and contributing to the partonic final state) becoming soft or collinear to another
parton present in the initial or final state. Regularizing the phase-space integrals on the r.h.s. of
Eq. (2.21) in a number of space-time dimensions d = 4− 2ǫ allows to express these divergencies

simply in terms of double (1/ǫ2) and single (1/ǫ) poles. In order to obtain a finite result for dσ̂
(1)
a

these poles must cancel between the virtual and real contributions, and the collinear counter

term. This cancellation, however, is not guaranteed by QCD for any observable F
(m)
J , but

only for a special class of them: these are the observables that are infrared-safe and allow the
factorizability of initial-state collinear singularities.

By infrared-safe observable F
(m)
J we mean a physical quantity that is independent of the

number of soft and collinear particles in the final state. Qualitatively we should have:

F
(m+1)
J → F

(m)
J , (2.25)

in any case where the m+ 1-parton final state contains either a soft parton or a pair of collinear
partons.

Formally, this implies that FJ has to fulfill the following properties:

F
(m+1)
J (p1, .., pj = λq, .., pm+1) → F

(m)
J (p1, ..., pm+1) if λ→ 0 , (2.26)

F
(m+1)
J (p1, .., pi, .., pj , .., pm+1) → F

(m)
J (p1, .., p, .., pm+1) if pi → zp , pj → (1 − z)p (2.27)

and

F
(m)
J (p1, ..., pm) → 0 if pi · pj → 0 . (2.28)

Note that the m-parton jet function F
(m)
J on the right-hand side of Eq. (2.26) is obtained from the

original F
(m+1)
J by removing the soft parton pj, and the one on the right-hand side of Eq. (2.27)

by replacing the collinear partons {pi, pj} with a parton of four-momentum p = pi+pj. Equation
(2.28) defines the leading-order cross section, that is, it ensures that the Born-level cross section
dσ̂B in Eq. (2.19) is well-defined (i.e. finite after integration) in d = 4 dimensions.

In addition to the property of infrared-safety the phase-space function must fulfil also the
property of factorizability of initial-state collinear singularities. We should have:

F
(m+1)
J (p1, .., pi, .., pm+1; pa) → F

(m)
J (p1, ..., pm+1;xpa) , if pi → (1 − x)pa (2.29)

where F
(m)
J is obtained from F

(m+1)
J by removing the final-state parton i collinear to the initial-

state parton of flavour a and momentum pa.

If FJ fulfils these conditions than the soft singularities and the the collinear singularities in

the final state cancel between the virtual and real cross sections (owing to the Kinoshita-Lee-
Nauenberg theorem[19]), and the collinear singularities from the initial state can be consistently
absorbed into ‘redefined’ (µF -dependent) parton densities. The factorization scale is the tech-
nical scale at which this redefinition of the PDFs is performed. Qualitatively speaking it can
be considerated as a cutoff for the transverse momentum (p⊥) of the parton emitted from the
initial state: for p⊥ > µF , the parton is assumed to contribute to the final state; for p⊥ < µF ,
the parton contributes to the definition of the PDFs.

4In the following we will assume that the ultraviolet singularities encountered in the calculation of the loop
integral in |Mm|2(1−loop) have been cured by carrying out the the usual renormalization procedure.
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In the factorization formula Eq. (2.15) we have already expressed, as is done in the standard
literature, the hadronic cross section in term of the µF -dependent PDFs and so as a consequence
we have added to the virtual and real corrections the initial-state collinear counterterm, dσ̂C ,
in order to guarantee the cancellation of all (soft and collinear) singularities within the sole
partonic cross section. This counterterm can be expressed in a very general form. In the MS
factorisation scheme and d = 4 − 2ǫ dimensions it reads:

dσ̂C
a (µ2

R, µ
2
F) = −αs(µR)

2π

1

Γ(1 − ǫ)

∑

b

∫ 1

0
dz

[
−1

ǫ

(
4πµ2

R

µ2
F

)ǫ

P
(0)
ab (z)

]
dσ̂B

b (zpa) . (2.30)

where the functions P
(0)
ab (z) are the LO Altarelli-Parisi splitting functions. We note here that

the complete µF dependence of the NLO partonic cross section is contained in this collinear
counterterm. Since the parton densities fa(x, µ2

F) are also factorisation-scale dependent, this
dependence largely cancel in the hadronic cross section.

NLO partonic cross sections and determination of αs

The importance of taking into account the NLO corrections can be seen from the fact that only
including them one can have reliable pQCD predictions and hence perform a reliable determi-
nation of the strong coupling constant. In order to understand why this is so, it is convenient
to rewrite the NLO partonic cross section Eq. (2.18) in a form that explicitly shows its αs, µR,
and µF dependences:

dσ̂a
(1) =αk

s (µR)
{
ĉ(0)a + αs(µR)ĉ(1)a (µ2

R, µ
2
F)
}
, (2.31)

where in Eq. (2.31) the integer power (k = 0, 1, 2, . . . ) of the overall αk
s (µR) term depends on

the particular observable being considered.

The LO term ĉ
(0)
a can give only an estimate of the order of magnitude of the partonic cross

section, because, at this order, αs is not unambiguously defined. Equivalently, we can say that

since ĉ
(0)
a does not depend on µR, the size of its contribution can be varied quite arbitrarily by

changing µR in its coefficient αk
s (µR). A ‘reliable’ estimate of the partonic cross section (and the

strong coupling αs) requires instead the knowledge of (at least) the NLO term ĉ
(1)
a . This term

explicitly depends on µR and this dependence begins to compensate that of αk
s (µR).

It is worth noting here that the partonic cross sections do not contain the full αs dependence
of the hadronic cross section. The PDFs of the proton, via the DGLAP evolution equations,
also depend on αs. Any QCD analysis aiming at a determination of the strong coupling in a
QCD fit must hence take the full αs-dependence into account as well as the existing correlations
between αs and PDFs.

An important issue associated to the calculation of the partonic cross sections is the one
related to the corresponding uncertainty due to the uncalculated higher-order (i.e. beyond
NLO) terms. We will discuss this issue in the next chapter together with the other sources of
theoretical uncertainty on the QCD predictions.

2.3 The NLO program DISENT

Owing to the complicated structure of the phase-space function FJ associated to a given infrared-
safe observable, the analytical calculation of the corresponding NLO predictions is in practice
impossible for all but the simplest (i.e. fully inclusive) quantities, thus making the use of
numerical methods essential. However, even the application of numerical integration techniques
is far from trivial, because the separate integration of the NLO real and virtual contributions
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over the associated m+1- and m-partons phase-space regions in Eq. (2.21) cannot be performed
before having first removed the singularities which affect both integrals.

Any attempt to construct a numerical program for the calculation of NLO jet observables
must hence somehow be able to set up a hybrid numerical/analytical procedure where the
analytical cancellations of the singularities is achieved at the integrand level and the remaining
complex but finite phase-space integrals are then evaluated numerically.

In the last few years, several such NLO programs [31, 30, 32, 33] for the calculations of
infrared-safe observables in DIS have appeared. They have greatly enhanced the possibility to
perform detailed QCD phenomenological studies of jet production in DIS at HERA. First of
all, the numerical approach allows to calculate any number and any type of observables simul-
taneously by simply histogramming the appropriate quantities, moreover, using the numerical
approach, it is easy to implement different experimental conditions, for example detector accep-
tances and experimental cuts.

The aim of this section is to give a pictorial description of the main theoretical ingredients
which have allowed the practical implementation of one of these NLO programs: DISENT[31].
This program has been used to obtain the NLO pQCD predictions for all the cross sections
studied in this thesis5.

DISENT is based on two key ingredients: the subtraction method for the numerical cancel-
lation of the divergences among different contributions and the dipole factorization formulae for
the universal (process- and observable-independent) analytical treatment of individual divergent
terms.

2.3.1 Subtraction method

The general idea of the subtraction method is to use the exact identity

dσ̂(1)
a =

∫

m+1

[
dσ̂R

a − dσ̂A
a

]
+

∫

m
dσ̂V

a +

∫

m+1
dσ̂A

a +

∫

m
dσ̂C

a , (2.32)

which is obtained by subtracting and adding back the ‘fake’ cross section contribution dσ̂A
a to the

NLO contribution, dσ̂
(1)
a , in Eq. (2.21). The cross section dσ̂A

a has to fulfil two main properties.

i) It must be a proper approximation of dσ̂R
a such as to have the same pointwise singular

behaviour (in d dimensions) as dσ̂R
a itself. Thus, dσ̂A

a acts as a local counterterm for dσ̂R
a and

one can safely perform the limit ǫ → 0 under the integral sign in the first term on the right-

hand side of Eq. (2.32). This defines a cross section contribution dσ̂
(1) {m+1}
a , with m+ 1-parton

kinematics, that can be integrated numerically in four dimensions:

dσ̂(1) {m+1} =

∫

m+1

[(
dσ̂R

a

)
ǫ=0

−
(
dσ̂A

a

)
ǫ=0

]
. (2.33)

ii) The second property of dσ̂A
a is its analytic integrability (in d dimensions) over the one-

parton subspace leading to the soft and collinear divergences. In this case, we can rewrite the
last three terms on the right-hand side of Eq. (2.32) as follows

dσ̂(1) {m}
a =

∫

m

[
dσ̂V

a +

∫

1
dσ̂A

a + dσ̂C
a

]

ǫ=0

. (2.34)

Performing the analytic integration
∫
1 dσ̂

A
a , one obtains ǫ-pole contributions that can be com-

bined with those in dσ̂V
a and dσ̂C

a , thus cancelling (by trivial addition) all the divergences. The

5A numerical comparison of the DISENT predictions with those obtained using other DIS NLO programs
presently available on the market will be presented in the next chapter.
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remainder is finite in the limit ǫ→ 0 and thus defines the integrand of a cross section contribution

dσ̂
(1) {m}
a , with m-parton kinematics, that can be integrated numerically in four dimensions.

The final structure of the NLO partonic cross section is then as follows

dσ̂NLO
a = dσ̂(0) {m}

a + dσ̂(1) {m+1}
a + dσ̂(1) {m}

a , (2.35)

and can be easily implemented in a ‘partonic Monte Carlo’ program, which generates appropri-

ately weighted events with m+ 1 and m final-state partons.

Note that, using the subtraction method, no approximation is actually performed in the
evaluation of the NLO cross section. Rather than approximating the cross section, the subtracted
contribution dσ̂A

a defines a fake cross section that has the same dynamical singularities as the
real one and whose kinematics are sufficiently simple to permit its analytic integration over the
one-parton subspace leading the infrared singularities.

From the above discussion it is clear that the crucial step in the practical implementation of
the subtraction method is the construction of an appropriate contribution dσ̂A

a . In the program
DISENT this is achieved by exploiting the dipole formalism first introduced by Catani and
Seymour [21].

2.3.2 The dipole formalism and the universal subtraction term

The dipole factorization formulae provide an effective framework to relate the singular behaviour
of |Mm+1|2, the tree-level amplitude with m + 1 partons, to |Mm|2. They have the following
symbolic structure:

|Mm+1(p1, ..., pm+1)|2 = |Mm(p̃1, ..., p̃m)|2 ⊗ V ij + . . . . (2.36)

The dots on the right-hand side stand for contributions that are not singular in the soft and
collinear limits (i.e. when pi · pj → 0). The dipole splitting functions V ij are universal (process-
independent) singular factors which reproduce all the soft and collinear limits of |Mm+1|2 and
depend on the momenta and quantum numbers of the m partons in the tree-level matrix element
|Mm|2. Colour and helicity correlations are denoted by the symbol ⊗. The set p̃1, ..., p̃m of
modified momenta on the right-hand side of Eq. (2.36) is defined starting from the original
m + 1 parton momenta in such a way that the m partons in |Mm|2 are physical, that is, they
are on-shell and energy-momentum conservation is implemented exactly6:

p̃ 2
i = 0 , p̃1 + ...+ p̃m = p1 + ...+ pm+1 . (2.37)

In particular, they can be chosen in such a way to obey exact phase-space factorization:

dΦ(m+1)(p1, ..., pm+1) = dΦ(m)(p̃1, ..., p̃m) dϕ({p̃k})(pi + pj) , (2.38)

where dϕ is a single-particle subspace that, for fixed p̃1, ..., p̃m, depends only on the dipole
momenta pi and pj. Apart from the presence of colour and helicity correlations, the left hand
side of Eq. (2.36) can thus be considered as a truly factorized expression.

These main features of the dipole formulae allow to construct a universal subtraction term
with the following form:

dσ̂A
a = dΦ(m+1)

∑

ij

|Mm({p̃k})|2 ⊗ V ij F
(m)
J ({p̃k}) , (2.39)

which fulfils, as we will now see, the properties i) and ii) listed above.

6The detailed expressions for these parton momenta and for the dipole splitting functions are given in Ref. [21].
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As for the property i), we observe that there are several dipole terms on the right-hand
side of Eq. (2.39). Each of them mimics one of the m + 1-parton configurations in dσ̂R

a that
are kinematically degenerate with a given m-parton state. Any time the m + 1-parton state
in dσ̂R

a approaches a soft and/or collinear region, there is a corresponding dipole factor in dσ̂A
a

that approaches the same region with exactly the same probability as in dσ̂R
a . The equality

of the two probabilities directly follows from Eq. (2.39), from the limiting behaviour of the
m+1 amplitude in Eq. (2.36), and the property of infrared-safeteness of the physical observable
previuosly discussed. In this manner dσ̂A

a acts as a local counterterm for dσ̂R
a . Note, in particular,

that the cancellation mechanism is completely independent of the actual form of the jet-defining
function and works for any jet observable (i.e. for any quantity that fulfils Eq. (2.25)).

As for the property ii), we start by noting that dσ̂A
a (likewise dσ̂R

a ) depends on the m + 1
parton momenta p1, ..., pm+1. However, owing to the exact phase-space factorization Eq. (2.38)
and to the fact that the fake cross section in Eq. (2.39) is proportional to the jet quantity
calculated from the modified m-parton configuration, the integration of the singular dipole
contributions can be completely factorized (modulo colour and helicity correlations) with respect
to a term that exactly reproduces the Born-level cross section:
∫

m+1
dσA =

∫

m
dΦ(m)({p̃k}) |Mm({p̃k})|2 ⊗ I({p̃k})F

(m)
J ({p̃k})=

∫

m
dσB ⊗ I({p̃k}) . (2.40)

The factor I in Eq. (2.40) is defined by

I({p̃k}) ≡
∑

ij

∫

1
dϕ({p̃k})(pi + pj) V ij , (2.41)

and contains all the soft and collinear singularities that are necessary to compensate those in the
virtual cross section dσ̂V

a and the collinear counterterm dσ̂C
a . Owing to the convenient definition

of the dipole splitting function V ij, it is possible to carry out analytically the integration in
Eq. (2.41) over the dipole phase space in d dimensions. This leads to an explicit expression

for the factor I, which is again independent from F
(m)
J , and calculable (as the dipole splitting

functions) once and for all.

2.3.3 Numerical implementation

In order to summarize the final results of the DISENT algorithm and to describe its numerical
implementation, we start by recalling how the LO cross section in Eq. (2.19) is evaluated by using
a Monte Carlo program. One first generates an m-parton event in the phase-space region dΦ(m)

and gives it the weight |Mm|2. Then this weighted event is analysed by a user routine according

to the actual definition of the phase-space function F
(m)
J and inserted into a corresponding

histogram bin.
Following the decomposition in Eq. (2.35), the NLO cross section is obtained by adding to

the LO result, dσ̂
(0)
a , two contributions (which are not necessarily positive definite) with m-

parton and m+ 1-parton kinematics, respectively. As we have seen, unlike the original real and
virtual contributions, these two terms are separately finite and can directly be integrated in four
space-time dimensions.

The NLO contribution with m finale-state partons, dσ̂
(1) {m}
a , has a very simple structure.

It is identical to the LO partonic cross section in Eq. (2.19) but with the amplitude |Mm|2
replaced by an effective one, Fm, which is the finite reminder resulting from the sum of the
one-loop amplitude |Mm|2(1−loop), of the amplitude |Mm|2 ⊗ I (arising from

∫
1 dσ̂

A
a ), and of the

amplitude of the collinear-counterterm in the Eq. (2.30) (including its 1/ǫ-pole):

dσ̂(1) {m}
a =

∫

m
dΦ(m) F

(m)
J ({pk}) Fm({pk}) . (2.42)
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As a result, this term can be evaluated in a Monte Carlo program exactly as the LO cross section
except for using as a weight of the m-parton configuration Fm instead of |Mm|2.

The NLO contribution with m+ 1-parton kinematics, which is obtained by subtracting the
fake cross section in Eq. (2.39) from the real cross section in Eq. (2.22), has the following explicit
expression:

dσ̂(1) {m+1}
a =

∫

m+1
dΦ(m+1) (2.43)

·



|Mm+1({pk})|2 F (m+1)

J ({pk}) −
∑

ij

|Mm({p̃k})|2 ⊗ V ijF
(m)
J ({p̃k})



 .

The terms in the curly bracket define an effective matrix element that is again finite and inte-
grable in four space-time dimensions. Knowing the tree-level matrix elements and the dipole
splitting functions, the Monte Carlo integration of Eq. (2.43) is straightforward. One simply
generates an m + 1-parton configuration and uses it to define an event with positive weight
+|Mm+1|2 and several counter-events, each of them with the negative weight −|Mm|2 ⊗ Vij .
Then these event and counter-events are analysed by the user routine. The role of the two

different jet functions F
(m+1)
J and F

(m)
J is that of binning the weighted event and counter-events

into different bins of the jet observable. Any time that the generated m+1-parton configuration
approaches a singular region, the event and one counter-event fall into the same bin and the
cancellation of the large positive and negative weights takes place.

Having described the general structure of the NLO pQCD cross sections in NC DIS and
their practical implementation in the program DISENT we can now specialize to the two classes
of observables we will be studying in this thesis: the total inclusive and dijet differential cross
sections.

2.4 Inclusive cross section

The NLO cross section for the inclusive NC e+p deep inelastic scattering process:

e+(l) + p(P ) → e+(l′) +X (2.44)

receives contributions from the LO O(α0
s ) simple quark-parton model (QPM) subprocess (see

Fig. 2.3a):
e+(l) + qi(p0) −→ e+(l′) + qi(p1) (2.45)

and from the NLO O(αs) one-loop virtual corrections to the LO processes (see Fig. 2.3b) as well
as from the real corrections due to the subprocesses with two partons in the final state shown
in Fig. 2.4:

e+(l) + qi(p0) −→ e+(l′) + qi(p1) + g(p2) (2.46)

e+(l) + g(p0) −→ e+(l′) + qi(p1) + q̄i(p2) . (2.47)

In the Eq. (2.44) to Eq. (2.46) the particles and partons four-momenta are indicated in parenthe-
ses; in the partonic processes, i labels the quark flavour (i = u, d, s, c, . . . ) and the corresponding
anti-quark processes obtained for qi ↔ q̄i are implied. Each process can proceed via the exchange
of a photon or a Z0 boson with four-momentum q.

For a given e+p centre-of-mass energy (
√
s =

√
(l + P )2), the kinematic of the process is

completely specified by two variables. They are selected among the four-momentum transfer Q2,
the Bjorken scaling variable xBj and the inelasticity variable y, which are defined respectively
as

Q2 = −q2 = −(l − l′)2, xBj =
Q2

2P · q and y =
P · q
P · l . (2.48)
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Due to the completely inclusive nature of this observable, the NLO double differential inclu-
sive cross section, dσtot/dxBjdQ

2, can be presented in closed analytical form and is conveniently
expressed in terms of three structure functions:

d2σNC(e+p)

dxBjdQ2
=

2πα2

xBjQ4

[
Y+F2(xBj , Q

2) − y2FL(xBj , Q
2) − Y−xBjF3(xBj , Q

2)
]

(2.49)

where Y± ≡ 1 ± (1 − y)2 and the NLO structure functions read:

F2(xBj , Q
2) =

∑

i

Ai(Q
2)xBjf

NLO
2,i (xBj , Q

2)

FL(xBj , Q
2) =

∑

i

Ai(Q
2)xBjf

NLO
L,i (xBj , Q

2) (2.50)

xBjF3(xBj , Q
2) =

∑

i

Bi(Q
2)xBjf

NLO
3,i (xBj , Q

2)

In this equation the sums run over the number of active quark flavours: i = d, u, s, . . ..
The functions fi (i = 2, L, 3) are expressed in terms of convolutions of the NLO parton densi-

ties with appropriate perturbative coefficient functions. Introducing the following combinations
of quark and anti-quark densities

xq+i = x(qi + q̄i)

xq−i = x(qi − q̄i)

we have:

xf2,i = xq+i +
αs(Q

2)

2π

[
C2,q ⊗ xq+i + C2,g ⊗ xg

]

xfL,i =
αs(Q

2)

2π

[
CL,q ⊗ xq+i + CL,g ⊗ xg

]
(2.51)

xf3,i = xq−i +
αs(Q

2)

2π

[
C3,q ⊗ xq−i

]

where xg is the gluon density and the convolution integrals are defined as:

C ⊗ f(x,Q2) =

∫ 1

x

dy

y
C(x/y) f(y,Q2). (2.52)

In the MS scheme (used in this analysis) the coefficient functions are:

CMS
2,q (x) =

4

3

[
1 + x2

1 − x

(
ln

1 − x

x
− 3

4

)
+

1

4
(9 + 5x)

]

+

CMS
2,g (x) =

[
x2 + (1 − x)2

]
ln

(
1 − x

x

)
− 1 + 8x(1 − x) (2.53)

CMS
L,q (x) =

8

3
x

CMS
L,g (x) = 4x(1 − x)

CMS
3,q (x) = CMS

2,q (x) − 4

3
(1 + x)

where the so-called ‘+’ prescription is defined by:

[f(x)]+ = f(x) − δ(1 − x)

∫ 1

0
f(y)dy. (2.54)
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The coefficients Ai and Bi are given by [81]

Ai(Q
2) = e2qi

+ 2eeveeqi
vqi
P (Q2) + (v2

e + a2
e)(v2

qi
+ a2

qi
)P 2(Q2) (2.55)

Bi(Q
2) = 2eeaeeqi

vqi
P (Q2) + 4veaevqi

aqi
P 2(Q2).

Here v and a are the vector and axial vector couplings which can be expressed in terms of the
Weinberg angle θW through

vf = T3f − 2ef sin2 θW af = T3f . (2.56)

In Eq. (2.56) ef is the charge of fermion f (being it quark or lepton) in units of the proton
charge and T3f is the z component of the weak isospin.

The function P (Q2) is proportional to the ratio of the propagators for Z0 and γ exchange

P (Q2) =
1

4 sin2 θW cos2 θW

Q2

Q2 +M2
Z

. (2.57)

The three terms of Ai in Eq. (2.55) correspond to the γ exchange, γZ0 interference and Z0

exchange contributions to F2, respectively. The latter two contributions are strongly suppressed
at low Q2 by the Z0 propagator and become important only at Q2 values above a few thou-
sand GeV2. Likewise, the xF3 contribution to NC e+p scattering can be neglected at low Q2.

The electromagnetic7 structure function F em
2 (xBj , Q

2) measured by the ZEUS collaboration is
presented, for the low Q2 region, in Fig. 2.5. The most remarkable feature of these measurement
is the steep rise of F em

2 (xBj , Q
2) in the low xBj region, resulting in a strong rise of the gluon

and sea densities. In Fig. 2.6 the ZEUS, H1, and fixed-target measurements of F em
2 (xBj , Q

2) are
presented as a function of Q2 for fixed xBj values. The data clearly show the well known pattern
of scaling violations: at a fixed value of xBj the structure function F em

2 (xBj , Q
2) increases or

decreases (depending on the xBj value) as a function of Q2.

The NLO QCD predictions for F em
2 obtained using different PDFs are also presented in

Fig. 2.6 and show a remarkable agreement with the measurements. The O(αs) QCD processes
discussed above are crucial in order to correctly reproduce the scaling violations, as it is imme-
diately evident observing that:

∂F em
2 (x,Q2)

∂Q2
∼ αs(Q

2)xg(x,Q2). (2.58)

The observed scaling violations in the structure functions can hence be exploited in order to
determine the strong coupling and the gluon density in the proton.

The high accuracy reached in structure function measurements at HERA has indeed allowed
recently the simultaneous determination of the strong coupling constant αs(MZ) and the PDFs
of the proton, with significative precision. The αs(MZ) values obtained by the H1 and ZEUS
collaborations via a DGLAP fit of the measured structure functions are8:

αs(MZ) = 0.1150 ± 0.0017 (exp.) +0.0009
−0.0005 (model) ± 0.0050 (th.) H1 (2.59)

αs(MZ) = 0.1172 ± 0.0008 (stat.) ± 0.0054 (syst.) ZEUS Prel. (2.60)

The gluon densities extracted simultaneously to αs(MZ) are presented in Fig. 2.7.

7That is including only γ-exchange processes.
8The ZEUS preliminary result does not yet contain an estimate of the theoretical uncertainty on αs(MZ).



18 CHAPTER 2. THEORETICAL FRAMEWORK

2.5 Dijet production in NC DIS

In this section we will consider the NC DIS process characterized by the presence of two high
transverse energy hadronic jets in the final state:

e+(l) + p(P ) −→ e+(l′) + Jet1 + Jet2 + X. (2.61)

The measurement of the differential cross sections relative to this process, as already shortly dis-
cussed in the introduction, is important because it allows to test the dynamics of the underlying
QCD partonic processes (up to O(α2

s )) at a more exclusive level with respect to, for example, the
inclusive NC cross section discussed in the previous section. In the latter case the higher-order
QCD processes produce a well defined pattern of scaling violations in the structure functions
but give a rather indirect information on the energy and angle distributions of the finale-state
partons. Provided that the hadronisation effects (responsible for the confinement of the partons
in the final state into colourless hadrons) are small, the dijet cross sections are instead more
suitable observables to obtain such detailed information. This is due to the preconfinement (or
local parton-hadron duality) [20] property of QCD according to which the hadronic flow should
follow the partonic flow quite closely, with transfers of momentum and other quantum numbers
that is local in phase-space.

In order to quantitatively discuss the dijet cross sections we have to address the problem of
the definition of a suitable jet algorithm, necessary to identify from the NC DIS events those
with a dijet topology, and that of the optimal choice of the reference frame where to perform
the jet-clustering procedure.

2.5.1 The Breit frame

Following the discussion given above, a high transverse energy hadronic jet should originate from
a large transverse momentum parent parton. As a consequence, the most appropriate choice of
the reference frame where to perform the jet-clustering would appear to be the one which allows
the most natural separation between the high-pT particles originating from the hard-scattering
process from other soft particles present in the final state. The Breit frame[25], defined as the
frame where 2xBjP + q = 0, is characterized exactly by this property.

In the Breit frame, a purely space-like gauge boson (γ/Z0) with four momentum qγ/Z =
{0, 0, 0,−Q} collides head-on with a parton from the proton while the initial and scattered
positron balance in pT . Because in this frame (contrary to the HERA laboratory frame) the
presence of the scattered positron does not bias the pT distributions of the other final state
partons, any high transverse momentum final state particle must necessarily come from the
hard scattering process. Thus, in a QPM process, the incoming quark is back-scattered into
the negative z direction (Fig. 2.8, left) and no transverse energy is produced. Only starting
with O(αs) partonic processes the final state contains partons of large transverse momentum
(Fig. 2.8,right) which can be then identified by the jet algorithm. A cross section for the
production of one or more high ET jet in the Breit frame receives hence no contributions from
the QPM processes and is directly sensitive to the strong coupling constant. From the above
discussion it should be also clear that, in the Breit frame, the separation between the hard jets
and the proton remnant is maximized.

The hadronic center-of-mass frame, being related to the Breit Frame by a longitudinal boost
along the z direction, would provide an equally good choice. The choice of a jet algorithm which
is invariant under longitudinal boosts (see next section) makes these two frames equivalent, as
far as the calculation of dijet cross sections is concerned.
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2.5.2 The longitudinally invariant K⊥-cluster algorithm

The jet algorithm adopted in this analysis is the longitudinally invariant K⊥-cluster algo-
rithm [26] applied in the inclusive mode proposed by Ellis and Soper [27].

The clustering, which is performed in the Breit frame, proceeds according to the following
prescription 9:

1. for every pair of particles in the final state (i,j), a distance parameter is defined according
to

dij = min(E2
T i, E

2
Tj) ·R2

ij , (2.62)

where R2
ij = (ηi − ηj)

2 + (φi − φj)
2;

2. for every single particle i, the distance to the beam is defined as

di = E2
T iR

2 , (2.63)

where R is here chosen to be 1;

3. if, of all the values dij and di, dkl is the smallest, the particles k and l are merged according
to the Snowmass convention:

ETkl = ETk + ET l , ηkl =
ETkηk + ET lηl

ETk + ET l
, φkl =

ETkφk + ET lφl

ETk + ET l
. (2.64)

If instead dk is the smallest of all values, then particle k is removed from the list of particles
and added to the list of jets;

4. the steps 1 to 3 are repeated until all particles are assigned to jets.

5. from the complete list of jets obtained at the end of this iterative procedure, the final jets
are then selected as the ones with the highest transverse energies in a given pseudorapidity
region.

The choice of this jet algorithm is motivated on the ground of its theoretical and phenomeno-
logical superiority with respect to jet algorithms of the cone or JADE-like types.

The K⊥-clustering algorithm is considered to be theoretically more sound:

• it is based on a jet resolution variable, namely the minimal relative transverse momentum
between particles, which is naturally suggested by the present understanding of the pQCD
evolution of partonic systems. The use of such a resolution variable, strongly reduce un-
natural assignment of particles to jets and is particularly suitable to perform resummation
of soft-gluon effects;

• as can be easily proved from the definition of the jet resolution variables in Eq. (2.62) and
Eq. (2.63), this jet algorithm is infrared and collinear safe to all orders in αs and allows
the factorisation of the initial-state collinear singularities into the PDFs. Properties that,
as we have already discussed, are crucial in order to be able to compute jet cross section
at NLO.

Particularly relevant for a meaningful comparison between data and theory are also the
following properties:

9In what follows ETi, ηi, and φi denote the transverse energy (with respect to the proton direction ), pseu-
dorapidity, and azimuthal angle of particle i in the Breit frame, respectively. The pseudorapidity is defined as
η = − log(tan( θ

2
)), where θ is the polar angle with respect to the proton direction.
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• by construction the algorithm avoids configurations with overlapping jets;

• an identical clustering procedure is used in experimental analyses and/or theoretical cal-
culations. Thus, the set of four-momenta used by the algorithm can be the one associated
with the partons in a NLO program or the one reconstructed from the energy deposits
and/or tracks measured in the detector.

• Monte Carlo studies demonstrate that jet cross sections obtained with the K⊥ algorithm
are affected by smaller hadronisations corrections.

These properties of the K⊥-cluster algorithm are by now largely documented in the literature
(see e.g. [26, 28, 29]) and will be not further discussed here.

2.5.3 Dijet cross sections

Having defined the adopted jet algorithm, we can now discuss the partonic processes that con-
tribute to the NLO dijet cross sections in the Breit frame.

LO processes

At leading order, the dijet cross sections receive contributions from the O(αs) QCD-Compton

e+(l) + qi(p0) −→ e+(l′) + qi(p1) + g(p2) (2.65)

and Boson-Gluon fusion (BGF)

e+(l) + g(p0) −→ e+(l′) + qi(p1) + q̄i(p2) (2.66)

processes (see Fig. 2.4) that we have already encountered in the discussion of the inclusive DIS
cross section. In addition to the standard variables xBj and Q2, we need three further variables
to the describe the kinematic of the LO processes. These are usually chosen to be zp, xp (or
alternatively ξ), and φ. The variable φ denotes the azimuthal angle between the leptonic and
partonic planes in the boson-parton center-of-mass frame. The remaining variables are defined
as

zp =
p0 · p1

p0 · q
, xp =

Q2

2p0 · q
and ξ = xBj · (1 +

M2
12

Q2
) (2.67)

where M12 is the invariant mass of the two final-state partons. At LO the variable ξ represents
the fraction of the proton four-momentum carried by the uncoming parton.

In terms of these variables the soft and collinear singularities of the LO amplitudes for the
QCD-Compton and BGF processese are easily exhibited:

|MQCDC
2 |2 ∼ αs ·

x2
p + z2

p

(1 − zp)(1 − xp)
(2.68)

|MBGF
2 |2 ∼ αs ·

[
x2

p + (1 − xp)2
] [
z2
p + (1 − zp)2

]

zp(1 − zp)
(2.69)

These amplitudes diverge for zp → 0, 1 and xp → 1, which correspond to the following kinematic
configurations

p1 collinear to p0 ⇒ zp → 0 ,

p2 collinear to p0 ⇒ zp → 1 ,

p1 collinear to p2 ⇒ xp → 0 , (2.70)

p1 soft ⇒ zp → 0 ,

p2 soft ⇒ zp, xp → 1 .



2.6. SUMMARY ON αS 21

These divergencies are, however, harmless because the K⊥-cluster algorithm always require the
application of a minimum transverse energy cut on the reconstructed jets:

Ejet
T > Ejet

T,min > 0. (2.71)

which has the effect of removing, from the integration of the LO partonic cross sections over
the two-parton final state, the singular regions in (2.70). The requirement Eq. (2.71) represents
the practical implementation, in the case of the K⊥-cluster algorithm, of the safety condition
Eq. (2.28) discussed on a general basis for the jet function, FJ , in section 2.2.

The final LO cross section is finally obtained convoluting the integrated partonic cross section
with PDFs. An inportant qualitative difference between the dijet and inclusive cross sections is
that the former are directly (i.e already at LO) sensitive to strong coupling constant and, via
the BGF process, to the gluon density in the proton. The dijet cross section hence provide,
in principle, an ideal observable to determine both the strong coupling constant and the gluon
density.

NLO processes

In order to make quantitative prediction for the dijet cross sections it is necessary, as already
discussed, to include at least the NLO contributions. At NLO one has to consider the O(α2

s ) real
and virtual corrections to the LO QCDC and BGF processes. The real corrections (see Fig. 2.9)
are a first step in the modeling of the internal structure of the jet, introducing thus a dependence
of the jet cross sections on the exact definition of the jet algorithm. The virtual corrections (see
Fig. 2.10) have the effect of introducing a dependence of the perturbative cofficient functions on
the renormalization scale which cancel part of the dependence in αs.

In the next chapter we will present the DISENT NLO pQCD predictions obtained for a large
set of single differential dijet cross sections calculated on a phase-space region carefully selected
in order to minimize their associated theoretical uncertainties. More precisely we will present
predictions for the dijet cross sections as a function of the jets transverse energies (Ejet1,2

T,B ) and

pseudorapidities (ηjet1,2
B ) in the Breit frame, as well as a function of Q2, zp, xBj , ξ, and the dijet

invariant mass Mjj. The dijet fraction

R2+1(Q2) =
dσ2+1/dQ

2

dσtot/dQ2
, (2.72)

will prove, in particular, to be very well suited to reduce both theoretical and experimental
uncertainties.

The comparison of these NLO QCD predictions with corresponding measured observables will
allow to perform a detailed test of the framework provided by the QCD-improved parton model,
to test the dynamics of the O(α2

s ) partonic processes, and to achieve a precise determination
the strong coupling constant.

2.6 Summary on αs

One of the goals of the present analysis is the determination of the strong coupling constant at
the reference scale provided by the mass of the Z0 boson, αs(MZ), and a test of its energy scale
dependence. We would like then to conclude this chapter by briefly mentioning the results of
the two most recent estimates provided by the Particle Data Group [22](PDG) and S. Betkhe
[23] of the world average value for αs(MZ).

A large number of high-energy physics processes and observables, in conjunction with a wide
range of QCD analysis methods, have been used to determine αs and new determinations are
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continually being reported. Significant determinations of the strong coupling have been obtained
from DIS and e+e− annihilation processes, as well as from the energy levels of heavy quarkonia
systems calculated using lattice QCD. Without entering into a detailed discussion of the various
determinations of αs (for which we refer to [22, 23]) we present in Table 2.4 and Fig. 2.11 the αs

determinations used by Bethke in order to quote his αs world average (a similar set of results has
been used in the PDG analysis). In the table, the results are given both at the relevant energy
scale of the process αs(Q) and at the standard reference scale of the Z0 mass. In the latter case
the experimental and theoretical uncertainty are presented separately. The last column of the
table indicates the level of the QCD theoretical calculations on which these results are based.
The results for αs(Q) are presented in Fig. 2.12 together with the 4-loop QCD predictions for the
running αs (with 3-loop matching at the quark pole masses). The data are in good agreement
with the theoretical expectation, and significantly prove the running of the strong coupling.

The uncertainties of most of the αs results are dominated by theoretical uncertainties which
are estimated using different methods. The significance of these (mostly non-gaussian) errors
is largely unclear. As a consequence, the estimate of a world average value for αs(MZ) and in
particular its associated uncertainty is a highly non trivial task, which strongly depend on the
statistical treatment adopted in the averaging procedure. In Table 2.5 (again taken from [23]), we
present the results on the αs averages obtained under different criteria adopted for the selection
of the input αs values and different averaging strategies. The average values obtained under
different selection criteria do not show significant biases within the corresponding uncertainties.
Alternative averaging methods result in an uncertainty on αs(MZ) which approximately ranges
from ±0.0020 to ±0.0060.

Using the five most significant determinations of αs based on full NNLO pQCD analyses,
Bethke quotes as the currently best estimate of the world average value of αs(M):

αs(MZ) = 0.1184 ± 0.0031 (Bethke : NNLO pQCD). (2.73)

A very similar average is obtained by the PDG:

αs(MZ) = 0.1181 ± 0.0020 (PDG : NLO and NNLO pQCD), (2.74)

which has a slightly smaller uncertainty due to the PDG assumption to treat all the αs values
used in the average as uncorrelated. Because these final uncertainties are mostly dominated by
theoretical errors and given the above remarks on the difficulty of a realistic estimate of the
latter it is likely that the above quoted uncertainties represent only a lower limit of the real
uncertainty.

Although the present uncertainty on αs(MZ) is a success for QCD, it has to be pointed out
that the strong coupling constant is among the other couplings of the Standard Model (SM)
the one known with lowest precision (see Table 2.3). There are various reasons that suggest to
put a large experimental and theoretical effort in order to achieve an improved determination
of αs(MZ):

1. The strong coupling is the basic parameter of QCD in the high-energy perturbative regime
and its precision limits the precision of any observable computed via a fixed order pertur-
bative expansion.

2. In the wider frame of the Standard Model of the strong and electroweak interactions
SU(3) ⊗ SU(2) ⊗ U(1), an improved determination of the strong coupling would be also
highly desirable. The very precise data sets collected at the LEP collider are now putting
under a very stringent test the SM predictions. The precision of this data is such that the
simple tree level SM predictions are not sufficient in order to describe a large set of e+e−

observables and full electro-weak and QCD radiative corrections have to be included. In
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this context an improved determination of the strong coupling and the mass of the top
quark, which affect the SM model predictions via the QCD radiative corrections, would
certainly allow more stringent limits on the mass of the yet undiscovered Higgs boson (see
e.g. Fig. 2.13) or alternatively could help in revealing internal inconsistencies of the SM
in its present form.

3. Finally, a more accurate determination of αs(MZ), would have a profound impact on the
possibility to discriminate between possibile extentions of the SM. A testing ground of
grand unified theories (GUT) is in fact the very appealing idea of strict unification of the
three coupling constants of the SM:

α1 =
5

3

αem

cos(θW )2
(2.75)

α2 =
αem

sin(θW )2
(2.76)

α3 = αs(MZ) (2.77)

at some high energy scale (MGUT ), given their values at the Z0-pole mass (see Fig. 2.14 and
Fig. 2.15). While a large class of supersymmetric or string based theories predict couplings
unification, the possibility to discriminate among the various models (or among possible
realizations of this unification within a given model) is presently strongly hampered by
the still large uncertainty on αs.
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Table 2.1: MS values of β
(nf )
i for variable nf .

number highest coefficient α
(5)
s (mb)

of loops in β function (a) (b) (c)

1 β0 0.2059 0.2059 0.2059
2 β1 0.2123 0.2173 0.2161
3 β2 0.2166 0.2164 0.2167
4 β3 0.2174 0.2173 0.2169

Table 2.2: α
(5)
s (mb) computed from α

(5)
s (MZ) = 0.118 using different evolution equations and

number of loops (see text for details).

Figure 2.1: A comparison of the 1-,2-, and 3-loop MS solutions of the Callan-Symanzik equation
for αs(MZ) = 0.118.
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Figure 2.2: A NC DIS process with n partons in the final state.
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Figure 2.3: (a) The Quark parton model (QPM) diagram and (b) its virtual gluon corrections.
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Figure 2.4: (a) The QCD-Compton diagrams and (b) the Boson-gluon fusion diagrams.
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Figure 2.5: The ZEUS measured electromagnetic structure function F em
2 (black dots) as a

function of x for nine Q2 bins. The full curves show results from the ZEUS NLO QCD fit
and the dashed curves show the predictions from CTEQ4D. The inner error bars indicate the
statistical uncertainties; the outer ones show the statistical and systematic uncertainties added
in quadrature.
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Figure 2.8: DIS processes in the Breit frame: O(α0
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Figure 2.9: Real corrections to the QCD-Compton and BGF processes. Only two out of eight
diagrams are shown for each class.
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Figure 2.10: Virtual-gluon corrections to the QCD-Compton and BGF processes.
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Constant Value Uncertainty (ppb)

αem(0) 1/137.03599976(50) 3.7
sin2(θW)(MZ) 0.23117(16) 7 × 105

αs(MZ) 0.1181(20) 1.7 × 107

Table 2.3: The coupling constants of the Standard Model. The figures in parentheses after the
values give the one-standard deviation uncertainty; the corresponding uncertainties in part per
billion (ppb) are given in the last column (from [22]).

Q ∆αs(MZ0)

Process [GeV] αs(Q) αs(MZ0) exp. theor. Theory

DIS [pol. strct. fctn.] 0.7 - 8 0.120 + 0.010
− 0.008

+0.004
−0.005

+0.009
−0.006 NLO

DIS [Bj-SR] 1.58 0.375 + 0.062
− 0.081 0.121 + 0.005

− 0.009 – – NNLO

DIS [GLS-SR] 1.73 0.280 + 0.070
− 0.068 0.112 + 0.009

− 0.012
+0.008
−0.010 0.005 NNLO

τ -decays 1.78 0.323 ± 0.030 0.1181 ± 0.0031 0.0007 0.0030 NNLO

DIS [ν; xF3] 5.0 0.214 ± 0.021 0.118 ± 0.006 0.005 0.003 NNLO

DIS [e/µ; F2] 2.96 0.252 ± 0.011 0.1172 ± 0.0024 0.0017 0.0017 NNLO

DIS [e-p; jets] 6 - 100 0.118 ± 0.011 0.002 0.011 NLO

QQ states 4.1 0.216 ± 0.022 0.115 ± 0.006 0.000 0.006 LGT

Υ decays 4.75 0.22 ± 0.02 0.118 ± 0.006 – – NNLO

e+e− [σhad] 10.52 0.20 ± 0.06 0.130 + 0.021
− 0.029

+ 0.021
− 0.029 0.002 NNLO

e+e− [jets & shapes] 22.0 0.161 + 0.016
− 0.011 0.124 + 0.009

− 0.006 0.005 +0.008
−0.003 resum

e+e− [jets & shapes] 35.0 0.145 + 0.012
− 0.007 0.123 + 0.008

− 0.006 0.002 +0.008
−0.005 resum

e+e− [σhad] 42.4 0.144 ± 0.029 0.126 ± 0.022 0.022 0.002 NNLO

e+e− [jets & shapes] 44.0 0.139 + 0.011
− 0.008 0.123 + 0.008

− 0.006 0.003 +0.007
−0.005 resum

e+e− [jets & shapes] 58.0 0.132 ± 0.008 0.123 ± 0.007 0.003 0.007 resum

pp̄ → bb̄X 20.0 0.145 + 0.018
− 0.019 0.113 ± 0.011 + 0.007

− 0.006
+ 0.008
− 0.009 NLO

pp̄, pp → γX 24.3 0.135 + 0.012
− 0.008 0.110 + 0.008

− 0.005 0.004 + 0.007
− 0.003 NLO

σ(pp̄ → jets) 30 - 500 0.121 ± 0.010 0.008 0.005 NLO

e+e− [Γ(Z0 → had.)] 91.2 0.124 ± 0.005 0.124 ± 0.005 0.004 +0.003
−0.002 NNLO

e+e− scaling viol. 14 - 91.2 0.125 ± 0.011 + 0.006
− 0.007 0.009 NLO

e+e− [jets & shapes] 91.2 0.121 ± 0.006 0.121 ± 0.006 0.001 0.006 resum

e+e− [jets & shapes] 133.0 0.113 ± 0.008 0.120 ± 0.007 0.003 0.006 resum

e+e− [jets & shapes] 161.0 0.109 ± 0.007 0.118 ± 0.008 0.005 0.006 resum

e+e− [jets & shapes] 172.0 0.104 ± 0.007 0.114 ± 0.008 0.005 0.006 resum

e+e− [jets & shapes] 183.0 0.109 ± 0.005 0.121 ± 0.006 0.002 0.005 resum

e+e− [jets & shapes] 189.0 0.110 ± 0.004 0.123 ± 0.005 0.001 0.005 resum

Table 2.4: World summary of αs measurements (DIS = deep inelastic scattering; GLS-SR =
Gross-Llewellyn-Smith sum rule; Bj-SR = Bjorken sum rule; (N)NLO = (next-to-)next-to-
leading order perturbation theory; LGT = lattice gauge theory; resum = resummed NLO).
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Figure 2.11: Summary of αs(MZ)
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opt. corr. overall uncorrel. simple rms rms box

row sample (entries) αs(MZ0) ∆αs correl. ∆αs ∆αs ∆αs

1 all (26) 0.1191 0.0045 0.71 0.0012 0.0043 0.0057

2 ∆αs ≤ 0.010 (20) 0.1191 0.0041 0.66 0.0012 0.0037 0.0051

3 ∆αs ≤ 0.008 (18) 0.1190 0.0039 0.62 0.0012 0.0038 0.0050

4 ∆αs ≤ 0.006 (9) 0.1188 0.0033 0.64 0.0014 0.0029 0.0038

5 ∆αs ≤ 0.005 (4) 0.1189 0.0022 0.28 0.0017 0.0034 0.0033

6 NNLO only (9) 0.1185 0.0035 0.78 0.0016 0.0045 0.0048

7 ∆αs ≤ 0.008 (6) 0.1184 0.0031 0.68 0.0016 0.0026 0.0032

8 ∆αs ≤ 0.005 (3) 0.1184 0.0022 0.27 0.0018 0.0037 0.0028

9 ∆αs ≤ 0.004 (2) 0.1175 0.0026 0.95 0.0019 0.0006 0.0019

10 only DIS (6) 0.1178 0.0040 0.94 0.0020 0.0014 0.0047

11 only e+e− (15) 0.1209 0.0051 0.79 0.0016 0.0038 0.0054

12 only pp (3) 0.1135 0.0074 0.60 0.0051 0.0059 0.0068

13 Q ≤ 10 GeV (9) 0.1177 0.0040 0.93 0.0016 0.0017 0.0042

14 10 < Q
GeV < 90 (9) 0.1202 0.0064 0.56 0.0029 0.0062 0.0077

15 Q ≥ 90 GeV (8) 0.1213 0.0056 0.78 0.0023 0.0035 0.0050

Table 2.5: Average values of αs(MZ0) and averaged uncertainties, for several methods to estimate
the latter, and for several subsamples of the available data.
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Figure 2.14: Gauge couplings unification picture in the Standard Model.

Figure 2.15: Gauge couplings unification picture in the Minimal Supersymmetric Standard
Model (MSSM).
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Chapter 3

QCD predictions and related

uncertainties

3.1 Introduction

The aim of the measurement presented in this thesis is twofold:

1. To make a stringent quantitative comparison of the differential dijet cross sections mea-
sured with the ZEUS detector at HERA with the corresponding QCD predictions.

2. To determine the value of the strong coupling constant at the reference momentum scale
provided by the Z0 boson mass, αs(MZ), and test its energy scale dependence via a QCD
analysis of the measured dijet fraction:

R2+1(Q2) =
dσ2+1/dQ

2

dσtot/dQ2
. (3.1)

In order to achieve these goals an essential requirement is the selection of a phase-space region
where the QCD predictions for the differential dijet cross sections are reliable and least affected
by theoretical uncertainties. In this chapter we will carefully study the various sources of uncer-
tainty on the theoretical predictions and, as a result of this study, we will select a phase-space
region in order to minimize them.

Specifically, we will estimate the uncertanties of the dijet cross sections associated with:

• the parton distribution functions (PDFs) in the proton;

• the residual renormalization/factorization scale dependence of the NLO cross sections;

• the assumed value for the strong coupling constant in the NLO calculations;

• the hadronisation process.

One arrives to consider the above sources of uncertainties by simply examining the factorisa-
tion formula that we have discussed in detail in the previous chapter, and that here we re-write
for the reader’s convenience:

dσ =
∑

a=q,q,g

∫
dxfa(x, µ2

F;αs(µR); {π})dσ̂a(xP,αs(µR), µ2
R, µ

2
F)(1 + δhadr). (3.2)

In the above formula we have explicitly expressed the dependence of the cross section on all
the relevant quantities (αs, scales, etc.) which need to be considered in a discussion of the

39
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uncertainties affecting the theoretical predictions. In particular, we have collectively denoted
with {π} the parameters used to model the PDFs’ x dependence at a Q2

0 scale. These parameters,
as we will describe shortly below, will be very important for the estimate of the uncertainty of
the pQCD jet cross sections arising from the PDFs of the proton.

In addition to evaluate the uncertainties associated to the QCD predictions, in this chapter
we will also discuss the level of agreement achieved so far among the different NLO programs,
which play such an important role in the analysis presented here.

3.2 Comparisons among different NLO programs for DIS

Presently four different programs are available for the computation of jet cross sections in DIS
to NLO accuracy in the strong coupling constant: DISENT[31], DISASTER++[32], MEPJET[30],
and JetVip[33]. Since all these programs are based on exact calculations, they should produce
(within numerical accuracy) identical results. Given the complexity of the QCD calculations
and the differences present among the actual implementations, a thorough comparison of the
predictions of these programs is a mandatory requirement.

3.2.1 Overview of the programs

Only a brief overview of the NLO programs is given here (see table 3.1). For a detailed description
we refer to the program manuals.

Besides the extent to which the exchange of weak gauge bosons and polarized processes
are implemented, the programs differ in the technique which is used to cancel the infrared
and collinear singularities. Two methods are used: the phase-space slicing method and the
subtractions method. The phase-space slicing method uses a small technical cut-off ycut (or
smin) to separate the soft and collinear regions. The introduction of this cut-off has the practical
consequence that the cut-off independence has to be checked for every investigated observable.
No such technical parameter is required for the subtraction method, where the concellation of
the singularities take place locally in the phase space, as we have already explained at length in
the previous chapter.

DISENT

In DISENT, singularities are handled by means of the subtraction method. The subtraction terms
are obtained via the dipole factorization formulae discussed in section 2.3. The factorization
scale can only be chosen proportional to the photon virtuality Q2 or at a fixed value. Out of
the four programs under consideration, DISENT is the fastest.

DISASTER++

This is a C++ class library with a FORTRAN interface. The cancellation of singularities is achieved
by means of the subtraction method implemented via a generalized partial-fractioning formula.
DISASTER++ is the only program that allows arbitrary choices of the factorization/renormalization
scales and the number of flavour Nf to be changed on an event-by-event basis.1

MEPJET

This was the first program for calculating general infrared safe quantities in DIS. It employs
the phase-space slicing method with an invariant cut-off parameter smin. MEPJET is at present

1A feature, this, that is extremely valuable when crossing heavy-flavour threshols.
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the only program that includes Z0 and W exchange, polarized cross sections and leading-order
quark mass effects.

JetVip

The phase space method with a cut-off parameter ycut is used. This program includes photo-
production (Q2 ∼ 0) and DIS processes. A special feature of the program is the possibility
to include resolved virtual photon processes covering the phase space region of small, but non-
zero Q2. The full azimuthal dependence of the matrix elements for DIS processes is presently
available only at leading order.

3.2.2 Numerical comparisons and choice of the default program

During the DESY workshop on Monte Carlo Generators for HERA Physics a rather extensive
comparison of these NLO programs has been performed. The details of the technical settings
for the comparison can be found in[34]. Basically total dijet cross sections predictions, obtained
using the longitudinally invariant K⊥-algorithm in the Breit frame, were compared in different
DIS phase-space regions and for different jet selection scenarios.

The results can be summarized as follows:

• At leading order, excellent agreement among all programs was found within their statistical
precision (±0.2 %).

• At NLO, DISENT, DISASTER++ and JetVip were found to agree among themselves at 1-2%
level. In the case of the program JetVip a certain dependence on the assumed value of
the technical cut-off was noticed. Systematic deviations up 5-8% were instead reported for
MEPJET.

On the basis of the above results we have decided to use DISENT as the default program and
DISASTER++ to cross check the DISENT results. Our preference for DISENT is dictated by the
significantly larger CPU time needed in a typical DISASTER++ run.

As an additional cross check of the results obtained in the study just mentioned we have
compared the DISENT and DISASTER++ NLO predictions for the differential dijet cross sections
used in this analysis. The results of this comparison are presented in Fig. 3.1 and Fig. 3.2.
The calculations are performed in the MS renormalization and factorization scheme with the
number of massless active flavours set to 5, µR = µF = Q, and refer to a high-Q2 phase-space
region to be defined in the next section. Although the results show a substantial agreement, the
DISASTER++ predictions are still, despite the large statistics used, clearly affected by large (up
to 10%) statistical fluctuations. In order to perform a more stringent test we have repeated the
comparison, only for the inclusive and dijet cross cross sections as a function of Q2, calculating
the DISASTER++ predictions (using a very high statistics run) in each Q2 bin. The results of
this additional comparison, which are presented in Fig. 3.3, show that the two NLO programs
indeed agree at the 1-2% level, in agreement with the conclusions of the DESY Monte Carlo
Workshop.

3.3 The selection of the phase-space region

A phase-space region for the calculation of the NLO DIS inclusive differential cross sections can
be simply selected in terms of standard DIS variables Q2 and x (or y). In the case of the dijet
differential cross sections special care must be placed in the definition of the jet selection criteria
in order to avoid infrared sensitive regions of the phase space, where predictions of the NLO
programs are unreliable.



42 CHAPTER 3. QCD PREDICTIONS AND RELATED UNCERTAINTIES

3.3.1 Infrared sensitive and insensitive E
jet
T cut scenarios

Experience gained in the recent past in the use of NLO programs for dijet production has shown
that, while based on algorithms that guarantee an exact cancellations of the soft and collinear
singularities, these programs have problems in predicting reliable cross sections at the exclusive
boundaries of the phase space[35].

In the case of the K⊥-cluster algorithm, where the selection criteria are based on the trans-
verse energies and pseudorapidities of the jets, the troublesome regions are those associated with
a symmetric cut on the transverse energy of the jets:

Ejet1
TB , Ejet2

TB > Ejet
TB,min. (3.3)

In order to illustrate the nature of the problem we will consider in the following three different
jet cut scenarios:

1. Symmetric Cut Scenario:

Ejet1
TB , Ejet2

TB > 8 GeV and − 1 < ηjet1,2
Lab < 2 (3.4)

2. Sum Cut Scenario:

Ejet1
TB , Ejet2

TB > 5 GeV and Ejet1
TB + Ejet2

TB > 17 GeV and − 1 < ηjet1,2
Lab < 2 (3.5)

3. Asymmetric Cut Scenario:

Ejet1
TB > 8 GeV and Ejet2

TB > 5 GeV and − 1 < ηjet1,2
Lab < 2 (3.6)

In all the scenarios the jets are ordered according to decreasing transverse energy (in the
Breit frame) and refer to the following DIS phase space region:

470 < Q2 < 20000 GeV2 and 0 < y < 1. (3.7)

Although the values of the total dijet cross sections obtained for the three scenarios are
roughly comparable, the Ejet

TB region considered being rather similar, the performance of a NLO
program changes rather drastically between the first two and the third scenarios. It turns out
that the first two scenarios are infrared sensitive and the NLO predictions, while being finite,
are unreliable. The problem is that there is not enough phase space available in the vicinity
of the Ejet1

TB = Ejet2
TB = Ejet

TB,min point for the NLO algorithm to work properly. This can be

understood in terms of the (Ejet1
TB , Ejet2

TB ) planes which are shown for the three scenarios in the
first row of Fig. 3.4.The argument goes qualitatively as follows. The NLO cross section receives
contributions from the O(αs) Born (positive) cross section and the O(α2

s ) virtual (negative)
and real (positive) corrections. For the Born term and virtual corrections there are only two
partons in the final state so that the condition Ejet1

TB = Ejet2
TB is always fulfilled. In the case

the available phase space reduces to the thick line shown on the (Ejet1
TB , Ejet2

TB ) planes. As far as
these contributions are concerned all the cut scenarios are of course equivalent. In the case of
the real corrections there are three partons in the final state and the available phase space is
represented by the shaded bands in Fig. 3.4. The infrared sensitivity of the first two scenarios
comes from the fact that there is not enough three-body phase space available in the vicinity
of the Ejet1

TB = Ejet2
TB region for the compensation between the real and virtual contributions to

take place. An explicit way to see this is to study the total dijet cross section as a function of
the transverse energy of the leading jet :

Ejet1
TB = Ejet1

TB,min + n∆ , (3.8)
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where ∆ = 200 MeV and n = 1, . . . , 10.
We have calculated the total NLO dijet cross section for the three scenarios and the results

are presented in the second row of Fig. 3.4. Physically meaningful cross sections should decrease
for incresing Ejet1

TB (or n) values. Instead for the first two scenarios the cross sections first increase
and then decreases, a clear unphysical behaviour signalling that not enough positive cross section
is added to the final prediction. In the asymmetric cut scenario the cross section has instead a
physical behaviour thanks to the larger phase-space region available to the emission of a third
parton.

3.3.2 Two working scenarios

In accordance with the previous study we will adopt in all the following NLO calculations the
asymmetric jet cut selection:

Ejet1
TB > 8 GeV Ejet2

TB > 5 GeV and − 1 < ηjet1,2
Lab < 2 (3.9)

The jet selection will refer to one of two possible DIS phase space regions:

• high-Q2 Region:
470 < Q2 < 20000 GeV 0 < y < 1, (3.10)

• low-Q2 Region:
30 < Q2 < 20000 GeV 0 < y < 1, (3.11)

which we will consider in order to study the Q2 dependence of the theoretical uncertainties on
the differential cross sections. This dependence is particular relevant given our goal to determine
the strong coupling constant from a QCD analysis of the measured dijet fraction, R2+1(Q2), as
a function of Q2:

R2+1(Q2) =
dσ2+1/dQ

2

dσtot/dQ2
. (3.12)

3.4 Uncertainty due to the PDFs

The parton momentum density distributions of the proton are, as demonstrated by the Eq. (3.2),
an essential ingredient in the calculation of any cross section in DIS. These parton momentum
distributions have been determined by several groups (GRV [36], MRS [37, 38], CTEQ [39, 40])
by parameterising the distributions at some fixed Q2 = Q2

0 value and extrapolating the results
to higher Q2 values using the NLO DGLAP evolution equations. The parameters are fitted to
data from lower energy fixed-target DIS experiments and from HERA, and, in addition, to data
measured at the TEVATRON on lepton-pair production (Drell-Yan), direct photon production,
W production, and inclusive jet cross-sections. The sources of uncertainty in these fits can be
divided into two main groups: uncertainties in the measurements used in the fit and uncertainties
in the QCD evolution equations. For the former, the statistical and systematic uncertainties
are typically available from each experiment. For the latter, the theoretical uncertainties can be
estimated by varying various fit assumptions (see below).

Although the comprehensive parton momentum distribution fits from GRV, MRS, and CTEQ
groups make the most extensive use of available data, they lack a complete estimate of the
uncertainties in the parton distribution functions. This situation represents a severe limitation
to any attempt to realistically estimate the uncertainty associated to a given DIS QCD observable
due to the uncertainty on the parton distribution functions. We point out in particular that the
standard practice to assume as such an uncertainty the spread of the observable’s predictions
obtained using different input PDFs cannot be assumed as a realistic estimate given the fact
that these NLO QCD fits are performed using almost identical data sets under very similar
theoretical assumptions.
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3.4.1 The MBFIT analysis

In order to obtain a realistic estimate of the uncertainties of the proton parton distributions
functions a NLO DGLAP fit [41, 42] was recently performed. Included in the fit were the
statistical and, as much as available, the correlated systematic errors from each experiment.
Here we will give a short description of this QCD fit and will use the resulting PDFs (hereafter
referred as MBFIT PDFs) with their associated uncertainties to quantify the corresponding
uncertainty of the NLO predictions for the inclusive and dijet cross sections. For a detailed
description of the fit itself and of the performed error analysis we refer the reader to Ref. [41].

Data samples and corrections

The following measurements were included in the fit:

1. HERA data on F p
2 from ZEUS [43] and H1 [44] (‘1994 nominal vertex’).

2. Fixed target measurements of F p
2 and F d

2 by E665 [45], NMC [46], BCDMS [47] and
SLAC [48].

3. The ratio F d
2 /F

p
2 from NMC [49].

4. Data on xF νFe
3 from CCFR [50].

5. Data on x(d̄ − ū) from E866 [51]. This difference is obtained from the ratio of Drell-Yan
production cross sections in pp and pd scattering.

In addition to the statistical errors the following systematic errors were taken into account: for
the ZEUS nominal vertex the 6 contributions as parameterised in [43] were included. The SLAC
and BCDMS systematic errors were taken to be those used in [54]. For the other data sets all
systematic uncertainties were included as published (for H1 and E665 only the normalization
error and the total systematic error are available; the CCFR systematic errors are given in [57]).
In total 57 independent sources of systematic error were propagated taking into account the
correlations between those of the NMC data sets.

Corrections for nuclear effects were applied to the data on xF3, F d
2 and F d

2 /F
p
2 . These

corrections were parameterised as

FA
i = FN

i [1 +KA(RA − 1)] , (3.13)

where FA
i is the structure function (per nucleon) measured on nucleus A, FN

i is the structure
function on a free nucleon (taken to be the average of proton and neutron) as predicted by
the QCD fit and RA is a parameterisation of the ratio of the structure function (per nucleon)
in nucleus A to that of a free nucleon. The parameter KA controls the size of the nuclear
correction applied, e.g. if KA = 1 (0) then FA

i /F
N
i ≡ RA (FA

i /F
N
i ≡ 1). In the case of xF νFe

3

the nuclear correction to the valence quark distribution x(q− q̄) ∝ xF νN
3 , calculated for A = 56

from the recent parameterisation of Eskola et al. [52], was chosen for RFe. For this nuclear
correction KFe was fixed to 1 and an error ∆KFe = ±0.5 on this parameter was allowed. For
the nuclear corrections to F d

2 and F d
2 /F

p
2 , RD2 was taken from fits to the nuclear dependence of

electron–nucleon scattering measured at SLAC [53]. For these nuclear corrections KD2 = 1± 1.
In addition to the nuclear corrections the proton and deuteron structure functions were

corrected for higher-twist contributions which become important at high x and low Q2. For this
purpose the structure functions were described as

FHT
2 = FLT

2 [1 +H(x)/Q2] , (3.14)
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where FLT
2 obeys the NLO QCD evolution equations and where H(x) is phenomenologically

parameterised as a fourth degree polynomial in x with five free parameters:

H(x) = h0 + h1x+ h2x
2 + h3x

3 + h4x
4. (3.15)

It was assumed that H(x) is the same for the proton and the deuteron [54] which implies that
the ratio F d

2 /F
p
2 is not affected by higher twist contributions. The data was not corrected for

target mass effects [55] so that these effectively are included in H(x). Higher-twist, target-mass
or slow-rescaling [55, 56] corrections were not applied to xF νFe

3 .
In addition, the following cuts were made on the data:

1. Discard data with x < xmin = 0.001. This cut was introduced because a simplified scheme
was adopted (see below) to describe charm production which is known to give a large
contribution (∼ 25%) to the cross sections at low x. For the CCFR xF3 data the cut was
raised to xmin = 0.1 to reduce the sensitivity to nuclear corrections at low x.

2. Discard data with Q2 < Q2
min = 3 GeV2. This cut reduces the sensitivity to QCD

corrections beyond NLO and higher-twist contributions. Because the QCD evolution of
the ratio F d

2 /F
p
2 is small, a lower Q2 cut of 1 GeV2 was applied to these data.

3. Discard data with W 2 < W 2
min = 7 GeV2 to reduce the sensitivity to higher-twist contri-

butions and target mass effects.

QCD fit

The input scale of the DGLAP evolutions was chosen to be Q2
0 = 4 GeV2. The gluon (xg),

the sea quark (xS), the difference of down and up anti-quarks (x∆̄) and the valence (xuv, xdv)
distributions were parameterised as follows:

xg(x,Q2
0) = Agx

δg (1 − x)ηg (1 + γgx)

xS(x,Q2
0) ≡ 2x(ū+ d̄+ s̄) = Asx

δs(1 − x)ηs(1 + γsx) (3.16)

x∆̄(x,Q2
0) ≡ x(d̄− ū) = A∆x

δ∆(1 − x)η∆

xuv(x,Q2
0) ≡ x(u− ū) = Aux

δu(1 − x)ηu(1 + γux)

xdv(x,Q2
0) ≡ x(d− d̄) = Adx

δd(1 − x)ηd(1 + γdx).

The QCD predictions for the parton densities at an arbitrary scale Q2 were obtained by solving
numerically2 the DGLAP evolution equations at NLO in the MS scheme [58]. The evolution is
performed in the variable flavour number scheme, where all quarks are assumed to be massless
and charm and bottom are dynamically generated above some given thresholds Q2

c and Q2
b (set

to 4 and 30 GeV2 respectively). The input value of the strong coupling constant was set to
αs(M

2
Z) = 0.118 (±0.005), which is consistent with the present world average of 0.119 [63]. In

the fit, it is assumed that the strange quark distribution x(s+ s̄) ≡ 2xs̄ is a given fraction Ks =
0.20 (±0.03) of the sea at the scale Q2

0 = 4 GeV2, which is consistent with the measurements of
CCFR [64]. As mentioned above the charm (2xc̄) and bottom (2xb̄) densities start to contribute
to the sea quark distribution (xS(x,Q2)) above their respective thresholds. An error of ±1 GeV2

on Q2
c is allowed.

2The evolution was calculated with the program Qcdnum [65]
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The normalizations Ag, Au and Ad were fixed by the momentum and valence sum rules:

∫ 1

0
(xg + xΣ) dx = 1

∫ 1

0
xuv dx/x = 2 (3.17)

∫ 1

0
xdv dx/x = 1,

where xΣ ≡ xS + xuv + xdv is the sum of the quark densities (singlet density).
From the evolved parton densities the relevant structure functions were calculated in NLO

and fitted to the data. The normalizations of the ZEUS, H1 and NMC data sets were kept fixed
to unity whereas those of E665, BCDMS, SLAC and CCFR xF3 were left free (7 parameters).
There are thus in total 28 free parameters in the fit. The χ2 minimization and the calculation
of the covariance matrices, which will be described below, were based on Minuit [66]. The
fit yielded a good description of the data with χ2 = 1540 for 1578 data points and 28 free
parameters. The χ2 values for each data set separately are listed in Table 3.2. The values of the
fitted parameters at the initial Q2

0 scale are given in Table 3.3.

χ2 and propagations of the uncertainties

The propagation of the statistical and systematic uncertainties of the measured structure func-
tions into uncertainties of the PDFs parameters was based on linear error propagation. That
implies that asymmetries in the input uncertainties are ignored3 and that the output statistical
and systematic uncertainties are, by definition, symmetric.

In the analysis the effects of the point-to-point correlated experimental systematic uncertain-
ties were incorporated in the model prediction for the structure functions. This model prediction,
calculated at the kinematic point (xi, Q

2
i ), was defined as

Fi({π}, {s}) = FQCD
i ({π}) · (1 +

∑

j

sj∆
syst
ij ) (3.18)

where FQCD
i ({π}) is the QCD prediction and ∆syst

ij is the relative systematic uncertainty on
data point i stemming from source j. In Eq. (3.18) {π} denotes the set of parameters describing
the input parton densities (see Eq. (3.16)) and {s} is a set of systematic parameters. Notice that
the experiments, by giving central values and one standard deviations systematic uncertainties,
provide ‘measurements’ of these systematic parameters: sj = 0 ± 1.

Assuming that the parameters sj are uncorrelated and gaussian distributed with zero mean
and unit variance, the χ2 can be written as

χ2 =
∑

i

(
Fi({π}, {s}) − fi

∆fi

)2

+
∑

j

(sj)
2 (3.19)

where fi is the measured structure function and ∆fi is the statistical uncertainty with the
point-to-point uncorrelated systematic uncertainties added in quadrature.

In order to propagate the statistical and systematic uncertainties, two Hessian matrices M
and C were evaluated (with Minuit) at the minimum χ2:

Mij =
1

2

∂2χ2

∂πi∂πj
, Cij =

1

2

∂2χ2

∂πi∂sj
. (3.20)

3If a systematic uncertainty was asymmetric the average of the upper and lower uncertainties was taken.
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The statistical covariance matrix of the fitted parameters is then, as usual, given by

V stat = M−1 . (3.21)

A systematic covariance matrix of the fitted parameters can also be defined as

V syst = M−1CCTM−1 . (3.22)

Once the covariance matrices are known the uncertainty on any function F of the PDFs param-
eters {π} can be calculated using the standard formula

(∆F )2 =
∑

a

∑

b

∂F

∂πa
Vab

∂F

∂πb
(3.23)

provided that the derivatives ∂F/∂πa are known either analytically or numerically.

The epdflib package

The epdflib package is a fortran program that provides access to the results of the MBFIT
analysis described above. The input to epdflib is a file which contains the statistical and
systematic covariance matrices of the fitted PDFs parameters and, as function of x and Q2, the
central values of all parton momentum densities as well as the derivatives of these densities to the
fitted parameters. Tools are provided that allow to calculate, using Eq. (3.23), the uncertainty
associated to any smooth function of the PDFs.

Also stored in epdflib are the PDFs resulting from a variety of additional DGLAP fits.
These additional fits were performed in order to either check the stability of the central fit
results with respect to different theoretical assumptions during the QCD evolution or to provide
the user with phenomenologically useful additional PDFs.

Here we list for each performed additional DGLAP fit the condition/assumption that was
varied with respect to the central fit:

• The quadratic sum of the statistical and systematic errors was used in the definition of
the χ2 instead of taking the statistical errors only.

• The momentum sum rule constraint was released. In this fit the total momentum fraction
carried by quarks and gluons was found to be 1.03.

• The value of Q2
0 was set to 7 instead of 4 GeV2.

• The Q2
min cut was lowered from 3 to 2 GeV2 and the W 2

min cut from 7 to 5 GeV2.

• The Q2
min cut was raised from 3 to 4 GeV2 and the W 2

min cut from 7 to 10 GeV2.

• The lower x cut of 0.1 on the CCFR xF3 data was removed.

• The normalization of the CCFR xF3 data was fixed (to N = 1.009, see Table 3.2) and KFe

was left as a free parameter in the fit which gave KFe = 0.8, consistent with the input
value of 1.0 ± 0.5.

• The MRST parameterisation (instead of Eskola et al.) was used to correct the CCFR xF3

data for nuclear effects.

• The normalization of the NMC data was left free (one parameter for the 8 NMC data sets)
so that all fixed target data are re-normalized with respect to HERA. This resulted in
NNMC = 1.007 while the normalizations of the other data sets changed by less than 0.01,
compared to the central fit.
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• The dv density was pameterized as recently suggested by Bodek an Yang [67]:

xd′ = xd+Bx(1 + x)xu. (3.24)

Leaving the parameter B free in the fit yielded B = −0.02 ± 0.01 (stat.), close to zero.

An uncertainty band, here called parameterisation uncertainty, is defined as the envelope of the
results from the central fit and the above ten additional fits.

A second uncertainty band, here called input uncertainty, is defined as the envelope of the
results from the central fit and the following four additional fits:

• The input value of the strong coupling constant αs(M
2
Z) was varied by ∆αs(MZ) = ±0.005

around the central value αs = 0.118.

• The strange quark content of the proton x(s + s̄), assumed to be a fraction Ks = 0.2 of
the sea at the scale Q2

0, was varied by ∆Ks = ±0.03.

• The parameters (KFe,KD2) that control the size of the nuclear correction applied to xF3

and F d
2 were varied by ∆KFe = ±0.5 and ∆KD2 = ±1 around their central values.

• The charm threshold, Q2
c = 4 GeV2, was varied by ∆Q2

c = ±1 GeV2.

In all the MBFIT PDFs mentioned above the renormalization (µR) and factorization (µF )
scales are chosen according to: µR = µF = Q. Four additional sets are also provided in order to
study the dependence of the results of the DGLAP fit on µR and µF :

• The renormalization scale was set to µ2
R = Q2/2 and µ2

R = 2Q2 while keeping the factor-
ization scale µ2

F fixed to Q2.

• The factorization scale was set to µ2
F = Q2/2 and µ2

F = 2Q2 while keeping the renormal-
ization scale µ2

R fixed to µ2
F .

In the following we will define as total uncertainty on the PDFs the sum in quadrature of
the:

1. statistical and systematic uncertainties, which were propagated as described above,

2. parameterisation uncertainty, and

3. input uncertainty.

The additional PDFs sets obtained using different αs(MZ) input values will prove extremely
useful in order to describe in a consistent way the αs-dependence of the dijet cross sections and
dijet fraction.

MBFIT PDFs: central predictions and related uncertainties.

In Fig. 3.5 and Fig. 3.6 the central predictions for the MBFIT PDFs together with their as-
sociated total uncertainty, as defined above, are shown as a function of x for Q2 = 10 GeV2

and Q2 = 500 GeV2 respectively. Also shown in the figures are the MRST and CTEQ5 parton
densities. There is, within the quoted uncertainty, an overall good agreement among these sets
of PDFs. The most noticeable difference is in the gluon density xg(x,Q2), which is steeper in
the MBFIT than the MRST and CTEQ5 gluon densities. For x not to small (x ≥ 5 · 10−3)
the MRST and CTEQ5 gluon densities agree with that of the MBFIT within the quoted gluon
uncertainty.
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In Fig. 3.7 and Fig. 3.8 the relative uncertainties related to the different sources of uncertainty
of the PDFs examined before, are shown for xg(x,Q2) and the singlet density xΣ(x,Q2) for
Q2 = 10 GeV2 and Q2 = 500 GeV2. Also presented in these figures are the uncertainties
associated with the renormalization and factorization scales, which are not included in the total
error of the MBFIT PDFs.

It is seen that, as expected, the gluon uncertainties are typically larger than the quark
uncertainties and that both are strongly reduced as Q2 increases from 10 to 500 GeV2. At low
Q2 the singlet density uncertainty is dominated by the scale uncertainty which however becomes
very small at high Q2.

The uncertainties associated to the strange content of the proton, to the nuclear correction
to F d

2 and F3, and to the charm threshold (see Fig. 3.8) are very small.

3.4.2 Uncertainties of the inclusive and dijet cross sections

As already mentioned the epdflib package gives full access for the user to the statistical and
systematic covariance matrices of the fitted PDFs parameters as well as, as a function of x and
Q2, to the derivatives of the PDFs with respect to the fitted parameters. With this information
available it is then, in principle, straightforward to propagate the uncertainties of the PDFs into
the calculated cross section.

For each NLO differential cross section, dσNLO, the corresponding uncertainty reads:

∆(dσNLO) =

√√√√
Np∑

i=1

Np∑

j=1

∂(dσNLO)

∂πi

∂(dσNLO)

∂πj
Vij (3.25)

with
∂dσNLO

∂πa
=

∑

k=q,q,g

∫
dξ[

∂fk(ξ, µ2
F; {π})

∂πa
]dσ̂k(ξP, . . . ) , (3.26)

and where Vij is the total covariance matrix element of the fitted parameters πi and πj , and Np

is the total number of PDF’s parameters. The covariance matrix V can be the statistical, the
systematic or, if the total error is to be calculated, the sum of both covariance matrices.

The implementation of the formula Eq. (3.25) within a NLO program is in practice a non-
trivial problem. Particular care must be placed in order not to spoil the internal working
algorithm of the NLO program, which is designed so as to cancel the infrared and collinear
singularities. It proved also necessary to provide a faster access to the epdflib information so
as not to add additional overhead to already high cpu-time consuming programs. These rather
technical issues will be not discussed here, and we will limit ourselves to present the resulting
uncertainties on the dijet differential cross sections obtained via the use of Eq. (3.25). All the
results presented in the following refer, unless stated otherwise, to the high-Q2 phase-space
region defined before and have been obtained with at least ten milions DISENT events. The
relative numerical accuracy associated with a typical DISENT run is shown in Fig. 3.9 for all
the NLO QCD differential cross sections.

In Fig. 3.10 we present the relative uncertainties on the differential cross section due to the
experimental (statistical and systematic) uncertainties of PDFs. The resulting uncertainties are
typically 5% (2.5%) for the dijet (total DIS) differential cross sections. They increase up to 10%
in the region of high jet transverse energies and dijet mass.

In order to illustrate the importance of taking into account the correlations among the
PDFs parameters {π} when evaluating the uncertainties on the dijet cross sections, we present
again in Fig. 3.11, plotted as shaded bands, the uncertainties of dσtot/dQ

2, dσ2+1/dQ
2, and

the dijet fraction R2+1(Q2) obtained using Eq. (3.25). Together with them (superimposed as
a hatched band) we also plot the uncertainties of the same observables obtained neglecting the
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correlations mentioned above. The latter uncertainties have been calculated simply repeating

the NLO calculations using two PDFs sets, f
(p),Up
i (ξ,Q2) and f

(p),Dn
i (ξ,Q2), obtained raising

and lowering the MBFIT central PDFs by the associate uncertainty ∆f
(p)
i (ξ,Q2)

f
(p),Up
i (ξ,Q2) = f

(p)
i (ξ,Q2) + ∆f

(p)
i (ξ,Q2) , (3.27)

and

f
(p),Dn
i (ξ,Q2) = f

(p)
i (ξ,Q2) − ∆f

(p)
i (ξ,Q2) . (3.28)

The effect of neglecting the correlations during the propagation of the uncertainties produces
an uncertainty on dσtot/dQ

2 which is almost twice bigger. Also the uncertainty on dσ2+1/dQ
2

increases though to a lesser extent. When ignoring correlations the uncertainties on dσtot/dQ
2

and dσ2+1/dQ
2 are essentially equal and, as a consequence, the uncertainty of R2+1(Q2) comes

out unrealistically small. Using Eq. (3.25) the dijet cross section has a larger uncertainty than
the inclusive cross section (as one would naively expect due to the more significant role played
by gluon-initiated processes on the dijet observable) and in the ratio the uncertainties do not
completely cancel leaving an uncertainty on R2+1(Q2) at the level of 1-1.5%.

Given the extremely small PDFs-related uncertainty of R2+1(Q2), this observable appears
to be particularly suited to extract αs.

In addition to the uncertainties of the dijet cross sections associated to the experimental
uncertainties on the MBFIT PDFs, it is important to check the effect of using as input in the
calculation of the dijet cross sections different PDFs sets obtained from the additional fits dis-
cussed in the previous section. What we are testing in this case is the stability of the results under
different assumptions made in the DGLAP fit. In Fig. 3.12 we present the uncertainty on the
differential cross sections due to the PDFs parameterisation uncertainty defined in Section 3.4.1.
The corresponding uncertainties of the cross section are at 1-2% level. As a cross-check only, the
uncertainties of the QCD NLO differential cross sections obtained varying the renormalization
and factorization scales only in the PDFs are shown in the Fig. 3.13 and Fig. 3.14 , respectively.

The use of different MBFIT PDFs obtained under different assumptions on the strange
content of the proton, on the nuclear correction to xF3,F d

2 , as well as on the charm threshold
produced negligible variations on the inclusive and dijet cross sections.

In the following we will define as total PDFs-related uncertainty on each calculated differen-
tial cross section, the sum in quadrature of the uncertainties obtained in correspondence of the
experimental and parameterisation uncertainties of the MBFIT PDFs. The total PDFs-related
relative uncertaintes for the NLO QCD differential cross sections are presented in Fig. 3.15. Also
shown in the figure are the relative ratios, with respect to the central MBFIT PDFs predictions,
of the cross sections obtained using the CTEQ4, CTEQ5 and MRST PDFs.

3.5 Residual renormalization-scale dependence

In any DIS pQCD calculation two momentum scales must necessarily be introduced: the renor-
malization (µR) and factorization (µF) scale. These two scales have a purely technical (and
unphysical) origin and in a full (i.e. to all orders) perturbative calculation the result should be
independent of them. In practice however, due to our present ability to calculate only the first
few terms of the perturbative series, we are forced to truncate the expansion. This truncated
expansion does exhibit in general renormalization- and factorization-scale dependencies.

The problem then arises, in any fixed-order DIS pQCD calculation, to make a choice for µR

and µF (within a specified renormalization/factorization scheme) in order to get a definite pQCD
prediction. As a consequence, it becomes also necessary to estimate the theoretical uncertainty
related to the residual scale dependence.
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In the following we will limit our discussion only to the renormalization scale dependence
of the NLO cross sections, the factorization-scale dependence being almost negligible (see e.g.
[34]).

3.5.1 General remarks on the choice of the renormalization scale

Even though the renormalization and factorization scales are unphysical parameters a fixed order
perturbative prediction depend of course on the specific values assumed for them. The question
then naturally arises if some specific scale choices are, from a theoretical point of view, to be
preferred respect to others.

Theoretically optimized scales

Since the appearence of the first NLO pQCD calculations several different theoretically motivated

choices for the renormalization scale have been suggested.
Among the most used approaches we recall:

1. The Physical Scale argument[68].

2. The Principle of Minimum Sensitivity (PMS)[69].

3. The Method of Effective Charges (ECH)[70].

4. The Method of Brodsky-Lepage-MacKenzie (BLM)[71].

Without entering in a detailed discussion of the proposed approaches (for which we refer the
reader to the above references) we simply remark that after almost twenty years since the
problem was clearly formulated in [69] the subject has yet to produce consensus in the theoretical
community.

The physical scale argument is certainly the more widespread in the literature and in the
standard phenomenological practice. According to this viewpoint the renormalization scale
should be chosen to be equal or close to the typical energy scale(s) which characterize the
hardness of the process under consideration.

Experimentally optimized scales

In addition to the above theoretically optimized scale choices a completely different approach
has recently attracted renewed interest. In this approach the renormalization scale is not cho-
sen according to a given theoretical prescription but is instead obtained by fitting the pQCD
prediction (with the renormalization scale assumed as a free parameter) to the corresponding
measured observable. This approach has been mostly used by the LEP experiments in their αs

measurements based on NLO QCD fits of several infrared and collinear-safe event shape observ-
ables (see e.g. ref.[72] for a recent DELPHI αs measurement that fully exploits and advocates
this particular method). It is intriguing that the values of αs extracted from each observable
using this approach show a remarkable level of agreement, while the αs values obtained using a
renormalization scale equal to

√
s are much more dispersed. While this convergence is tantalising

it must be said that such an optimization procedure has as yet no theoretical basis. The critical
point here is to understand if this procedure could cause, because of this amazing convergence
of the results, a bias on the central αs fitted value.
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Our choice

In the following we will assume Q, in line with the physical scale argument mentioned above, as
the central choice for the renormalization and factorization scales:

µR,0 = µF,0 = Q, (3.29)

where with µR,0 and µF,0 we have indicate the central values for µR and µF , respectively. We
point out here that the same choice is adopted in all the NLO DGLAP fits (MBFIT, CTEQ,
MRST) performed in order to determine the PDFs.

In order to study the dependence of the NLO QCD predictions on a renormalization scale
that involves the transverse energies of the jets, we will also compare the results obtained with
the central µR = µF = Q choice with those obtained for µR = (Ejet,1

TB +Ejet,2
TB ) and µF = Q.

3.5.2 Renormalization-scale dependence of the dijet cross sections

On general grounds one expects the residual renormalization-scale dependence to be reduced
the more higher-order terms are included in the calculation of a given QCD observable. That
this is actually true is demonstrated in Fig. 3.16 which shows the LO and NLO total dijet cross
sections as a function of the renormalization-scale variation factor, xµ, defined as

µR = xµ · µR,0 with µR,0 = µF,0 = Q. (3.30)

In the large xµ range examined the LO cross section (obtained using LO matrix elements and LO
definition of αs and PDFs) shows a huge dependence on the renormalization scale, showing as a
LO calculation can only predict the order of magnitude and crude features of a given observable
but cannot be used for a precise test of QCD. The NLO cross section shows instead a much less
pronounced scale dependence. A similar conclusion is drawn when using as a renormalisation
scale the sum of the jet transverse energies (see Fig. 3.17).

In the following the µR-related uncertainty of the DIS inclusive and dijet cross sections will
be defined as the one obtained for a variation of the renormalization-scale factor in the range:
0.5 < xµ < 2.

In Fig. 3.18 this uncertainty is shown, as a function of Q2 and for the low-Q2 region defined
in Section 3.3.2, for the inclusive and dijet differential cross sections, and for the dijet fraction
R2+1(Q2). The results for dσ2+1/dQ

2 and R2+1(Q2) show an increasing residual µR-dependence
as Q2 decreases; for Q2 ∼ 50 GeV2 the uncertainty amounts to ± 20-30%. In this kinematic
region the NLO dijet cross sections are not predictive since contributions from higher-orders in
αs are presumably very large. For this reason in the following we will limit our analysis to the
high-Q2 region defined before. A further motivation for this choice is the reduced uncertainty
due to the PDFs already discussed in the previous section.

The µR-related uncertainties for all the NLO QCD differential cross sections in the high-Q2

region are presented in Fig. 3.19. The uncertainties, which are typically at the 5% level in most
of the phase-space, increase (up to 20%) in the low ξ, Ejet

TB and dijet mass regions, as well as in
the forward jet pseudorapidity region. As a cross-check the relative ratio:

(dσ(µR = Q) − dσ(µR = Ejet,1
TB + Ejet,2

TB ))/dσ(µR = Q)

is also shown (as a dashed line) in the same figure.

3.6 Uncertainty due to the strong coupling constant

In this section we address the issue of estimating the uncertainty of the differential inclusive and
dijet cross sections due to the uncertainty on the strong coupling constant.
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The natural method to get such an estimate is that of varying in the NLO program the value
of αs(MZ) over a range which reasonably represents the uncertainty on αs(MZ).

Particular care must be placed, however, when implementing such a variation in order to:

1. consider the complete αs(MZ) dependence in the cross section dσNLO(αs);

2. not to spoil the correlations between the assumed αs(MZ) value and the PDFs, in partic-
ular the gluon density, built-in in the DGLAP evolution equations.

In order to take into account the complete αs(MZ)-dependence of dσNLO, one must vary
simultaneusly the value of αs(MZ) used in the partonic cross section and in the PDFs evolution
equations. It is hence necessary to have different sets of PDFs obtained fitting the same set of
data but assuming different αs(MZ) values.

Both the MBFIT described above and the CTEQ4 and MRST analyses provide PDFs sets
obtained for different αs(MZ) values. The MBFIT αs-series cover a range in αs(MZ) between
αs(MZ) = 0.113 and αs(MZ) = 0.123 which, according to the discussion in section 2.6, fairly
represents the present uncertainty on the strong coupling constant. These PDFs have been used
hence to obtain the uncertainties of the differential inclusive and dijet cross sections. These
resulting uncertainties are presented in Fig. 3.20: they amount to 5 - 10 % and increase in the
low Ejet

TB and low dijet mass regions, as well as in the forward pseudorapidity region of the Breit
frame. As a cross check in the same figure we also present (as a hatched band) the uncertainties
obtained using the MRST αs-series which cover an identical αs range of variation.

3.7 Hadronisation effects

The NLO QCD predictions for the dijet cross sections obtained in this chapter refer to a partonic
final state composed of coloured quarks and gluons. In QCD on the other hand, due to the
confinement property of the strong force, coloured partons can never be observed as free particles
in the final state. What we can observe and measure are hadrons: relativistic color-singlet bound
states of confined quarks and gluons.

The problem then arises of how to perform a meaningful comparison of the measured dijet
cross sections (which, once corrected for detector effects, refer to hadrons in final state) with
the NLO predictions described above.

The approach adopted here has been that of estimating the effect of the hadronisation process
on the NLO QCD dijet differential cross sections, using phenomenological (i.e. Monte Carlo)
hadronisation models, and then to correct for it the NLO cross sections.

We point out here that an estimate of the hadronisation effects based on a renormalon
approach, á la Dokshitzer-Marchesini, which has attracted recently a certain theoretical and
experimental interest can not be attempted due to the lack of analitical predictions for the dijet
cross sections in DIS.

3.7.1 The cluster and string hadronisation models

The hadronisation process takes place long after the hard scattering occurs. It involves long-
distances (small momentum transfers) and, as consequence, can not be quantitatively described
within the realm of pQCD. One is forced to use phenomenological models. There are two differ-
ent models on the market: the string model (as implemented in JETSET) and the cluster model
(as implemented in HERWIG). Both hadronisations models are based on the local parton-hadron

duality hypothesis according to which the flows of energy-momentum and flavour quantum num-
bers at the hadron level should follow those at the parton level. Thus, for example, the flavour
of the quark initiating a jet should be found in a hadron near the jet axis. The extent to which
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the hadronic flow deviates from the partonc flow reflects the irreducible smearing of order ΛQCD

due to hadron formation.

The cluster model

The preconfinement property of the parton-branching process is used in HERWIG by assuming
a cluster model which is local in colour and independent of the hard scale Q. After the pertur-
bative parton-branching process, all outgoing gluons are split non-perturbatively, as shown in
Fig. 3.21, into quark-antiquark pairs. Neighboring quarks and antiquarks are then combined
into colour singlets. The resulting cluster mass spectrum is universal and steeply falling at high
masses. Its precise form is determined by the QCD scale ΛMC (used during the perturbative
parton branching phase), the perturbative cutoff Q0, and to a lesser extent the gluon splitting
mechanism. Typical cluster masses are normally two or three times Q0. The clusters thus
formed then decay into hadrons. If a cluster is too light to decay into two hadrons, it is taken
to represent the lightest single hadron of its flavour. Its mass is shifted to the appropriate value
by an exchange of momentum with a neighbouring cluster. Those clusters massive enough to
decay into two hadrons undergo simple isotropic decay into pairs of hadrons, chosen according
to the density of states with appropriate quantum numbers. This model has few parameters and
a natural mechanism for generating transverse momenta. However it has difficulties in dealing
with the decay of very massive clusters, and in adequately suppressing baryon production.

The string model

This model is based on the dynamics of a relativistic string which represents the colour flux
stretched between the initial qq̄ (see Fig. 3.21). The string produces a linear confinement po-
tential and an area law for matrix elements:

|M(qq̄ → h1 · · ·hn)|2 ∝ e−bA

where A is the space-time area swept out (Fig. 3.23). The string breaks up into hadrons via qq̄
pair production in its intense colour field. Gluons produced in the parton shower give rise to
‘kinks’ on the string. The model has extra parameters for the transverse momentum distribution
and heavy particle suppression. It has some problems describing baryon production, but less
than the cluster model.

Hadron yields

Both the cluster and string hadronisation models have a few adjustable parameters that have
been mainly tuned on precisely measured hadron yields at LEP. In order to illustrate the present
ability of these hadronisation models to describe hadron production we compare in Table 3.4 and
3.5 the meson and baryon yields predictions with the corresponding yields measured by the LEP
and SLC experiments: the overall agreement is rather good. As stated earlier, the remaining
problems are in the baryon sector, especially for HERWIG. It is remarkable that most of the
measured yields (except for the 0− mesons, which have special status as Goldstone bosons) lie
on the family of curves

< n >= a(2J + 1)e−M/T

where M is the mass and T ≃ 100 MeV (fig. 3.24). This suggests that mass, rather than
quantum numbers, is the primary factor in determining the production rates.
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3.7.2 Hadronisation correction for the dijet cross sections

The hadronisation-correction factors are defined as the ratio of the dijet cross sections before
and after the hadronisation process

Chad =
dσpartons

2+1

dσhadrons
2+1

. (3.31)

Their final values are taken as the mean of the cluster and string model predictions and the
associated uncertainties are defined as half the spread between the models. In Fig. 3.25 we show
the size of the hadronisation-corrections factors for all the dijet cross sections. The corrections
are reasonably small for most of the dijet distributions (between 3% and 10%) and decrease for
increasing Q2 and Ejet

T . They are somewhat larger in the rear pseudorapidity and low dijet mass
regions. In the high-Q2 region considered here the string and cluster models give very similar
results.

The correction factors thus obtained are used to correct bin-by-bin the NLO cross sections
for the hadronisation effects according to:

dσ2+1 = dσNLO
2+1 · C−1

had . (3.32)

The approach described above is certainly an approximated one. Apart from the intrinsic
uncertainties of the hadronisation models, there is an additional uncertainty related to the
fact that these hadronisation programs are applied to a parton cascade that does not match
the partonic final state of a NLO program. Its approximate validity rests on the assumptions
that the hadronisation-correction factors are small and that the MC partonic final state give a
reasonable description of the shape of the NLO cross sections. That the latter conditions is in
fact fulfilled is proved in the Fig. 3.26 and Fig. 3.27, which show a comparison of the NLO dijet
cross sections with the parton level predictions of the LEPTO, ARIADNE and HERWIG MC
programs.

3.8 Summary

In this chapter we have gone through a rather long and detailed analysis of the NLO QCD
predictions and their associated uncertainties for the differential dijet cross sections and dijet
fraction in DIS processes at HERA. It is hence useful at this point to summarize the main results
obtained.

A final phase space was selected according to the DIS region:

470 < Q2 < 20000 GeV2 and 0 < y < 1 , (3.33)

and jet selection criteria

Ejet1
TB > 8 GeV and Ejet2

TB > 5 GeV (3.34)

−1 < ηjet
1,2 (Lab) < 2 . (3.35)

This choice was dictated by the goal to reduce as much as possible the theoretical uncertainties
associated with the NLO QCD predictions. As will be described in the following chapters, this
phase space choice will prove to be particularly suited also from an experimental point of view.

The restriction to a high-Q2 region was chosen mainly in order to avoid the extremely
large renormalization-scale dependence of the dijet cross sections and dijet fraction at low Q2.
Restricting the phase space to high-Q2 also decreases the uncertainty on the parton distribution
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functions, in particular the gluon density. In the high-Q2 region considered here the gluon-
initiated processes constitute approximately only the 30-40 % of the total dijet cross section.

The asymmetric cut on the ET of the jets avoids infrared sensitive regions where the NLO
programs are, as we have seen, not reliable.

All the NLO calculations are based on the program DISENT and make use of a set of PDFs
obtained in the MBFIT analysis described in Section 3.4 and available via the epdflib package.
The calculations are performed in the MS renormalization and factorization scheme with the
number of massless active flavours set to 5 and µR = µF = Q. The final theoretical results
for the differential dijet cross sections and dijet rate are obtained from the corresponding NLO
predictions correcting the latter for the hadronisation effects using the correction factors and
procedure described in Section 3.7.

The decision to use the PDFs provided by the epdflib package is motivated by the fact that
this package contains also the necessary information (correlation matrices and derivatives of the
PDFs with respect to the fitted PDFs parameters) necessary to perform a complete propagation
of the uncertainties of the PDFs on the NLO QCD differential dijet cross sections. In the phase
space considered here the NLO cross sections obtained using these PDFs were found to be within
5 % compatible with the ones obtained using the CTEQ5 and MRST sets. To our knowledge the
approach presented in this chapter represents one of the first attempts to a realistic evaluation
of the uncertainty of the NLO jet cross sections due to the PDFs’ uncertainties.

The use of the dijet fraction R2+1(Q2) proved particularly effective in reducing the theoretical
uncertainty associated with the PDFs, the relative uncertainty on R2+1(Q2) due to the PDFs
being only 1-1.5 %. This make this observable particularly suitable to extract αs.

We conclude this chapter presenting the final QCD predictions for the differential dijet cross
sections and dijet fraction. The differential dijet cross sections as functions of zp, xBj , ξ, and
the dijet invariant mass Mjj are presented in Fig. 3.28. Fig. 3.29 shows the differential cross
sections as a function of the jets transverse energies and pseudorapidities in the Breit Frame. The
theoretical uncertainty associated with each cross section is shown as shaded band underneath
each plot and has been obtained adding in quadrature the four sources of uncertainty that we
have being discussing in this chapter:

• Parton Distribution Functions,

• renormalization-scale dependence,

• assumed value for the strong coupling constant, and

• hadronisation models.

The differential inclusive and dijet cross sections and the dijet fraction, all as function of Q2,
are presented in Fig. 3.30. In Fig. 3.30 the uncertainty bands do not contain the uncertainty due
to the strong coupling constant. Instead in this case the theoretical predictions obtained using
three different αs(M

2
Z) values and the corresponding PDFs sets are presented. These results will

be used (as described in chapter 6) to parameterise, in each Q2 bin, the αs dependence of the
dijet fraction R2+1(Q2) in order to extract the strong coupling constant via a QCD fit of the
corresponding measured observable. The complete results obtained in this chapter on the QCD
cross sections and the associated uncertainties will be presented in tabular form, together with
measured cross sections, in chapter 6.
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MEPJET[30] DISENT[31] DISASTER++[32] JETVIP[33]

version 2.2 0.1 1.0.1 1.1

method PS slicing subtraction subtraction PS slicing

1+1,2+1 NLO NLO NLO NLO

3+1 LO LO LO LO

4+1 LO — — —

full event record yes yes yes (yes)

scales all factorization: Q2, fixed all all

renormalization: all

flavour dependence switch switch full switch

quark masses

in LO x-section LO — — —

resolved γ contribution

in LO/NLO x-section — — — NLO

electroweak contribution

in LO/NLO x-section LO — — —

polarized x-section NLO — — —

Table 3.1: A comparison of the different features of the DIS NLO QCD programs.
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Figure 3.4: Infrared sensitive and insensitive jet cut scenarios. See text for a full explanation.
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Dataset χ2 points χ2/point Norm.

SLAC P 61.9 56 1.10 0.988

SLAC D 52.1 57 0.91 0.984

BCDMS P 155.9 177 0.88 0.979

BCDMS D 159.4 159 1.00 1.000

NMC E090 P 46.3 44 1.05 1.0

NMC E120 P 64.8 53 1.22 1.0

NMC E200 P 75.4 64 1.18 1.0

NMC E280 P 65.2 72 0.91 1.0

NMC E090 D 47.1 44 1.07 1.0

NMC E120 D 43.3 53 0.82 1.0

NMC E200 D 48.2 64 0.75 1.0

NMC E280 D 51.4 72 0.71 1.0

E665 P 53.4 41 1.30 1.018

E665 D 43.8 41 1.07 1.002

ZEUS NV94 235.2 147 1.60 1.0

H1 NV94 97.7 150 0.65 1.0

NMC D/P 188.6 205 0.92 1.0

CCFR 33.5 68 0.49 1.009

E866 16.8 11 1.53 1.0

Total 1539.8 1578 0.98

Table 3.2: The χ2 values of the MBFIT analysis described in Section 3.4.1, calculated with the
statistical and systematic errors added in quadrature.

Parameter xg(x) xS(x) x∆̄(x) xuv(x) xdv(x)

A 1.357 0.807 0.306 2.739 1.994

δ −0.255 −0.149 0.565 0.617 0.654

η 5.338 3.925 7.493 3.890 3.082

γ −0.522 −1.332 2.753 −0.813

h0 h1 h2 h3 h4

−0.043 −2.461 14.324 −46.758 55.834

Table 3.3: The values of the PDFs parameters at the initial scale Q2
0, obtained from the MBFIT

analysis. The parameters are defined in Eq. (3.16).
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Figure 3.5: The MBFIT PDFs xg, xS (both divided by a factor 20), xuv and xdv and their
associated uncertainties as a function of x for Q2 = 10 GeV2. Also shown as dotted (dashed)
curves are the PDFs from CTEQ5 and MRST respectevely.
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Figure 3.6: The NLOFIT PDFs xg, xS (both divided by a factor 40), xuv and xdv and their
associated uncertainties as a function of x for Q2 = 500 GeV2. Also shown as dotted (dashed)
curves are the PDFs from CTEQ5 and MRST respectevely.
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Figure 3.7: The relative uncertaintes on the gluon and singlet (sum of quarks and anti-quarks)
densities, plotted as a function of x for Q2 = 10 and Q2 = 500 GeV2, due to four different sources
of uncertainty (left to right column): statistical and systematic uncertainties added in quadra-
ture, assumed αs input value, parameterisation uncertainty, renormalization and factorization
scale uncertainties added in quadrature. See text for further explanation.
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Figure 3.8: As Fig. 3.7, but for four additional sources of uncertainty (left to right column):
strange content of the proton, deuteron correction, iron correction and charm threshold. See
text for further explanation.
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Figure 3.9: The relative numerical uncertainty, associated to a typical DISENT run, for the
NLO differential cross sections.
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Figure 3.10: Relative uncertainties of the differential dijet cross sections due to the experimental
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Figure 3.12: Relative uncertainties of the differential dijet cross sections due to the parameteri-
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Figure 3.13: Relative uncertainties on the differential dijet cross sections obtained varying the
factorization scale only in the PDFs.
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Figure 3.14: Relative uncertainties of the differential dijet cross sections obtained varying the
renormalization scale only in the PDFs.
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Figure 3.15: The total PDFs-related uncertainties on the NLO QCD differential cross sections.
Also shown are the relative ratios, with respect to the MBFIT predictions, of the cross sections
obtained using the CTEQ4, CTEQ5, and MRST PDFs.
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Figure 3.18: The µR-related uncertainty for the DIS inclusive and dijet differential cross sections,
and for the dijet fraction as a function of Q2. The arrows indicate the final Q2 kinematic region
used in this analysis.
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Figure 3.20: The relative uncertainties of the NLO QCD differential inclusive and dijet cross
sections due to αs(MZ). The shaded (hatched) band shows the uncertainty obtained with the
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Figure 3.21: The cluster (left) and string (right) hadronisation models.
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Figure 3.23: The string model: space-time picture.

Figure 3.24: Particle yields in Z0 decay.



3.8. SUMMARY 79

Particle Multiplicity HERWIG JETSET UCLA Expts

5.9 7.4 7.4

Charged 20.96(18) 20.95 20.95 20.88 ADLMO

π± 17.06(24) 17.41 16.95 17.04 ADO

π0 9.43(38) 9.97 9.59 9.61 ADLO

η 0.99(4) 1.02 1.00 0.78 ALO

ρ(770)0 1.24(10) 1.18 1.50 1.17 AD

ω(782) 1.09(9) 1.17 1.35 1.01 ALO

η′(958) 0.159(26) 0.097 0.155 0.121 ALO

f0(980) 0.155(8) 0.111 ∼0.1 — ADO

a0(980)± 0.14(6) 0.240 — — O

φ(1020) 0.097(7) 0.104 0.194 0.132 ADO

f2(1270) 0.188(14) 0.186 ∼ 0.2 — ADO

f′2(1525) 0.012(6) 0.021 — — D

K± 2.26(6) 2.16 2.30 2.24 ADO

K0 2.074(14) 2.05 2.07 2.06 ADLO

K∗(892)± 0.718(44) 0.670 1.10 0.779 ADO

K∗(892)0 0.759(32) 0.676 1.10 0.760 ADO

K∗
2(1430)0 0.084(40) 0.111 — — DO

D± 0.187(14) 0.276 0.174 0.196 ADO

D0 0.462(26) 0.506 0.490 0.497 ADO

D∗(2010)± 0.181(10) 0.161 0.242 0.227 ADO

D±
s 0.131(20) 0.115 0.129 0.130 O

B∗ 0.28(3) 0.201 0.260 0.254 D

B∗∗

u,d
0.118(24) 0.013 — — D

J/ψ 0.0054(4) 0.0018 0.0050 0.0050 ADLO

ψ(3685) 0.0023(5) 0.0009 0.0019 0.0019 DO

χc1 0.0086(27) 0.0001 — — DL

Table 3.4: The meson yields in Z0 decay. Experiments: A=Aleph, D=Delphi, L=L3, M=Mark
II, O=Opal. Bold: new data. Underlined: disagreement with data by more than 3σ.
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Particle Multiplicity HERWIG JETSET UCLA Expts

5.9 7.4 7.4

p 1.04(4) 0.863 1.19 1.09 ADO

∆++ 0.079(15) 0.156 0.189 0.139 D

0.22(6) 0.156 0.189 0.139 O

Λ 0.399(8) 0.387 0.385 0.382 ADLO

Λ(1520) 0.0229(25) — — — DO

Σ± 0.174(16) 0.154 0.140 0.118 DO

Σ0 0.074(9) 0.068 0.073 0.074 ADO

Σ⋆± 0.0474(44) 0.111 0.074 0.074 ADO

Ξ− 0.0265(9) 0.0493 0.0271 0.0220 ADO

Ξ(1530)0 0.0058(10) 0.0205 0.0053 0.0081 ADO

Ω− 0.0012(2) 0.0056 0.00072 0.0011 ADO

Λ+
c 0.078(17) 0.0123 0.059 0.026 O

Table 3.5: Baryon yields in Z0 decay. Legend as in table Table 3.4.
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ential dijet cross sections.
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Figure 3.28: The QCD differential dijet cross sections in NC DIS as functions of a) zp, b)
Log10(x), c) Log10(ξ) and d) Mjj. The cross sections are obtained with the program DISENT
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The relative total uncertainty of the QCD calculation is shown, as a shaded band, underneath
each plot.
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Figure 3.30: The QCD a) inclusive (dσtot/dQ
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2) differential cross sections
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with program DISENT using the proton MBFIT PDFs and µR = µF = Q. The dashed lines
show the pure NLO QCD calculations. The solid lines show the NLO QCD calculations corrected
for hadronisation effects. For the dijet fraction the QCD predictions obtained for αs(MZ) =
0.123 and 0.113 are also shown. The relative total uncertainty of the QCD calculation is shown,
as a shaded band, underneath each plot.
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Chapter 4

The ZEUS Detector at HERA

In this chapter we will briefly describe the HERA Collider and the ZEUS detector. In describing
the detector we will focus on those components that are of particular relevance for this analysis.
A description of the ZEUS trigger architecture is given at the end of the chapter.

4.1 The HERA Accelerator

The Hadron Electron Ring Accelerator, HERA, is the first lepton-proton collider in the world.
It is designed to accelerate electrons or positrons and protons in the 6.3 km long ring to 30 GeV
and 820 GeV, respectively1. The purpose of HERA is to enable the investigation of DIS in a
region of phase space not accessible thus far to previous experiments.

HERA is located near the main site of the DESY laboratory in Hamburg, Germany. A view
of the HERA layout is depicted in Fig. 4.1.

In the 1996-97 data-taking period HERA operated at a proton energy of 820 GeV and a
positron energy of 27.52 GeV, resulting in a center of mass energy

√
s of 300 GeV. To reach an

equivalent center of mass energy with a fixed target proton would require an electron beam of
48 TeV.

During this period HERA operated with 153 ep bunches with typical beam currents of 30-40
mA for electrons and 70-80 mA for protons. Besides these colliding bunches there were also
unpaired (or pilot) 17 proton- and 15 electron-pilot bunches as well as 25 empty bunches. The
pilot bunches can be used to estimate beam related background rates, while empty bunches
allow the estimation of background rates originating from cosmic rays or to study the noise
characteristics of detector components. The design and performance parameters of the HERA
machine are summarized in table 4.1.

The integrated luminosity delivered by HERA (see Fig. 4.2) has continuously increased, from
about 30 nb−1 in the 1992 data taking period to almost 37 pb−1 in 1997.

4.2 The ZEUS Detector

The design, construction and operation of the ZEUS detector owes its successes to the hard work
of almost 500 physicists and as many members of technical staff. This multinational collaboration
is an assembly of more than 50 institutes coming from 12 different countries. The main detector,
weighing 3600 tones and standing 12 meters in height, is located 30m underground in the South
Experimental Hall of the main HERA ring.

The coordinate system of ZEUS is defined as a right-handed system with the origin at the
nominal interaction point (IP). In this system, the incoming proton direction, referred to as the

1In the 1998-2000 running period, the proton energy in HERA was increased to 920 GeV.
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forward direction, defines the z-axis and the x-axis is defined to point horizontally towards the
center of HERA. Thus, the proton beam polar angle is 0o, whereas the electron beam polar
angle is 180o. The azimuthal angle φ is measured w.r.t the positive x-axis (see Fig. 4.3).

ZEUS is a multi-purpose solenoid detector with a solid angle coverage of > 99.6% of 4π srad
consisting of inner tracking detectors surrounded by a high resolution Uranium Calorimeter and
a muon detection system. The longitudinal and transverse cross sections through the detector,
showing the main components, are presented Fig. 4.4 and Fig. 4.5. The asymmetry of the
detector on either side of the interaction point reflects the large momentum imbalance between
the colliding beams.

The complete and detailed descriptions of the ZEUS detector may be found in the original
technical proposal [87] and subsequent status reports [88]. The components of the detector
essential for the present analysis are described in more detail in the following sections. A brief
description of the ZEUS detector is given below.

Starting radially outward from the interaction point is the central tracking detector (CTD); a
large drift chamber for charged particle identification and measurement. The CTD is surrounded
by a super-conducting magnet providing a field of 1.43 T. Forward and rear tracking chambers
(FTD and RTD) provide extra tracking information in the forward and rear directions. The
tracking chambers are surrounded by a high resolution Uranium Calorimiter (UCAL). The
UCAL is divided into three main sections; the FCAL in the forward (proton) direction, the
BCAL a barrel section surrounding the central region and the RCAL in the rear (electron)
direction. The UCAL is enclosed by muon chambers (FMUI, BMUI and RMUI) on the inner
side of an iron yoke. The yoke itself serves as an absorber for the backing calorimeter (BAC),
which measures the energy of late-showering particles and also provides the return path for the
solenoid magnetic field flux. On the outer side of the yoke, the outer muon chambers are installed
(FMUO, BMUO and RMUO). Downstream of the main detector in the electron direction at
z = −7.5 m an iron-scintillator Vetowall is used to reject beam-related backgrounds. The C5
beam monitor, a small lead-scintillator counter, located around the beam pipe at z = −3.15 m,
is used to determine the nominal interaction point and monitor the proton and electron bunch
shapes from timing measurements. Upstream of the interaction point, the proton remnant
tagger (PRT), a lead-scintillator counter, located at z = 5.1 m around the beam pipe provides
information about high energy charged particles which are produced at very small angles and
leave the main detector through the beam hole. The leading proton spectrometer (LPS) installed
at intervals along the beam line (20-90 m) and forward neutron calorimeter (FNC) located at
about 100 m in the forward direction detect protons and neutrons scattered through a very small
angles, respectively.

The short time interval of 96 ns between the bunch crossings at HERA results in a nominal
rate of 10 MHz. ZEUS employs a three-level triggering system to reduce the rate to a few Hz,
a level at which data can be written to tape.

4.2.1 The Central Tracking Detector

The CTD [89] provides the direction and momentum information of charged particles with high
precision and estimates the energy loss dE/dx used for particle identification. It is a cylindrical
gas-filled drift chamber, covering an angular region from 15◦ to 164◦. The gas is a mixture of
83% argon, 5% CO2, and 12% ethane bubbled through alcohol.

The chamber is organized radially into 9 superlayers. The odd-numbered superlayers are
axial layers and have their sense wires parallel to the CTD axis, whereas the even-numbered
superlayers are stereo layers and have their wires inclined at a small angle (±5◦) to the chamber
axis. The resolution of the CTD is around 230 µm in rφ, resulting in a transverse momentum
resolution (for full-length tracks) of σpt/pt = 0.0058pt ⊕ 0.0065 ⊕ 0.0014/pt, with pt in GeV.
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4.2.2 The Uranium Calorimeter

The Uranium Calorimeter (UCAL) [90] is one of the most essential detector components at ZEUS
for the reconstruction of ep-scattering events and plays a crucial role in the present analysis. The
UCAL is a sampling calorimeter, consisting of alternating layers of depleted uranium as absorber
and scintillator as active material for readout purposes. The thickness of the plates (2.6 mm
scintillator and 3.3 mm = 1 X0 uranium) has been chosen such that the calorimeter response
to electrons and hadrons is the same (e/h = 1 ± 0.02) over a wide range of energies, or in other
words the calorimeter is said to be compensating. The compensation characteristic is particularly
important for energy resolution of hadrons as hadronic showers have a statistically fluctuating
electromagnetic component. The energy resolution of the ZEUS calorimeter, measured under
test beam conditions, is σ(E)/E = 18%/

√
E ⊕ 1% for electrons and σ(E)/E = 35%/

√
E ⊕ 2%

for hadrons, where energy is measured in GeV, and ⊕ means summation in quadrature.
The calorimeter is divided into three parts, the Forward (FCAL), the Barrel (BCAL) and

the Rear (RCAL) (see Fig. 4.4). The depth of the calorimeter is determined by the maximum
jet energy it needs to absorb, requiring 99% energy containment [87]. This energy is a function
of polar angle, ranging from about 800 GeV in the forward direction, to about 30 GeV in the
rear. The containment of very energetic jets is achieved by surrounding the uranium calorimeter
by a much cheaper iron backing calorimeter.

The FCAL, covers polar angles from 2.2◦ to 36.7◦. It is divided into 24 modules numbered
with increasing x, each module (see Fig. 4.7) is further segmented into 20 × 20 cm2 towers
numbered with increasing y. The towers are segmented in depth into an electromagnetic section
(EMC) and two hadronic (HAC) sections. Each of the hadronic sections of a tower is identified
as a calorimeter cell. The EMC section, however, is divided vertically into four 20 × 5 cm2 cells.
The structure of the RCAL is very similar. However, the EMC section has two 20 × 10 cm2 cells
instead of four and there is only one hadronic section. The RCAL covers polar angles between
129.1◦ to 176.5◦. In the outer region of the F- and RCAL are the HAC0 cells. There is no need
for a finely segmented EMC sections there, as these regions are shadowed by the BCAL. The
view of the UCAL geometry and FCAL face seen from the IP are shown in figure 4.8.

The BCAL covering the angles between the FCAL and the RCAL, consists of 32 wedge-
shaped modules and has one EMC and two HAC sections. The modules are tilted 2.5◦ in φ.
Each module is divided into 14 towers along the z-axis. The four EMC cells of each tower are
projective in θ, where the HAC sections behind them are not projective.

Each calorimeter cell is read out on opposite sides by two photomultiplier tubes (PMTs)
coupled to the scintillators via wavelength shifters. Comparison of the two PMT signals allows
the determination of the impact point of the particle within a cell.

The calorimeter is calibrated on a channel-by-channel basis using the natural radioactivity
of the depleted uranium, which provides stable and time independent reference signal. This
calibration procedure is good to 1%. The PMTs can be calibrated via light emission of known
intensity from LEDs. The rest of the electronic readout chain is calibrated using test pulses.

The calorimeter also provides accurate timing information with a time resolution better than
about 1 ns for energy deposits greater than 4.5 GeV.

4.2.3 The Luminosity Monitor

The precise determination of the time-integrated luminosity is a crucial aspect of all cross section
measurements. The ep luminosity at HERA is measured by the luminosity monitor using the
rate of hard bremsstrahlung photons, ep→ e′pγ from the Bethe-Heitler process [91]. The cross
section for this process is high and is known from theoretical calculations to an accuracy of 0.5%.

The luminosity monitor [92] consists of two calorimeters, the electron calorimeter (LUMI-e)
and the photon calorimeter (LUMI-γ).
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The LUMI-e is a lead-scintillator calorimeter. It is located at z = −34 m and detects electrons
that have lost part of their energy via bremsstrahlung and are deflected from the nominal beam
orbit by the magnetic field of HERA. The geometrical acceptance is limited to the detection of
electrons with 0.2 ·Ebeam < E′

e < 0.8 ·Ebeam. The energy resolution is σ(E)/E = 18%/
√
E with

E measured in GeV.
The LUMI-γ is a lead-scintillator calorimeter situated at z = −104 m and is protected against

synchrotron radiation by a 3.5 X0 carbon/lead filter. The energy resolution which under test
beam conditions is 18%/

√
E, where E is in GeV, is reduced to 25%/

√
E by the filter.

The measured luminosity uncertainty in 1996-97 data taking period was found to be about
1.6%, where the dominant sources of errors are due to energy scale uncertainties, cross section
calculation, acceptance correction and beam gas background subtraction.

4.3 The ZEUS Trigger and Data Acquisition System

The short bunch crossing time at HERA of 96 ns, equivalent to a rate of approximately 10
MHz, is a technical challenge and puts stringent requirements on the ZEUS trigger and data
acquisition system.

ZEUS employs a sophisticated three-level trigger system in order to select ep physics events
efficiently while reducing the rate to a few Hz [93, 94]. A schematic diagram of the ZEUS trigger
system is shown in figure 4.10.

The First Level Trigger (FLT) is a hardware trigger, designed to reduce the input rate below
1 kHz. Each detector component has its own FLT, which stores the data in a pipeline, and
makes a trigger decision within 2 µs after the bunch crossing. The decision from the local FLTs
are passed to the Global First Level Trigger (GFLT), which decides whether to accept or reject
the event.

If the event is accepted, the data are transferred to the Second Level Trigger (SLT), which
is software-based and runs on a network of Transputers. It is designed to reduce the rate below
100 Hz. Each component can also have its own SLT, which passes a trigger decision to the
Global Second Level Trigger (GSLT) [95]. The GSLT decides then to accept or reject the event.
If GSLT accepts the event then it is passed to an Event Builder.

The Event Builder [96] collects data from all detector components into a single event record
and transfers it to the Third Level Trigger (TLT), which makes a decision based on the complete
information. The TLT is software-based and includes parts of the offline reconstruction code.
It runs on a farm of Silicon Graphics computers and is designed to reduce the rate to a few Hz.

Events accepted by the TLT are written to tape via a fiber-link (FLINK) connection. The
size of an event is typically 100 kBytes. From here on events are available for full offline
reconstruction and data analysis.

The trigger logic used for the online selection of DIS events, on which the present analysis
are based, is described in chapter 5.
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Parameter Design Value Average 1996-97

Proton energy Ep 820 GeV 820 GeV

lepton energy Ee 30 GeV 27.52 GeV

center-of-mass energy
√
s 314 GeV 300 GeV

Lspec (cm−2s−1mA−2) 3.2 · 1029 6.0 · 1029

∫
L (pb−1)/year 100 27

bunches (ep + e+ p) 210 (153+15+17)

bunch crossing time 96 ns 96ns

p current 160 mA 75 mA

e current 60 mA 35 mA

#p/bunch 11.0 · 1010 3.1 · 1010

#e/bunch 3.6 · 1010 2.6 · 1010

Ie
tot/I

e
pilot – 10.0

Ip
tot/I

p
pilot – 10.1

Table 4.1: A compilation of some of the HERA design parameters and their actual values during
the 1996-97 running period.

797 m

360 m

H-Linac

Protons

Electrons

Experiment Hall

       NORTH

H 1

Experiment Hall

        EAST

Experiment Hall SOUTH

ZEUS

HERMES

HERA
820 GeV  protons x 30 GeV electrons

L= 1.5 . 1031 cm-2s-1

210 bunches, 29m spaced

Ecm = 314 GeV
DESY

e-Linac

Experiment Hall
WEST

PETRA

Figure 4.1: The HERA accelerator complex at DESY, Hamburg.
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Figure 4.2: HERA delivered luminosity.
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Figure 4.4: The longitudinal cross section trough the ZEUS detector. The main components are
labeled and the directions of the incoming beam electrons and protons are also shown.

Figure 4.5: The transverse cross section trough the ZEUS detector. The main components are
labeled and the directions of the incoming beam electrons and protons are also shown.
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Figure 4.6: CTD octant

Figure 4.7: FCAL module
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Figure 4.8: The view of the CAL geometry (left) and FCAL face seen from the IP (right).

Figure 4.9: The Lumi detector.
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Chapter 5

Measured cross sections and related

uncertainties

5.1 Introduction

In this chapter we describe the measurement of the NC e+p DIS inclusive and dijet cross sections.
After a short description of the kinematical characteristics of the high-Q2 events considered here,
the trigger requirements and the offline selection criteria used to select the NC DIS inclusive
sample are outlined. The reconstruction of the DIS kinematic variables is then discussed.

Each event of the inclusive sample thus selected is then boosted into the Breit frame and a
jet search is performed in this frame, using the K⊥-cluster algorithm, in order to define the final
dijet event sample. The accuracy of the reconstruction of the boost vector is described in detail
as well as the estimate of the uncertainty associated with the absolute jet-energy scale.

This chapter ends with a description of the unfolding procedure and a study of the main
sources of systematic uncertainty.

5.2 Monte Carlo samples

All the relevent distributions of the inclusive and dijet samples were compared, at the various
stages of the selection procedure, to DIS Monte Carlo(MC) simulations. An adequate description
by MC of these data samples is crucial in order to correctly determine the efficiency for selecting
events, to determine the accuracy of the kinematic and jet reconstruction, to estimate the
backgrounds, and to extrapolate the measured cross-sections to the full kinematic phase space.

NC DIS events, including QED radiative effects, were simulated using the HERACLES
4.5.2 [97] program with the DJANGO6 2.4 [98] interface to the QCD cascade and hadronisation
programs. In HERACLES, corrections for initial- and final-state radiation, vertex and propaga-
tor corrections, and two-boson exchange were included. The QCD cascade was simulated using
the colour-dipole model [99] including the LO QCD diagrams as implemented1 in ARIADNE
4.08 [101] and, as a systematic check, with the MEPS model of LEPTO 6.5 [102]. The LEPTO
event sample was generated without the soft colour interaction model. Both programs use the
Lund string model [103] of JETSET 7.4 [104] to simulate the hadronisation effects.

For the above MC samples the ZEUS detector response was simulated with a program based
on GEANT [107]. The generated events were passed through the simulated detector, subjected
to the same trigger requirements as the data, and processed by the same reconstruction and
offline programs. The ARIADNE (LEPTO) sample corresponds to an integrated luminosity of
Lint = 800(170)pb−1, that is a factor 20 (4) larger than the integrated luminosity of the ZEUS

1A modified treatment of parton radiation at high Q2 [100] was included.
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data sample used in the present analysis (see below).
Large samples of events were generated without Z0 exchange processes and QED corrections

to correct the measured cross sections for these effects, which at present are not included in
the DISENT program. An additional sample of events was also generated with HERWIG 5.9
[105] program, in which the fragmentation is simulated according to a cluster model [106], in
order to estimated, togheter with the ARIADNE sample, the hadronisation effects as discussed
in chapter 3.

5.3 Selection of the DIS event sample

The selection of the DIS inclusive sample follows very closely the one used in a recent measure-
ment of the inclusive e+p cross section at large four-momentum transfer[108]. We have benefited
very much from the detailed studies[109] performed in that context, which have improved sig-
nificantly both the reconstruction of the scattered positron and that of the hadronic final state.
In this section we give, as a consequence, only a brief description of the basic selection criteria
and present the most relevant control distributions in order to demonstrate the quality of our
reconstruction of the DIS inclusive events.

5.3.1 General event characteristics

Neutral-current DIS processes in the high-Q2 phase-space region considered here produce strik-
ing events, relatively easy to distinguish from the potentially large backgrounds of quasi-real
photoproduction (Q2 ∼ 0) and beam-gas interactions. The events are characterized by a high-
energy isolated positron detected in the ZEUS Uranium calorimeter. For Q2 > 470 GeV2, most
of the positrons have an energy close to the nominal beam energy (27.5 GeV) and are restricted
to a polar angle below 140 degrees. As Q2 increases, the positrons are produced with higher
energies, up to several hundred GeV, and at smaller polar angles.

In addition to the energy and polar angle of the scattered positron, the variables δ, PT and
ET were used for event selection. These are defined as:

δ =
∑

i

(Ei − Ei cos θi) =
∑

i

(E − pz)i (5.1)

PT =
√
P 2

x + P 2
y =

√√√√
(
∑

i

Ei sin θi cosφi

)2

+

(
∑

i

Ei sin θi sinφi

)2

(5.2)

ET =
∑

i

Ei sin θi (5.3)

where the sums run over all calorimeter energy deposits Ei with polar angle θi and azimuthal
angle φi. At the generator level δ = 55 GeV, i.e. twice the positron beam energy, which follows
from energy-momentum conservation. Undetected particles which escape through the forward
beam hole give a negligible change in δ while particle loss through the the rear beam hole, e.g.
from initial state bremsstrahlung, can lead to a substantial reduction of δ. High-Q2 events in
which the positron strikes the BCAL or FCAL (Q2 > 1000 GeV2) are characterized by large
ET values.

In the determination of the DIS kinematic variables (to be described below), the CAL energy
deposits are separated into those associated with the identified scattered positron, and all other
energy deposits. The sum of the latter will be referred to in the following as the hadronic energy.
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Year L(pb−1) δL/L(%)

1996 10.71 1.1

1997 27.69 1.8

Total 38.40 1.6

Table 5.1: Luminosity L and relative error δL/L for 1996 and 1997 positron data samples.

5.3.2 Data Samples and trigger requirements

Data Samples

The data samples employed in this analysis were collected with the ZEUS detector in the 1996
and 1997 running periods. Included in the analysis were only those runs for which the main
detector components used here (CAL, CTD, and the luminosity monitors) were fully operational.
The resulting data set correspond to an integrated luminosity of L = 38.4pb−1. The relative
contributions from each of the two data taking years can be found in table 5.1. The uncertainty
on the total integrated luminosity was determined via the fractional uncertainties for the two
years δL

L , according to:

(
δL
L )

tot
=

∑1997
i=1996 ( δL

L )
i
× Li∑1997

i=1996 Li

(5.4)

i.e. assuming maximum correlation.

Trigger requirements

For the portions of the trigger relevant to this analysis, the requirements were strictest during
1997 and are described here. The first-level trigger requires a total electromagnetic energy of at
least 3.4 GeV in the RCAL or 4.8 GeV in the BCAL, or E′′

T > 30 GeV, where E′′
T is the total

transverse energy excluding the two rings of calorimeter towers nearest to the forward beampipe.
The E′′

T requirement is designed to tag high-Q2 events by their large ET while rejecting beam-
gas background having large energy deposits at low polar angles. The major requirement at the
second-level trigger is δ + 2Eγ > 29 GeV, where Eγ is the energy measured in the luminosity
monitor. This requirement suppresses photoproduction. Backgrounds are further reduced at
the second-level trigger by removing events with calorimeter timing inconsistent with an ep
interaction. For the third-level trigger, events are reconstructed on a computer farm, and the
requirements are similar to the offline cuts described below, though looser and using a simpler
and generally more efficient (but less pure) positron finder.

5.3.3 Positron identification and reconstruction

As mentioned above the key signature of the events under study is the presence of an isolated
high-energy positron. Thus, a correct and efficient identification of the scattered positron as well
as a precise reconstruction of its position and energy are important requirements in the selection
of DIS events. In this analysis, in order to identify and reconstruct the positron, while rejecting
events in which other final state particles mimic it, the Sira95[110] electron finder algorithm was
used in conjunction with the tracking information provided by the CTD.

Sira95 electron finder

Sira95 is based on a feed-forward neural network algorithm (with back-propagation) trained
to identify electromagnetic particles based upon their showering properties in the segmented
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uranium calorimeter. In a first step, calorimeter clusters (tower islands[111]) are formed by
grouping CAL cells that are contiguous to a cell with the local highest energy. The energy
of each cluster, Eclu, is defined as the sum of the cell energies belonging to the cluster. The
cluster angle, θclu, is set equal to the polar angle obtained from the center position of the cluster
and the event vertex obtained from tracks measured with the CTD. A set of 16 rotationally
invariant moments which characterise the geometrical structure of each cluster defined above
are then used, together with the cluster’s energy, as inputs of the neural network in the training
phase. The neural network output is defined to represent the probability, Psira, that a given
calorimeter cluster is of electromagnetic (Psira ∼ 1) or non-electromagnetic (Psira ∼ 0) origin.
The final calorimeter cluster associated to the scattered positron if defined as the one with the
highest Sira95 probability. The performance of the electron finder can be evaluated in terms
of the efficiency and purity for selecting the scattered positron. MC studies have demonstrated
that these efficiencies and purities exceed 95% for Psira > 0.9 and cluster energies Eclu > 10
GeV.

Track-matching

For clusters with polar angles2 within the CTD acceptance (θclu > 17.2◦), a matching track is
required. A track is considered to match if the distance of closest approach (DCA) between the
extrapolation of the track into the calorimeter and the position of the cluster center is less than
10 cm, where the r.m.s. resolution in the DCA is 1.8 cm.

Since the CAL energy resolution is better than that of the CTD for tracks above 10 GeV, for
accepted candidates, the positron energy, E′

e, is set equal to the cluster energy, Eclu, comprising
typically six cells. The positron angle, θe, is determined from the associated track if the positron
cluster is within the CTD acceptance, and otherwise set equal to θclu. The resolution in θe is
typically 0.1◦.

Energy and non-uniformity corrections

The energy of the calorimeter cluster associated to the scattered positron was corrected for
energy loss in the material between the interaction point and the calorimeter. All the positron
clusters in BCAL and FCAL were corrected based on the material maps implemented in the
detector simulation package. The presampler was used to correct positrons entering the RCAL.
This correction is based on the measured positron energy, the amount of material in front of the
RCAL and the presampler signal.

In addition to the above corrections for energy losses an additional correction was applied
to the positron energy to remove a discrepancy between data and MC in the measured energy
response at the boundaries of the calorimeter cells and modules.

Positron energy scale uncertainty

The uncertainty in the energy scale of the scattered positron, determined after applying the
corrections described above, was studied in detail in [108]. For scattered positrons in low y region,
the energy is strongly correlated with the scattering angle, and a comparison of the predicted
energy to the measured energy in the calorimeter was made. In the range of 30◦ < θe < 150◦,
the momentum of the positrons can be determined by the CTD. The average track momentum
minus calorimeter energy was used as an independent check of the energy measured in the CAL
for energies up to 30 GeV. For positrons with energies above 30 GeV, or those scattered to
extreme forward directions, a comparison of the energy predicted from double-angle variables

2We do not consider candidates with θclu > 164◦ (which are also beyond the CTD acceptance limit), since
they correspond to Q2 values below the range of this analysis.
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(see section 5.3.5) to the measured energy was made. In kinematic regions where the other
methods can be used to check the CAL energy scale, the double-angle results are in agreement
with the other methods to better than 0.5%. As a result of these studies, the uncertainty in the
value of the energy of the scattered positron in the RCAL is 2% at 10 GeV, decreasing linearly
to 1% at 27.5 GeV and above, 1% in the BCAL and 3% in the FCAL.

5.3.4 Reconstruction of the hadronic final state

Energy depositions of the hadronic final state are used to evaluate the angle γh. For this purpose
calorimeter clusters are used as just described. The angle γh is then calculated for the event
according to

cos γh =
P 2

T,h − δ2h
P 2

T,h + δ2h
, (5.5)

where PT,h and δh are calculated using (5.1) and (5.2) with sums running over the calorimeter
clusters in the same manner as PT and δ, but excluding the positron.

MC studies of the calorimeter response indicate that the uncorrected γh calculated with (5.5)
is biased by redirected hadronic energy from interactions in material between the primary vertex
and the calorimeter or by backsplash from the calorimeter (albedo)[112]3. To minimize this bias,
clusters with energy below 3 GeV and with polar angles larger than γmax are removed. The value
of γmax, which is a function of γh, is derived from a NC MC sample by requiring that less than
1% of the clusters not related to the above effects be removed. This yields a reconstruction of γh

closest to the true value as given by the MC. After this first pass of cluster removal the value of
γh is re-calculated and the procedure is repeated until it converges, typically after two or three
passes. Removing calorimeter clusters in this manner substantially improves the resolution and
bias of the double-angle variables for small values of γh (corresponding to small values of y) and
leaves them largely unchanged for large values of γh.

A study on the uncertainty in the scale of the hadronic energy will be presented together
with an estimate of the uncertainty on the absolute jet-energy scale in section 5.4.2.

5.3.5 Reconstruction of the kinematics

The kinematic variables Q2, x, and y were determined using the double angle (DA) method [114]:

Q2
DA = 4E2

e

sin γh(1 + cos θe)

sin γh + sin θe − sin(γh + θe)
(5.6)

xDA =
Ee

Ep

sin γh + sin θe + sin(γh + θe)

sin γh + sin θe − sin(γh + θe)
(5.7)

yDA =
sin θe(1 − cos γh)

sin γh + sin θe − sin(γh + θe)
(5.8)

Being based on angular quantities the DA method is mostly insensitive to errors in the absolute
energy scale of the calorimeter. It is however sensitive to QED radiation and an accurate
simulation of the hadronic final state is necessary. At high Q2 the hadronic final system is
sufficiently energetic and model uncertainties in the fragmentation process are smaller than at
lower Q2.

To validate the performance of the double-angle method, the reconstructed kinematic vari-
ables of MC events were compared to the true hadron variables Q2, x and y as defined by the

3High energy hadrons interacting in a calorimeter can produce with a non-negligible probability particles at
large angles with respect to the direction of the main shower. Some of these particles travel backwards and
generate energy deposits far away from their primary source in the calorimeter which is referred to as backsplash.
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four-momentum transfer q to the hadronic system

Q2 = −q2, x = Q2/(2p · q), y = Q2/(xs) (5.9)

where P is the four-momentum of the initial proton and s = 4EpEe. The resolution in the kine-
matic variables is determined accordingly and demonstrates (not shown here) that the double-
angle method performs better than other methods for Q2 > 400 GeV2.

5.3.6 Offline selection

The following criteria are applied offline:

• To ensure that event quantities can be accurately determined, a reconstructed vertex with
−50 < zvtx < 50 cm is required, a range consistent with the ep interaction region.

• To suppress photoproduction events where the scattered positron escapes through the
beam hole in the RCAL, δ is required to be greater than 38 GeV. This cut also reduces
the number of events with initial-state QED radiation. The requirement δ < 65 GeV
removes cosmic ray background.

• Positrons are identified based on calorimeter cluster quantities and tracking information
as described above.

– To ensure high purity, the positron is required to have an energy of at least 10 GeV;
in this case the identification efficiency exceeds 96%, as shown by MC studies.

– To reduce background, isolated positrons are selected by requiring no more than
5 GeV in calorimeter cells not associated with the scattered positron in an η−Φ cone
of radius 0.8 centered on the positron.

– In addition, each positron with θe > 17.2◦ must be matched to a charged track of at
least 5 GeV momentum.

– For positrons beyond the forward tracking acceptance (θe < 17.2◦), the tracking
requirement in the positron selection is replaced by a cut on the transverse momentum
of the positron PT,e > 30 GeV and by the requirement δ > 44 GeV.

– A fiducial volume cut is applied to the positron position. This excludes the upper
part of the central RCAL area (20×80 cm2) occluded by the cryogenic supply for the
solenoid magnet as well as the transition region between the CAL parts corresponding
to a polar angle of the positron of 35.6◦ < θ < 37.3◦ and 128.2◦ < θ < 140.2◦.

If more than one positron candidate in an event passes these cuts (7% of the events), the
one with the highest probability is assumed to be the DIS positron.

• To further reduce background from photoproduction, y estimated from the positron energy
and angle is required to be ye < 0.95.

• The net transverse momentum PT is expected to be close to zero and is measured with
an error approximately proportional to

√
ET . To remove cosmic rays and beam-related

background, PT is required to be less than 4
√
ET (GeV).

The efficiency of these cuts for selecting DIS events with Q2 > 470 GeV2 as determined by
MC is, on average, 80%4 It is approximately uniform over the kinematic phase space except

4The efficiencies and purities for all the measured cross sections (inclusive and dijet) will be presented in section
5.5.
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for the region of high y and low Q2 where the efficiency decreases due to the positron energy
requirement. Uncertainties in the simulation of the efficiency arising from the diffractive contri-
bution to the cross-section which is not included in the MC are neglected since the diffractive
contribution is small for Q2 > 470 GeV2.

5.3.7 Monte Carlo and data comparison

To prove that the set of MC samples describe the inclusive data sample specified above, thus
allowing to determine the data taking efficiency, the agreement between data and MC in the
spectra of the most relevant quantities is checked.

The vertex is reconstructed using the CTD alone. The measured z vertex distribution is
compared with the ARIADNE and LEPTO predictions in Fig. 5.1 after applying all analysis
cuts except for the cut on the z coordinate of the vertex. A very good agreement between the
data and the MC is observed except in the upstream region (zvtx < −70 cm). This is presumably
due to the presence of residual beam-gas background events. The vertex cut (described above)
is applied to reject this background and to reduce acceptance uncertainties.

The comparison between the data and MC samples for the positron’s related quantities is
presented in Fig. 5.2 to Fig. 5.4. In Fig. 5.2 the positron coordinates at the CAL face are
shown. The positron’s energy (after correction or estimated with the DA method) and polar
angle distributions are presented in Fig. 5.3. In Fig. 5.4 the energy (Econe) in a η-φ cone of
radius 0.8 that is not assigned to the positron together with the momentum of the track (pTrk

e )
matching the positron calorimeter cluster and the corresponding DCA are shown. For all the
distributions an adequate description by the MC sample is seen.

A similar conclusion hold for the hadronic variables γh PT,h and δh (see Fig. 5.5), and the
total and hadronic E − Pz presented in Fig. 5.6.

Finally, the distribution of the final inclusive data sample as function of Q2
DA,xDA and yDA

is compared with the LEPTO and ARIADNE MC samples in Fig. 5.7. An excellent agreement
between data and MC is again observed.

5.4 Selection of the dijet sample

In this section we describe the selection of the final dijet sample. Having already motivated in
chapter 3 our decision to perform the jet clustering in the Breit frame (using the longitudinally
invariant K⊥-cluster algorithm), emphasis will be placed here on the quality of the boost to the
Breit frame and on the description by the ARIADNE and LEPTO MC event samples of the most
relevant dijet distributions. In this section we will also address the problem of quantifying the
uncertainty on the jet energy scale which represents one of the main sources of the experimental
uncertainty of the measured jet cross sections.

5.4.1 Boost to the Breit frame

The Breit frame is defined as the one in which the four-momentum ΣB = 2xP + q has zero
spatial components:

ΣB = 2xP + q = 0 . (5.10)
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This four-vector has been reconstructed using the initial positron and proton four-momenta and
the four-momentum of the scattered positron calculated according to the DA method:

(E′
e)DA = 2Ee

sin γh

sin γh + sin θe − sin(γh + θe)
(5.11)

(p′e,x)
DA

=E′
eDA sin(θe) cos(φe) (5.12)

(p′e,y)
DA

=E′
eDA sin(θe) sin(φe) (5.13)

(p′e,z)
DA

=E′
eDA cos(θe) (5.14)

where Ee is the nominal positron beam energy in the case of reconstructed events and the
true one for the generator level events. The decision to use the DA method was motivated
by the excellent resolutions obtained for the angular quantities θe, φe and γh in the selected
DIS kinematic region. Being calculated from angular quantities only, the boost vector is also
independent from uncertainties on the calorimeter energy scale.

Initial state photon radiation effects

The components of the four-momentum of the scattered positron calculated with the DA method
(see Eq.) depend linearly on the positron beam energy. The emission of an energetic photon from
the incoming positron5 (initial state radiation, ISR) can lower considerably the beam positron
energy w.r.t. the nominal value:

Ee,beam −→ EISR
e,beam = (1 − fγ)Ee,beam (5.15)

where fγ is the fraction of the positron beam energy carried by the initial-state radiated photon.
The cut δ > δmin = 38 GeV we applied at the DIS selection stage puts an upper limit on the
energy of a possible ISR photon. For a hermetic detector δ = 2Ee,beam. If the ISR photon
escapes detection the requirement δ > δmin limits the fraction fγ to:

fγ < 1 − δmin/(2Ee,beam) ≃ 0.3. (5.16)

fγ in the region (0., 0.3) is shown in Fig. 5.8 In the DIS kinematical region of this analysis
approximately 15% of the events have an ISR photon carrying between 2 and 30% of the energy
of the incident positron.

In order to study the effects of these events on the measured dijet cross section two cross
checks were performed:

1. In order to study the effect of assuming a nominal value of Ee,beam for calculating the
boost, all the hadron level MC dijet cross sections were calculate using the true incoming
positron’s energy and the nominal one. The ratios of these cross sections are presented in
Fig. 5.10. For all the dijet cross sections, the ratios deviate from one by at most 10%.

2. At the reconstructed level (both in the data and in the MC) the boost was performed
assuming for the incoming positron energy the nominal value. If the effect of ISR events
is different between data and MC a bias could be produced. In order to check this fγ was
reconstructed in data and MC separately from the reconstructed Q2 calculated with the
electron and DA method. In general we have

Q2
true = Q2

e(1 − fγ) = Q2
DA(1 − fγ)2 (5.17)

5Due to the comparatively large mass of the proton, ISR from the incoming proton can be safely negleted. In
principle, photon emission by the scattered positron (final state radiation, FSR) will affect also the determination
of the kinematics; in practice, if the scattered positron is detected in the calorimeter, the effect will be small
because the signals from the positron and the FSR photon are summed.
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and therefore

fmeas
γ = 1 − Q2

e

Q2
DA

(5.18)

The fmeas
γ distributions are presented in Fig. 5.9 and excellent agreement was found be-

tween data and MC.

The final measured dijet cross sections were corrected (according to the procedure decribed in
the next section) for QED effects.

5.4.2 Jet-energy scale uncertainty

The uncertainty associated with the absolute jet-energy scale represents the main source of the
experimental uncertainty on any measured jet cross section and deserves a detailed study. The
method adopted here to determine such an uncertainty is based on a detailed comparison, in the
laboratory frame, between the transverse momentum of the scattered positron, reconstructed
with the DA method, with the transverse energy of the balancing jet.

In a first step a sample of NC DIS events characterised by the presence of a single high
transverse energy jet, in the DIS kinematical region of the present analysis, was selected both
in the data and MC samples according to:

Ejet
T,Lab(Leading) > 10 GeV and − 1 < ηjet

Lab(Leading) < 2

and

Ejet
T,Lab(non − Leading) < 5 GeV

where the leading jet was defined as the one with highest transverse energy. In selecting the jet
sample the jet clustering procedure was carried out in the laboratory frame and the transverse
energy threshold for the leading jet was chosen in order to approximately resemble the transverse
energy distribution of each jet selected in the Breit frame (according to the nominal cut in the
Breit frame) after having boosted it in the laboratory frame.

For each sample the mean (〈r〉) of the quantity:

r =
Ejet

T

pDA
T,e

(5.19)

was computed separately for data (〈rD〉) and MC (〈rM 〉) (in the latter case both for the CDM
and MEPS samples) as a function of the jet’s pseudorapidity and transverse energy. The mean
was evaluated using both the histogram and gaussian mean of the Ejet

T /pDA
T,e distribution.

In Fig. 5.14 to Fig. 5.17 the measured ratio r is compared to the MC samples in bins of
Ejet

T,Lab and ηjet
Lab. The ARIADNE and LEPTO MC samples give an adequate description of the

measured distributions. In Fig. 5.18 to Fig. 5.21 the quantities 〈rD〉, 〈rM 〉 and 〈rD〉/〈rM 〉 are
presented as a function of the jet’s transverse energy and pseudorapidity. For all the distributions
data and MC agree within 2%.

As an additional cross check the same study was repeated using the total transverse mo-
mentum of the hadronic final state (P had

T ) instead of the jet transverse energy. The mean of the
ratio

ρ =
P had

T

pDA
T,e

(5.20)

was in this case computed in bins of γhad and P had
T , again for data and MC. Even in this case

data and MC (see Fig. 5.22 to Fig. 5.25) agree within 2%.
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5.4.3 Jet energy correction

The comparison of the reconstructed jet variables between jets of hadrons and jets of CAL
cells in MC generated events showed no significant systematic shift in the angular variables ηjet

B

and φjet
B . However, the jet transverse energy as measured by the CAL under-estimated that of

the jet of hadrons by an average of ≈ 15%. This effect is due mainly to energy losses in the
inactive material in front of the CAL and was corrected for using the samples of MC generated
events[113].

5.4.4 Final djet sample and MC comparison

The final dijet sample refer to the following jet selection criteria:

Ejet,M
TB > 8 GeV and Ejet,m

TB > 5 GeV (5.21)

−1 < ηjet (Lab) < 2 (5.22)

where Ejet,M
TB (Ejet,m

TB ) is the transverse energy of the jet in the Breit frame with the highest
(second highest) transverse energy in the event. Only events with exactly two jets passing the
above selection cuts were used to compute the cross sections.

In Fig. 5.11 to Fig. 5.13 the measured dijet uncorrected distributions are compared with the
predictions of ARIADNE and LEPTO. Both MC samples give an adequate description of the
shape of the measured distributions. LEPTO gives a somewhat better description of the jet
pseudorapidity distributions and transverse distributions at high Ejet

TB . ARIADNE reproduces
better the shape of the dijet cross section as a function of Q2. Both programs give a very similar
prediction for the detector correction factors.

5.5 Unfolding and experimental uncertainties

5.5.1 Correction procedure

In order to compare the measured inclusive and dijet cross sections and the dijet fraction with the
corresponding NLO predictions (corrected for hadronisation effects) the observed distributions
have to be corrected for detector, QED, and Z0 effects. The correction for the latter two
effects is necessary because the DISENT NLO predictions presently do not include QED and
Z0 effects. The adequate description of the observed distributions by the ARIDNE and LEPTO
MC sample discusssed above allowed a simple bin-by-bin correction procedure to be applied.
The final measured cross section (both inclusive or dijet), σmeas

DATA, in a given bin was obtained
correcting the observed cross section, σobs

DATA, in the same bin according to:

σmeas
DATA = Cdet · Cqed · CZ0 · σobs

DATA (5.23)

with

Cdet =
σhad

MC

σdet
MC

Cqed =
σno−qed

MC

σhad
MC

(5.24)

CZ0 =
σno−Z0

MC

σZ0

MC

where
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• σhad
MC is the MC hadron-level cross section including QED and Z0 effects;

• σdet is the MC detector-level cross section including QED and Z0 effects;

• σno−qed is the MC hadron-level cross section without QED effects;

• σZ0
is the MC hadron-level cross section with Z0 effects;

• σno−Z0
is the MC hadron-level cross section without Z0 effects.

The detector correction factors (Cdet), computed both for the ARIADNE and the LEPTO
MC samples, for all the measured cross sections, are shown in Fig. 5.26. For most of the cross
sections they are flat and amount to ≈ 20%. The dijet cross sections as a function of the jet
transverse energy slowly increase (up to 30%) with decreasing Ejet

T,B. In Fig. 5.27 to Fig. 5.29 the
ARIADNE hadron level predictions with and without QED effects are presented for the inclusive
and dijet differential cross sections. The corresponding QED correction factors (Cqed), which
range between 5 and 10%, are shown underneath each plot. The corrections for the Z0 effects
(CZ0) affect mostly the inclusive and dijet cross section, as a function of Q2, in the high-Q2

region (see Fig. 5.30).
To ensure a reasonable choice of the bins, the purities and efficiencies in all the bins as well

as the bin sizes compared to the resolutions in the quantities considered were checked. The
purity and efficiency in a given bin is:

Purity =
Nr. of events generated and measured in the bin

Nr. of events measured in the bin
(5.25)

Efficiency =
Nr. of events generated and measured in the bin

Nr. of events generated in the bin
. (5.26)

The purities and efficiencies (estimated again both with the LEPTO and ARIADNE MC sam-
ples) are presented for all the measured cross sections in Fig. 5.31 and Fig. 5.32.

5.5.2 Experimental uncertainties

Various sources contribute to the uncertainties of the measured inclusive and dijet cross sections.
In the following we give a short description of how the single contributions were evaluated and
discuss which are correlated between single data points.

Statistical uncertainties

Statistical uncertainties arise from the limited number of events used in the determination of
a given cross section. In this analysis they enter at three places: the limited amount of data
events in the reconstructed distributions (1), the limited number of simulated and reconstructed
MC events used to determine the correction factor for detector effects (2), and the number of
generated events used to estimate the QED and Z0 correction factors (3). As mentioned before
the final statistical uncertainty in each bin was obtained by adding in quadrature all three
contributions. Due to their statistical nature they are uncorrelated between different bins.

Uncertainty in the luminosity determination

The uncertainty associated with luminosity determination for the 1996-97 data taking periods
used in this analysis was estimated to be 1.6%. This introduces a corresponding overall normal-
isation uncertainty on each measured cross section, which is correlated between all data points.
The measured dijet fraction R2+1 is not affected by this source of uncertainty.
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Uncertainty on the detector correction-factors

The uncertainty arising from the MC model dependence of the detector correction factors (which
have already been presented in Fig. 5.26) was estimated as the difference between the cross
sections obtained using the LEPTO and ARIADNE MC samples.

Uncertainty on the DIS selection

The following studies were performed in order to assess the uncertainty associated to the selection
of the DIS inclusive sample:

• Positron’s energy-scale uncertainty
According to the studies described in [108] the uncertainty associated to the positron
energy scale is 3, 1, and 2% for positrons in FCAL, BCAL, and RCAL respectively. In
order to investigate the effect of these uncertainties on the electron finder performance, the
entire analysis was repeated after correcting (in the data only) simultaneously the EMC
F/B/RCAL cells’ energies by (+3%,+1%,+2%) and (-3%,-1%,-2%).

• Positron’s isolation cut
The cut on the total energy from the CAL cells (not associated with the scattered positron)
in an η − φ cone of radius 0.8 centered on the positron direction was varied by ±2 GeV
with respect to the nominal value.

• Vertex cut
The cut on the z position of the event vertex was relaxed to −100. < zvtx < 100. cm, in
order to study the effect on the cross sections from the satellites.

• ye cut
The upper cut on ye was lowered to 0.96.

• E − pz cut
The lower cut on the total E − pz was varied in the region between 35 and 40 GeV.

• Uncertainty on the calculation of the DA quantities
The evaluate the uncertainty associated to the reconstruction of the kinematical variables
the analysis was repeated after smearing the angles which are used in the calculation of
the DA quantity according to their resolution. As a further cross-check only the electron
method was used instead of the DA method to reconstruct the event kinematics.

Uncertainty on the dijet selection

The following studies were performed in order to assess the uncertainty associated to the selection
of the dijet sample:

• Jet energy-scale uncertainty
Following the results of the study on the jet energy-scale uncertainty the dijet cross sections
were recalculated varying by ±2% (in the MC sample only) the transverse energies of the
jet.

• Uncertainty in the boost
In addition to studies on the effects of ISR events, the following systematics checks were
performed in order to demonstrate the reliability of the boost. In the first one the boost to
the Breit frame was performed again (in the reconstructed MC sample only) after having

6The default ye < 0.95 was already implemented at the trigger level and could not be raised
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varied separately each of the three angles (θe, φe, γh), used in the reconstruction of the
boost vector, according to its estimated resolutions. The boost was also performed after
having smeared simultaneously three angles according to a normal distribution.

• Jets’ transverse energy and pseudorapidity cuts
The transverse energy of leading (non-leading) jet was varied, in both data and MC, in
the range [6.5,9.5] ([4.0,6.0]). The jet pseudorapity cuts were varied by ±0.1 units around
the nominal values.
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Figure 5.1: The z vertex distribution on a log and linear scale for data (dots) and ARIADNE
(shaded histograms) and LEPTO (dashed lines) MC predictions.
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Figure 5.2: The positron coordinates at the CAL face for data (dots) and the ARIADNE (shaded
histogram) and LEPTO (dashed histogram) MC program predictions.
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Figure 5.3: The positron’s energy and polar angle. Shown are both the positron energy after
correction (top) and estimated with the DA method.
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Figure 5.4: Upper plot: the distribution of the energy, Econe, in a η − φ cone of radius 0.8 that
is not assigned to the electron. Middle plot: the momentum of the track, pTrk

e , matching the
positron calorimeter cluster. Lower plot: the distance of closest approach (DCA) between the
electron and the track assigned to it.
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Figure 5.5: The hadronic variables: γh, PT,hadr, and ET,hadr.
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Figure 5.6: The total (top plot) and hadronic (lower plot) E − pz distributions.
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Figure 5.7: The kinematic variables Q2, x, and y estimated with the double angle (DA) method.
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Figure 5.8: The f true
γ distribution.

Figure 5.9: The fmeas
γ distribution for data and MC (ARIADNE).
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Figure 5.11: Data Monte Carlo shape comparison for the djet distributions as a function of zp,
Log10(x), Log10(ξ), and the dijet mass.
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Figure 5.12: Data Monte Carlo shape comparison for the djet distributions as a function of
Ejet,1

TB , ηjet,1
B , Ejet,2

TB and ηjet,2
B .
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Figure 5.13: Data Monte Carlo shape comparison for dσtot/dQ
2 and dσ2+1/dQ

2.
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Figure 5.14: The ratio r = Ejet
T /pDA

T,e in bins of jet’s pseudrapidity. The measured distributions
are compared to the ARIADNE MC.

Figure 5.15: The ratio r = Ejet
T /pDA

T,e in bins of jet’s transverse energy. The measured distribu-
tions are compared to the ARIADNE MC.
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Figure 5.16: The ratio r = Ejet
T /pDA

T,e in bins of jet’s pseudrapidity. The measured distributions
are compared to the LEPTO MC.

Figure 5.17: The ratio r = Ejet
T /pDA

T,e in bins of jet’s transverse energy. The measured distribu-
tions are compared to the LEPTO MC.
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Figure 5.18: The mean ratios: 〈rD〉,〈rM 〉 (ARIADNE-CDM) and 〈rD〉/〈rM 〉 in bins of ηjet (left)
and Ejet

T (right).

Figure 5.19: The histogram’s mean ratios: 〈rD〉,〈rM 〉 (LEPTO) and 〈rD〉/〈rM 〉 in bins of ηjet

(left) and Ejet
T (right).
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Figure 5.20: The histogram’s mean ratios: 〈rD〉,〈rM 〉 (ARIADNE-CDM) and 〈rD〉/〈rM 〉 in bins
of ηjet (left) and Ejet

T (right).

Figure 5.21: The histogram’s mean ratios: 〈rD〉,〈rM 〉 (LEPTO) and 〈rD〉/〈rM 〉 in bins of ηjet

(left) and Ejet
T (right).
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Figure 5.22: The ratio ρ = PT,had/p
DA
T,e in bins of γhad. The measured distributions are compared

to the ARIADNE (CDM) MC.

Figure 5.23: The ratio ρ = PT,had/p
DA
T,e in bins of PT,had. The measured distributions are

compared to the ARIADNE (CDM) MC.



5.5. UNFOLDING AND EXPERIMENTAL UNCERTAINTIES 127

Figure 5.24: The histogram’s mean ratios: 〈ρD〉, 〈ρM 〉 (ARIADNE-CDM) and 〈ρD〉/〈ρM 〉 in
bins of γhad (left) and PT,had (right).

Figure 5.25: The histogram’s mean ratios: 〈ρD〉, 〈ρM 〉 (LEPTO) and 〈ρD〉/〈ρM 〉 in bins of γhad

(left) and PT,had (right).
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Figure 5.26: The detector-correction factors obtained with ARIADNE(dashed lines) and LEPTO
(solid lines).
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Figure 5.31: Purities and efficiencies obtained with ARIADNE.
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Figure 5.32: Purities and efficiencies obtained with LEPTO.
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Chapter 6

Results

In this chapter we present the final results on the measured NC e+p DIS dijet differential cross
sections and on the dijet fraction R2+1. The measured observables are compared to NLO QCD
predictions after correcting the latter for hadronization effects. The dijet fraction, which is
affected by the smallest theoretical and experimental uncertainties, is then used in a NLO QCD
fit in order to determine αs. The strong coupling constant is determined both at the reference
mass scale of the Z0 boson and as function of the virtuality (Q2) of the exchanged boson.

6.1 Dijet differential cross sections and dijet fraction

6.1.1 Results

Using the data samples of inclusive and dijet events, selected according to the criteria described
in the previous chapter, single differential cross sections and the dijet fraction are measured for
exclusive dijet production in NC e+p deep inelastic scattering at HERA.

The measured cross sections are corrected bin-by-bin for detector effects, QED radiative
effects, and Z0-exchange processes. They refer to the following DIS phase-space region

470 < Q2 < 20000 GeV2 and 0 < y < 1 (6.1)

and the jet selection criteria:

Ejet,M
TB > 8 GeV and Ejet,m

TB > 5 GeV (6.2)

−1 < ηLab
jet < 2 (6.3)

where Ejet,M
TB (Ejet,m

TB ) is the transverse energy of the jet in the Breit frame with the highest
(second highest) transverse energy in the event. Both jets are required to lie in the pseudorapidity
range between −1 and 2 in the laboratory frame. In the presented dijet cross sections, the two
jets are ordered according to decreasing pseudorapidity in the Breit frame (ηjet,1

B > ηjet,2
B ).

The measurements of the differential dijet cross sections as functions of zp, log10(x), log10(ξ),
the dijet invariant mass Mjj, and the jet transverse energies and pseudorapidities in the Breit
frame are presented (as black dots) in Fig. 6.1 and 6.2. The inclusive (dσtot/dQ

2) and dijet
(dσ2+1/dQ

2) cross sections, as well as the dijet fraction

R2+1(Q2) ≡ dσ2+1/dQ
2

dσtot/dQ2
,

all as a function of Q2, are shown in Fig. 6.3. The inner error bars represent the statistical
uncertainties of the data, and the outer error bars show the statistical and systematic uncertain-
ties − not associated with the uncertainty in the absolute energy scale of the jets − added in

135



136 CHAPTER 6. RESULTS

quadrature. The uncertainty on the absolute energy scale which represents the dominant source
of systematic error is strongly correlated between measurements at different points and is shown
as a light shaded band in each figure.

The measured inclusive and dijet differential cross sections, and the dijet fraction R2+1(Q2),
are compared to DISENT NLO QCD predictions (the solid lines in Figs. 6.1 to 6.3) corrected
for hadronisation effects and obtained according to the DISENT program settings described
in chapter 3. The uncertainties associated to the QCD predictions, discussed at length and
estimated again in chapter 3, are shown as a shaded band underneath each plot in Figs. 6.1 to
6.3. The uncertainty band in Fig. 6.3b) does not include the contribution due to αs(MZ); since
the measurement of R2+1(Q2) in Fig. 6.3b) was used to determine αs(MZ) (see next section), the
band reflects the theoretical uncertainty of the calculation except that associated with αs(MZ).
To quantify the effect of the hadronisation corrections on the central theoretical predictions, the
pure NLO QCD cross sections are also shown (as dashed lines) in all the figures.

The complete results, in tabular form, of the measured cross sections and the theoretical
predictions including a detailed information on the corresponding experimental and theoretical
uncertainties are presented in the tables from Table 6.1 to Table 6.22.

6.1.2 Discussion of the results

The QCD predictions, which assume αs(MZ) = 0.118, give overall a good description of the
shape and magnitude of the measured cross sections. In particular, in the case of the cross
sections as a function of the jet transverse energies and Q2, the agreement between data and
theory extend over four order of magnitudes. The dijet fraction is also very well described by the
QCD calculations; it is found to increase with increasing Q2. The only exception is represented
by the cross section as of function of the pseudorapidity of the most backward jet in the Breit
frame (dσ2+1/dη

jet,2
B ), where the data lie above the theoretical predictions in the forward region.

It has to be pointed out however that (as noted in the chapter 3) the MC programs give a rather
poor description of this observable which is also affected by large hadronisation corrections.

The proton PDFs used in the NLO QCD calculations were determined from DGLAP fits
which included measurements of F2 from ZEUS. On the other hand, exclusive dijet production
represents a small fraction of the total DIS cross section (see R2+1(Q2) in Fig. 6.3). Thus in
summary, the observed agreement in normalization between the measured dijet fraction and the
theoretical predictions is non-trivial and shows that pQCD is able to reproduce quantitatively
the rate for exclusive dijet production in the phase-space region considered here. The agreement
in the differential cross sections demonstrates the validity of the description of the dynamics of
dijet production by the underlying QCD hard processes (up to O(α2

s)) at the ≈ 10% level.

6.2 Determination of the strong coupling

In chapter 3 we have demonstrated how the use of the dijet fraction is particular effective in
reducing the theoretical uncertainty due to the NLO PDFs, the relative uncertainty on R2+1(Q2)
being only 1 − 1.5%. In addition in the measured ratio R2+1(Q2) some of the systematic
uncertainties (as for example the uncertainty on the luminosity determination) largely cancel.
This makes the use of this observable particularly suitable for a QCD analysis aiming at a
determination αs. In the next two sections the dijet fraction R2+1(Q2) will be used in a QCD
fit to the corresponding NLO QCD predictions in order to determine αs. The strong coupling
constant is determined both at reference scale of the Z0 boson mass and as function of the
virtuality (Q2) of the exchanged boson.
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6.2.1 Determination of αs(MZ)

The measured dijet fraction as a function of Q2, R2+1(Q2), was used to determine αs(MZ).
The sensitivity of the measurements to the value of αs(MZ) is exemplified in Fig. 6.3 by the
comparison between the measured R2+1(Q2) and the NLO QCD calculations for three values of
αs(MZ).

The procedure to determine the value of αs(MZ) was as follows:

• NLO QCD calculations of R2+1(Q2) were performed for three sets of the MBFIT proton
PDFs which were obtained assuming different values of αs(MZ): 0.113, 0.118 and 0.123. In
each of these calculations, the value of αs(MZ) used in the partonic cross section was the
one associated with the corresponding set of PDFs. The renormalization and factorization
scales were set equal to µR = µF = Q;

• for each value of Q2, the NLO QCD calculations mentioned above, corrected for hadro-
nisations effects, were used to parameterise the αs(MZ)-dependence of the dijet fraction
according to the functional form:

R2+1(Q2, αs(MZ)) = A1(Q2) · αs(MZ) +A2(Q2) · α2
s(MZ) (6.4)

a parameterisation that allows a simple description of the αs(MZ)-dependence of R2+1(Q2)
over the entire αs(MZ)-range spanned by the MBFIT PDF sets, while using only three
NLO calculations of the dijet fraction. Its validity rests only on the assumption of a
smooth behaviour of R2+1(Q2) in the considered αs(MZ)-range. The parameterisation of
R2+1(Q2, αs(MZ)), together with the NLO calculations used to obtain it, is presented for
each Q2 bin in Fig. 6.4;

• the value of αs(MZ) was then determined by a χ2-fit of the parameterisation of Eq. 6.4 to
the measured R2+1(Q2).

This procedure provides for the correct handling of the complete αs(MZ)-dependence of
the NLO differential cross sections (the explicit dependence coming from the partonic cross
sections and the implicit one coming from the PDFs) during the fit, while preserving the built-in
correlation between αs(MZ) and the PDFs. Its stability was checked with respect to variations
in the PDFs and αs(MZ), as well as alternative parameterisations of R2+1(Q2, αs(MZ)) (see
below).

Taking into account only the statistical errors on the measured dijet fraction, the result of
the fit is:

αs(MZ) = 0.1166 ± 0.0019 (stat) (6.5)

The uncertainty on the value of αs(MZ) due to the experimental systematic uncertainties
of the measured dijet rate was evaluated by repeating the analysis above for each systematic
check. In the ratio R2+1(Q2) some of the systematic uncertainties largely cancel. The individual
uncertainties were added in quadrature to give a total experimental systematic uncertainty on
the value of αs(MZ) of +0.0024

−0.0033. This uncertainty is mostly dominated by the uncertainty on the
jet energy-scale.

The following sources of theoretical uncertainties and cross-checks on the extracted value of
αs(MZ) were considered:

• missing higher-order terms: they were estimated by repeating the analysis using µR = Q/2
and µR = 2Q. The factorization scale was kept fixed to µF = Q. The resulting values are
αs(MZ) = 0.1124 ± 0.0020 (µR = Q/2) and αs(MZ) = 0.1221 ± 0.0018 (µR = 2Q);

• uncertainties in the proton PDFs: they were estimated by repeating the fit using DISENT
calculations obtained from the central ones by offsetting the latter according to the total
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PDF-related uncertainty on the dijet fraction. The resulting uncertainty in the value of
αs(MZ) is +0.0012

−0.0011;

• uncertainty on the hadronisation effects: this was estimated by repeating the QCD fit
taking into account the uncertainty on the hadronisation correction factors estimated as
half the spread between the results obtained from the string and cluster hadronisation
models. The resulting uncertainty on αs(MZ) is ±0.0005.

• the dependence of the result on the use of a renormalization scale that involves the jet
variables: the analysis was repeated with µR = (Ejet,1

TB + Ejet,2
TB ). The result is αs(MZ) =

0.1125 ± 0.0018 (stat), which is essentially identical to that obtained with µR = Q/2. For
this reason, this was not included in the total theoretical uncertainty;

• the fit procedure: this was cross-checked by repeating the αs(MZ) determination using
the five (three) sets of proton PDFs of the CTEQ4- (MRST)-αs series; the resulting
parameterisations of R2+1(Q2, αs(MZ)) are shown in Fig. 6.5 and Fig. 6.6. The results
are: αs(MZ) = 0.1159 ± 0.0021 (stat) (CTEQ4) and αs(MZ) = 0.1161 ± 0.0020 (stat)
(MRST). Both are in good agreement with the central value determined above. As an
additional cross-check the fit was repeated assuming a linear (instead of a quadratic )
ansazt for the Eq. (6.4); the resulting αs(MZ) was essentially identical to the central value
quoted above.

The total theoretical uncertainty was obtained by adding in quadrature the uncorrelated uncer-
tainties on αs(MZ) due to the first three items mentioned above and amounts to +0.0057

−0.0044.
The value of αs(MZ) as determined from the measured R2+1(Q2) is therefore:

αs(MZ) = 0.1166 ± 0.0019 (stat.)+0.0024
−0.0033 (exp.)+0.0057

−0.0044 (th.) (6.6)

This result is consistent with the current PDG world average, αs(MZ) = 0.1181 ± 0.0020 [22], a
review from Bethke [23], and recent determinations by the H1 Collaboration [24].

6.2.2 The energy scale dependence of αs

A consistency test for the scale dependence of the renormalised strong coupling constant pre-
dicted by the renormalisation group equation was carried out by repeating the QCD fit of the
dijet fraction in five Q2 bins. The principle of the fit is the same as outlined above, with the
only difference being that the αs dependence of the dijet fraction in Eq. (6.4) was parameterised
not in terms of αs(MZ) but in terms of αs(〈Q〉), where 〈Q〉 is the mean value of Q in each bin.
The measured αs(〈Q〉) values, with their experimental and theoretical systematic uncertainties
estimated as for αs(MZ), are shown in Fig. 6.7 and Table 6.23. The measurements are com-
pared with the renormalisation group predictions obtained from the PDG αs(MZ) value and
its associated uncertainty. The values are in good agreement with the predicted running of the
strong coupling constant over a large range in Q.

6.3 Summary

Differential dijet cross sections have been measured in neutral current deep inelastic e+p scat-
tering for 470 < Q2 < 20000 GeV2 with the ZEUS detector at HERA. The measurements were
performed in a kinematic region where both theoretical and experimental uncertainties are small.
Next-to-leading-order QCD calculations give a good description of the shape and magnitude of
the measurements; the observed agreement is a non-trivial test of NLO pQCD predictions and
demonstrates the validity of the description of dijet production by the underlying QCD hard
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processes (up to O(α2
s)) at the ≈ 10% level. A QCD fit of the measured dijet fraction as a func-

tion of Q2 allows both a precise determination of the strong coupling constant and a test of its
energy-scale dependence. A comprehensive analysis of the uncertainties of the calculations has
been carried out which takes into account the dependence of the proton PDFs on the assumed
value of αs and the statistical and correlated systematic uncertainties from each data set used
in the determination of the proton PDFs. The value of αs(MZ) as determined by fitting the
measured dijet fraction with next-to-leading-order QCD calculations is:

αs(MZ) = 0.1166 ± 0.0019 (stat.)+0.0024
−0.0033 (exp.)+0.0057

−0.0044 (th.) ,

in good agreement with the PDG world average. The value of αs as a function of Q is in good
agreement, over a wide range of Q, with the running of αs as predicted by QCD.
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Figure 6.1: The measured differential dijet cross sections in NC DIS as functions of a) zp,1,
b) log10 xBj , c) log10 ξ and d) dijet invariant mass Mjj . The inner error bars represent the
statistical errors of the data. The outer error bars show the statistical errors and systematic
uncertainties − except those associated with the uncertainty in the absolute energy scale of
the jets − added in quadrature. For comparison, pure NLO QCD calculations (dashed lines)
and NLO QCD calculations corrected for hadronisation effects (solid lines), obtained using the
proton MBFIT PDFs and µR = µF = Q, are shown. The relative differences of the measured
differential cross sections over the NLO QCD predictions corrected for hadronisation effects are
shown underneath each plot; the shaded band represents the uncertainty of the QCD calculation
(see text). The hadronisation correction (Chad) together with its uncertainty are shown above
each plot.
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Figure 6.2: The measured differential dijet cross sections in NC DIS as functions of a) Ejet,1
T,B , b)

ηjet,1
B , c) Ejet,2

T,B and d) ηjet,2
B . Other details are as described in the caption to Fig. 6.1.
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2) differential cross
sections in NC DIS as a function of Q2. The hadronisation correction (Chad), shown above the
figure, refers to the dijet cross section. b) The dijet fraction, R2+1(Q2), in NC DIS as a function
of Q2. The light shaded band displays the uncertainty due to the absolute energy scale of the
jets. For comparison, the QCD predictions using MBFIT proton PDFs determined assuming
αs(MZ) = 0.113 and 0.123 [41] are also shown. The bands showing the theoretical uncertainty
on the cross sections and dijet fraction do not include the uncertainty associated with αs(MZ).
Other details are as described in the caption to Fig. 6.1.
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Figure 6.4: The parameterisation of the QCD predictions for R2+1(Q2) as a function of αs(MZ)
in different Q2 bins. The QCD predictions are those obtained with the MBFIT αs-series.
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Figure 6.5: The parameterisation of the QCD predictions for R2+1(Q2) as a function of αs(MZ)
in different Q2 bins. The QCD predictions are those obtained with the CTEQ4 αs-series.

Figure 6.6: The parameterisation of the QCD predictions for R2+1(Q2) as a function of αs(MZ)
in different Q2 bins. The QCD predictions are those obtained with the MRST αs-series.



6.3. SUMMARY 145

ZEUS

0.1

0.12

0.14

0.16

0.18

α
s

α
s
PDG

ZEUS 96-97

α
s
 from R

2+1

a)

-0.01

0

0.01

∆
α

s(E
S

)

b)

-0.01

0

0.01

20 40 60 80 100

∆
α

s(T
h

)

Q (GeV)

c)

Figure 6.7: a) The αs(Q) values determined from the QCD fit of the measured dijet fraction,
R2+1(Q2), as a function of Q. The inner error bars represent the statistical errors of the data.
The outer error bars show the statistical errors and systematic uncertainties − except those
associated with the uncertainty in the absolute energy scale of the jets − added in quadrature.
The three curves indicate the renormalisation group predictions obtained from the PDG αs(MZ)
value and its associated uncertainty. b) The uncertainty on αs due to the absolute energy scale
of the jets, ∆αES

s . c) The total theoretical uncertainty associated with the determination of αs,
∆αTh

s .



146 CHAPTER 6. RESULTS



6.3. SUMMARY 147

zp,1 range dσ2+1/dzp,1 [pb] ∆stat ∆syst ∆ES

0.00 – 0.05 1.118 · 101 (±0.244) · 101 (+0.203
−0.097) · 101 (+0.089

−0.089) · 101

0.05 – 0.15 9.777 · 101 (±0.555) · 101 (+0.365
−0.519) · 101 (+0.365

−0.400) · 101

0.15 – 0.25 1.233 · 102 (±0.063) · 102 (+0.024
−0.068) · 102 (+0.038

−0.033) · 102

0.25 – 0.35 8.469 · 101 (±0.520) · 101 (+0.625
−0.482) · 101 (+0.207

−0.158) · 101

0.35 – 0.45 7.738 · 101 (±0.505) · 101 (+0.425
−0.268) · 101 (+0.170

−0.144) · 101

0.45 – 0.55 5.473 · 101 (±0.438) · 101 (+0.288
−0.145) · 101 (+0.125

−0.133) · 101

0.55 – 0.65 5.259 · 101 (±0.453) · 101 (+0.156
−0.525) · 101 (+0.138

−0.148) · 101

0.65 – 0.75 3.938 · 101 (±0.415) · 101 (+0.240
−0.451) · 101 (+0.167

−0.135) · 101

0.75 – 0.85 2.064 · 101 (±0.349) · 101 (+0.076
−0.416) · 101 (+0.135

−0.137) · 101

0.85 – 0.95 4.436 ±1.537 +1.261
−1.232

+0.522
−0.325

Table 6.1: The differential dijet cross section dσ2+1/dzp,1. For each bin in zp,1, the measured
cross section, the statistical uncertainty, ∆stat, and the systematic uncertainty (not) associated
with the energy scale of the jets, ∆ES (∆syst), are given. The overall normalisation uncertainty
of 1.6% due to the luminosity determination is not included.

log10(xBj) range dσ2+1/d log10(xBj) [pb] ∆stat ∆syst ∆ES

-2.20 – -2.00 2.681 · 101 (±0.267) · 101 (+0.241
−0.093) · 101 (+0.072

−0.064) · 101

-2.00 – -1.80 4.794 · 101 (±0.286) · 101 (+0.139
−0.118) · 101 (+0.114

−0.115) · 101

-1.80 – -1.60 5.902 · 101 (±0.312) · 101 (+0.143
−0.472) · 101 (+0.162

−0.166) · 101

-1.60 – -1.40 5.821 · 101 (±0.319) · 101 (+0.110
−0.497) · 101 (+0.175

−0.180) · 101

-1.40 – -1.20 4.105 · 101 (±0.263) · 101 (+0.341
−0.141) · 101 (+0.146

−0.138) · 101

-1.20 – -1.00 2.750 · 101 (±0.203) · 101 (+0.112
−0.181) · 101 (+0.095

−0.070) · 101

-1.00 – -0.80 1.195 · 101 (±0.131) · 101 (+0.155
−0.112) · 101 (+0.041

−0.034) · 101

-0.80 – -0.60 5.078 ±0.793 +0.323
−0.670

+0.176
−0.105

-0.60 – -0.40 1.373 ±0.414 +0.363
−0.552

+0.042
−0.023

Table 6.2: The differential dijet cross section dσ2+1/d log10(xBj). Other details are as described
in the caption to Table 6.1.
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log10(ξ) range dσ2+1/d log10(ξ) [pb] ∆stat ∆syst ∆ES

-2.1875 – -1.8750 3.386 ±0.939 +0.970
−0.736

+0.093
−0.078

-1.8750 – -1.5625 2.726 · 101 (±0.179) · 101 (+0.126
−0.045) · 101 (+0.021

−0.037) · 101

-1.5625 – -1.2500 6.379 · 101 (±0.266) · 101 (+0.085
−0.334) · 101 (+0.147

−0.136) · 101

-1.2500 – -0.9375 5.997 · 101 (±0.260) · 101 (+0.156
−0.224) · 101 (+0.199

−0.189) · 101

-0.9375 – -0.6250 2.232 · 101 (±0.142) · 101 (+0.105
−0.154) · 101 (+0.126

−0.108) · 101

-0.6250 – -0.3125 2.434 ±0.400 +0.305
−0.229

+0.177
−0.123

Table 6.3: The differential dijet cross section dσ2+1/d log10(ξ). Other details are as described in
the caption to Table 6.1.

Mjj range [GeV] dσ2+1/dMjj [pb/GeV] ∆stat ∆syst ∆ES

10.00 – 16.00 7.462 · 10−1 (±0.642) · 10−1 (+0.562
−1.434) · 10−1 (+0.016

−0.005) · 10−1

16.00 – 22.00 2.404 ±0.122 +0.055
−0.055

+0.034
−0.035

22.00 – 28.00 2.127 ±0.109 +0.048
−0.041

+0.057
−0.053

28.00 – 35.00 1.272 ±0.077 +0.060
−0.038

+0.046
−0.042

35.00 – 45.00 7.494 · 10−1 (±0.497) · 10−1 (+0.090
−0.309) · 10−1 (+0.256

−0.246) · 10−1

45.00 – 60.00 3.430 · 10−1 (±0.284) · 10−1 (+0.100
−0.484) · 10−1 (+0.270

−0.195) · 10−1

60.00 – 80.00 9.605 · 10−2 (±1.272) · 10−2 (+0.326
−0.419) · 10−2 (+0.619

−0.709) · 10−2

80.00 – 120.00 1.578 · 10−2 (±0.353) · 10−2 (+0.122
−0.219) · 10−2 (+0.117

−0.145) · 10−2

Table 6.4: The differential dijet cross section dσ2+1/dMjj . Other details are as described in the
caption to Table 6.1.

Ejet,1
T,B range [GeV] dσ2+1/dE

jet,1
T,B [pb/GeV] ∆stat ∆syst ∆ES

5.00 – 8.00 2.956 ±0.175 +0.154
−0.243

+0.072
−0.081

8.00 – 12.00 5.977 ±0.238 +0.105
−0.201

+0.094
−0.090

12.00 – 16.00 2.736 ±0.154 +0.039
−0.033

+0.083
−0.081

16.00 – 20.00 1.327 ±0.103 +0.055
−0.030

+0.072
−0.026

20.00 – 24.00 8.165 · 10−1 (±0.801) · 10−1 (+0.096
−0.397) · 10−1 (+0.245

−0.566) · 10−1

24.00 – 32.00 2.848 · 10−1 (±0.333) · 10−1 (+0.077
−0.355) · 10−1 (+0.236

−0.183) · 10−1

32.00 – 50.00 5.960 · 10−2 (±0.879) · 10−2 (+0.997
−0.449) · 10−2 (+0.572

−0.497) · 10−2

50.00 – 80.00 3.991 · 10−3 (±1.203) · 10−3 (+1.086
−0.902) · 10−3 (+0.548

−0.472) · 10−3

Table 6.5: The differential dijet cross section dσ2+1/dE
jet,1
T,B . Other details are as described in

the caption to Table 6.1.
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ηjet,1
B range dσ2+1/dη

jet,1
B [pb] ∆stat ∆syst ∆ES

-1.00 – -0.50 3.051 ±0.419 +0.360
−0.277

+0.155
−0.141

-0.50 – 0.00 1.170 · 101 (±0.084) · 101 (+0.025
−0.158) · 101 (+0.060

−0.051) · 101

0.00 – 0.50 3.260 · 101 (±0.154) · 101 (+0.116
−0.105) · 101 (+0.102

−0.091) · 101

0.50 – 1.00 3.204 · 101 (±0.151) · 101 (+0.084
−0.147) · 101 (+0.068

−0.075) · 101

1.00 – 1.50 2.054 · 101 (±0.119) · 101 (+0.083
−0.104) · 101 (+0.046

−0.049) · 101

1.50 – 2.00 9.035 ±0.748 +0.570
−0.742

+0.229
−0.194

2.00 – 2.50 2.561 ±0.410 +0.491
−0.324

+0.061
−0.058

Table 6.6: The differential dijet cross section dσ2+1/dη
jet,1
B . Other details are as described in

the caption to Table 6.1.

Ejet,2
T,B range [GeV] dσ2+1/dE

jet,2
T,B [pb/GeV] ∆stat ∆syst ∆ES

5.00 – 8.00 2.775 ±0.168 +0.098
−0.235

+0.074
−0.082

8.00 – 12.00 5.971 ±0.240 +0.142
−0.154

+0.103
−0.092

12.00 – 16.00 2.762 ±0.152 +0.074
−0.071

+0.088
−0.076

16.00 – 20.00 1.403 ±0.105 +0.011
−0.034

+0.062
−0.050

20.00 – 24.00 7.437 · 10−1 (±0.763) · 10−1 (+0.144
−1.274) · 10−1 (+0.397

−0.406) · 10−1

24.00 – 32.00 2.995 · 10−1 (±0.339) · 10−1 (+0.070
−0.507) · 10−1 (+0.182

−0.198) · 10−1

32.00 – 50.00 6.834 · 10−2 (±0.966) · 10−2 (+0.641
−0.239) · 10−2 (+0.551

−0.452) · 10−2

50.00 – 80.00 3.189 · 10−3 (±1.205) · 10−3 (+0.981
−0.621) · 10−3 (+0.203

−0.251) · 10−3

Table 6.7: The differential dijet cross section dσ2+1/dE
jet,2
T,B . Other details are as described in

the caption to Table 6.1.

ηjet,2
B range dσ2+1/dη

jet,2
B [pb] ∆stat ∆syst ∆ES

-2.00 – -1.50 2.507 ±0.458 +0.219
−0.670

+0.202
−0.190

-1.50 – -1.00 1.054 · 101 (±0.084) · 101 (+0.043
−0.084) · 101 (+0.069

−0.067) · 101

-1.00 – -0.50 3.328 · 101 (±0.151) · 101 (+0.080
−0.170) · 101 (+0.154

−0.134) · 101

-0.50 – 0.00 3.735 · 101 (±0.163) · 101 (+0.067
−0.130) · 101 (+0.073

−0.066) · 101

0.00 – 0.50 1.885 · 101 (±0.112) · 101 (+0.062
−0.066) · 101 (+0.012

−0.014) · 101

0.50 – 1.00 6.868 ±0.627 +0.504
−0.252

+0.070
−0.080

1.00 – 1.50 1.914 ±0.349 +0.288
−0.273

+0.066
−0.057

Table 6.8: The differential dijet cross section dσ2+1/dη
jet,2
B . Other details are as described in

the caption to Table 6.1.
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Q2 range [GeV2] dσtot/dQ
2 [pb/GeV2] ∆stat ∆syst

470. – 800. 1.217 ±0.011 +0.015
−0.006

800. – 1500. 2.800 · 10−1 (±0.033) · 10−1 (+0.023
−0.019) · 10−1

1500. – 2500. 6.509 · 10−2 (±0.130) · 10−2 (+0.103
−0.090) · 10−2

2500. – 5000. 1.230 · 10−2 (±0.036) · 10−2 (+0.022
−0.020) · 10−2

5000. – 20000. 7.378 · 10−4 (±0.400) · 10−4 (+0.051
−0.163) · 10−4

Table 6.9: The differential inclusive cross section dσtot/dQ
2. Other details are as described in

the caption to Table 6.1.

Q2 range [GeV2] dσ2+1/dQ
2 [pb/GeV2] ∆stat ∆syst ∆ES

470. – 800. 8.061 · 10−2 (±0.306) · 10−2 (+0.212
−0.294) · 10−2 (+0.287

−0.256) · 10−2

800. – 1500. 2.415 · 10−2 (±0.105) · 10−2 (+0.039
−0.061) · 10−2 (+0.071

−0.072) · 10−2

1500. – 2500. 6.802 · 10−3 (±0.453) · 10−3 (+0.300
−0.343) · 10−3 (+0.159

−0.160) · 10−3

2500. – 5000. 1.637 · 10−3 (±0.139) · 10−3 (+0.046
−0.124) · 10−3 (+0.033

−0.028) · 10−3

5000. – 20000. 1.246 · 10−4 (±0.170) · 10−4 (+0.006
−0.139) · 10−4 (+0.013

−0.018) · 10−4

Table 6.10: The differential dijet cross section dσ2+1/dQ
2. Other details are as described in the

caption to Table 6.1.

Q2 range [GeV2] R2+1 ∆stat ∆syst ∆ES

470. – 800. 6.625 · 10−2 (±0.245) · 10−2 (+0.168
−0.278) · 10−2 (+0.236

−0.210) · 10−2

800. – 1500. 8.627 · 10−2 (±0.362) · 10−2 (+0.144
−0.267) · 10−2 (+0.255

−0.256) · 10−2

1500. – 2500. 1.045 · 10−1 (±0.066) · 10−1 (+0.043
−0.057) · 10−1 (+0.024

−0.025) · 10−1

2500. – 5000. 1.331 · 10−1 (±0.106) · 10−1 (+0.039
−0.119) · 10−1 (+0.027

−0.023) · 10−1

5000. – 20000. 1.688 · 10−1 (±0.211) · 10−1 (+0.008
−0.185) · 10−1 (+0.017

−0.024) · 10−1

Table 6.11: The dijet fraction R2+1(Q2). Other details are as described in the caption to
Table 6.1.
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〈Q〉 [GeV] αs(〈Q〉) ∆αstat
s ∆αsyst

s ∆αES
s ∆αTh

s

24.6 0.1436 0.0047 +0.0032
−0.0066

+0.0045
−0.0041

+0.0105
−0.0079

32.7 0.1396 0.0048 +0.0019
−0.0036

+0.0034
−0.0034

+0.0078
−0.0059

43.6 0.1306 0.0063 +0.0041
−0.0044

+0.0023
−0.0024

+0.0054
−0.0040

58.5 0.1276 0.0075 +0.0027
−0.0041

+0.0019
−0.0016

+0.0046
−0.0033

90.0 0.1149 0.0111 +0.0056
−0.0099

+0.0009
−0.0013

+0.0037
−0.0028

Table 6.23: The αs values as determined from the QCD fit to the measured dijet fraction R2+1

as a function of Q. For each bin in Q2, the mean value 〈Q〉, the extracted value of the strong
coupling constant, αs(〈Q〉), the statistical uncertainty, ∆αstat

s , the systematic uncertainty (not)
associated with the energy scale of the jets, ∆αES

s (∆αsyst
s ), and the total theoretical uncertainty,

∆αTh
s , are given.



Chapter 7

Summary and outlook

7.1 Summary

In this dissertation we have presented measurements of exclusive differential dijet cross sections
in neutral current deep inelastic e+p scattering. The measurements, which were performed with
the ZEUS detector at HERA, refer to a phase-space region carefully selected in order to minimize
experimental uncertainties as well as the uncertainties associated to the pQCD predictions.

Next-to-leading-order QCD calculations give a good description of the shape and magnitude
of the measurements. The observed agreement is a non-trivial test of NLO pQCD predictions
and demonstrates the validity of the description of dijet production by the underlying QCD
hard processes (up to O(α2

s)) at the ≈ 10% level.
A comprehensive and detailed analysis of the uncertainties of the calculations has been

carried out which in particular, for the first time, takes into account the statistical and correlated
systematic uncertainties from each data set used in the determination of the proton PDFs.

A QCD fit of the measured dijet fraction as a function of Q2, which consistently includes
the dependence of the proton PDFs on the value of αs(MZ) assumed in the DGLAP equations,
allowed both a precise determination of the strong coupling constant and a test of its energy-scale
dependence.

The value of αs(MZ) as determined by fitting the measured dijet fraction with next-to-
leading-order QCD calculations is:

αs(MZ) = 0.1166 ± 0.0019 (stat.)+0.0024
−0.0033 (exp.)+0.0057

−0.0044 (th.).

in good agreement with the PDG world average. The value of αs has been determined as a
function of < Q >; its behaviour is compatible with the running of αs as predicted by QCD.

7.2 Outlook

The analysis presented in this thesis had to be performed in a rather limited region of the phase
space. As discussed in chapter 3 in the low Q2 region the NLO jet cross sections are affected by
very large uncertainties, the largest being, by far, the one related to the residual dependence on
the renormalisation scale. This large theoretical uncertainty affecting the NLO jet cross sections
at low Q2 have preclude presently the inclusion of the dijet cross section in any quantitative
QCD analysis in this region.

This is a particular unfortune circumstance because in this region the jet cross sections if
included in a global DGLAP analysis, in conjuction with the already very precise measurements
of the inclusive DIS cross sections, could add valuable and complementary information on the
parton distribution functions of the proton (on the gluon density in particular) and on the
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strong coupling constant. These theoretical limitations are going to become more and more
severe taking into account the large data samples that the H1 and ZEUS experiments will
collect after the (presently underway) HERA upgrade program, that will improve significantly
the statistical precision of the measured dijet cross sections and also, presumably (due to the
possibility of performing better detector calibrations and simiulation studies), also the systematic
uncertainties.

In order to fully exploit the information on QCD carried by the dijet cross sections measured
at HERA it will be hence mandatory to extend the pQCD predictions to next-to-next-to leading
order accuracy in the strong coupling constant.

Although this is a tremendous theoretical effort the last two years have witnessed a remark-
able progress towards the achievement of this goal.

There are in conclusion good reasons to belief that the post-HERA upgrade QCD phe-
nomenological analyses could be carried out within a complete NNLO calculational paradigm
thus allowing the possibility to perform even more stringent test of QCD in the high-energy
perturbative regime and further improve our understanding of the internal structure of the
proton.
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