Scaled momentum spectra in Deep Inelastic Scattering at HERA

B. Brzozowska
University of Warsaw

Lomonosov Conference
August 21, 2009
1 Introduction
 - Deep Inelastic Scattering (DIS)
 - Motivation

2 Review of data
 - $e^+ e^-$ experiment
 - ep experiment

3 Analysis
 - DIS selection
 - Comparison with theoretical models
 - Comparison between ep and $e^+ e^-$

4 Summary
The Breit frame is defined by two conditions:

- proton and virtual photon are moving collinearly;
- virtual photon doesn’t carry the energy, only momentum.

Brick wall

- before scattering: $xP = \left(\frac{Q}{2}, 0, 0, \frac{Q}{2} \right)$
- after scattering: $xP = \left(\frac{Q}{2}, 0, 0, -\frac{Q}{2} \right)$

DIS variables

- $Q^2 = -q^2$, where q is the 4-momentum of photon
- xP is 4-momentum of parton from proton
Definition of x_p and ξ

Definitions

\[x_p = \frac{2P^{Breit}}{Q} \]

\[\xi = \ln\left(\frac{1}{x_p}\right) \]

- x_p is the particle momentum measured in the Breit frame scaled by $\frac{Q}{2}$ so by max available momentum (effects connected with internal k_T of quark in proton are ignored)

Momentum space in the Breit frame
Measurements of x_p distribution as a test of QCD

Quantum Chromodynamics

- QCD predictions for x_p distributions are based on:
 \[f(x, Q^2) \otimes \sigma_{NLO} \otimes D(x_p, Q^2) \]
Measurements of x_p distribution as a test of QCD

Quantum Chromodynamics

- QCD predictions for x_p distributions are based on:
 \[f(x, Q^2) \otimes \sigma_{NLO} \otimes D(x_p, Q^2) \]
- $f(x, Q^2)$ – proton parton density
Measurements of x_p distribution as a test of QCD

Quantum Chromodynamics

- QCD predictions for x_p distributions are based on:
 \[f(x, Q^2) \otimes \sigma_{NLO} \otimes D(x_p, Q^2) \]
- $f(x, Q^2)$ – proton parton density
- σ_{NLO} – hard-scattering cross section
Measurements of x_p distribution as a test of QCD

Quantum Chromodynamics

- QCD predictions for x_p distributions are based on:
 \[f(x, Q^2) \otimes \sigma_{NLO} \otimes D(x_p, Q^2) \]
- $f(x, Q^2)$ – proton parton density
- σ_{NLO} – hard-scattering cross section
- $D(x_p, Q^2)$ – fragmentation function (FF), which describes probability for a parton to fragment into a hadron carrying a given fraction of the parton’s energy, x_p
Comparison ep and e^+e^-

Current region in the Breit frame in ep is similar to the one of the hemispheres in e^+e^-.
Distributions for charged particles are investigated in the wide $Q = \sqrt{s}$ range.

- 14 GeV < \sqrt{s} < 202 GeV comes from 3 e^+e^- experiments
- 4 GeV < Q < 170 GeV new ZEUS data (from one experiment only)
ZEUS Collaboration – published results

Old data
- Luminosity 38 pb\(^{-1}\)
- Uncertainty related to the massless assumption in FF:
 \[\sim 1/(1 + (m/Qx)^2), \quad 0.1 < m < 1.0 \]

Aim of new studies
- Update this result using \(\sim 0.44 \) fb\(^{-1}\)
- Concentrate on \(Q^2 > 160 \) GeV\(^2\) region
DIS and particle selection

Experimental data
- collected in 1996 - 2007 (≈ 0.44 fb\(^{-1}\))
- central tracking detector used, \(P_T > 0.15 \text{ GeV}, |\eta| < 1.75\)

Monte Carlo
- ARIADNE 4.12 and LEPTO 6.5
- All the particles with a lifetime larger than 0.01 ns (0.3 cm)
- Treated as stable particles: \(\Lambda, \Sigma^+_u, \Sigma^+_d, \Omega, K_s\)
Sample preparation

Samples were prepared using formula:

\[10 \times 2^n < Q^2 < 10 \times 2^{n+1}, \text{ where } n = 0, 1, 2, \ldots \]

<table>
<thead>
<tr>
<th>Bin</th>
<th>Q2 min</th>
<th>Q2 max</th>
<th>X min</th>
<th>X max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20</td>
<td>0.0006</td>
<td>0.0024</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>40</td>
<td>0.0012</td>
<td>0.0100</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>80</td>
<td>0.0012</td>
<td>0.0100</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>160</td>
<td>0.0024</td>
<td>0.0100</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>320</td>
<td>0.0024</td>
<td>0.0500</td>
</tr>
<tr>
<td>6</td>
<td>320</td>
<td>640</td>
<td>0.0100</td>
<td>0.0500</td>
</tr>
<tr>
<td>7</td>
<td>640</td>
<td>1280</td>
<td>0.0100</td>
<td>0.0500</td>
</tr>
<tr>
<td>8</td>
<td>1280</td>
<td>2560</td>
<td>0.0250</td>
<td>0.1500</td>
</tr>
<tr>
<td>9</td>
<td>2560</td>
<td>5120</td>
<td>0.0500</td>
<td>0.2500</td>
</tr>
<tr>
<td>10</td>
<td>5120</td>
<td>10240</td>
<td>0.0500</td>
<td>0.5000</td>
</tr>
<tr>
<td>11</td>
<td>10240</td>
<td>20480</td>
<td>0.0500</td>
<td>0.5000</td>
</tr>
<tr>
<td>12</td>
<td>20480</td>
<td>40960</td>
<td>0.0500</td>
<td>0.7500</td>
</tr>
</tbody>
</table>
Good agreement with the published HERA results.

The mean charged multiplicity is given by the integral of distributions.

The peak moves to larger $\ln(1/x_p)$ with increasing Q^2.

Both LEPTO and ARIADNE should be improved at higher Q^2. At medium Q^2 LEPTO overestimates the data. At low Q^2 ARIADNE underestimates the data.
MLLA QCD

- Modified Leading Log Approximation (MLLA):
 - describes parton production in terms of a shower evolution
 - includes colour coherence and gluon interference effects

- According to MLLA predictions, function $D(\xi(x_p))$ is roughly Gauss distribution.

- LEP data have been fitted with 2 free parameters: $\Lambda_{\text{eff}} = Q_0$ and K_h.

- From LEP I – LEP II fits:
 - $\Lambda_{\text{eff}} = 270 \pm 20$ MeV
 - $K_h = 1.31 \pm 0.03$

Parameters used from LEP fits (MLLA + LPHD).

Λ_{eff} value agrees with the value Λ_{eff} = 275 \pm 4(stat.)^{+4}_{-8}(syst.)\ MeV deduced from a ZEUS analyses of scaled momenta in dijet photoproduction.

The long tails come from mass corrections.

low Q^2 – large differences; medium Q^2 – small differences although BGF contribution is big; high Q^2 – large differences again (unexpected);
Scaling violation is observed.

The data are generally well reproduced by LEPTO and ARIADNE in the lowest bins in Q^2.

At high Q^2 and medium x_p both MCs underestimate the data.

At high Q^2 and large x_p ARIADNE is above the data whereas LEPTO is below it.
NLO predictions

Used FF

- "Kretzer FF" (2000)
 - Z^0-pole data from ALEPH, SLD and low-energy TPC data
 - fitted both identified hadrons (π, K) and inclusive spectra

- "KKP FF" (Kniehl, Kramer, Pötter) (2000)
 - Z^0-pole data from ALEPH, SLD, TPC + DELPHI, OPAL three-jet data

- "AKK FF" (Albino, Kniehl, Kramer) (2005)
 - update of KKP FF + OPAL results on light-quark tag used to constrain individual light-quark FF ($d, s \rightarrow K^{+-}$)
NLO+FF cannot fully describe the data for the entire x_p range.

Scaling violation larger than predicted.
ZETUS

- **ZEUS 38 pb$^{-1}$**
- **ZEUS 440 pb$^{-1}$**
- **H1 44 pb$^{-1}$**
- **e^+e^-**

Q (GeV): 10^{-2} to 10^2

- x_p range
 - $0.0 - 0.02$ (x30)
 - $0.02 - 0.05$ (x5)
 - $0.05 - 0.1$ (x2)
 - $0.1 - 0.2$
 - $0.2 - 0.3$
 - $0.3 - 0.4$
 - $0.4 - 0.5$
 - $0.5 - 0.7$
 - $0.7 - 1.0$

ep data compared with e^+e^- annihilation data and H1 experiment

the agreement supports fragmentation universality
DIS selection
Comparison with theoretical models
Comparison between ep and e^+e^-

ep data compared with e^+e^- annihilation data and H1 experiment
Some differences between ep and e^+e^- are visible.
Conclusions

- HERA provides high-precision data FFs with large coverage in energy scale $10 < Q^2 < 41000$.
- Scaling violation is demonstrated using data from one experiment only (440 pb^{-1}).
- The measurements broadly support the concept of quark fragmentation universality.
- MC and analytical MLLA+LPHD QCD calculations cannot reproduce the data in the entire range of x_p and Q^2.
Thank you for your attention