The CMS Computing, Software & Analysis Challenge

Rainer Mankel (DESY / CERN)
David Futyan (Imperial College)
Christoph Paus (MIT)
for the CMS collaboration

Computing in High Energy Physics Conference 2009
Prague, 24 March 2009
Reasoning & Scope
The Computing, Software & Analysis Challenge 2008

- Full-scale computing, commissioning & physics challenge with large statistics under conditions similar to LHC startup
 - [pre-production of MC samples at various tiers]
 - prompt reconstruction at T0
 - skims for alignment & calibration
 - reduced form of reconstructed data, containing precisely the minimal information required as input to a given calibration/alignment algorithm ("AlCaReco format")
 - alignment & calibration “in real time” at the CERN Analysis Facility (CAF)
 - re-reconstruction at T1
 - physics analysis at T2 and CAF

Centrally operated

Alignment & calibration teams

Centrally operated

Physics analysis teams

24-Mar-2009

R. Mankel; CMS Computing, Software & Analysis Challenge
CSA and CCRC

- CSA08 took place **concurrently** with the LHC Common Computing Readiness Challenge (CCRC08)
 - additional *centrally operated* CMS workflows to generate computing load
 - fixed time scale, no delays accepted
 - all CSA08 production **targeted to end on 2-June**

See also: Challenges for the CMS Computing Model in the First Year (Ian Fisk)
The Computing, Software & Analysis Challenge 2008 (cont’d)

- This challenge placed strong emphasis on handling alignment & calibration under LHC start-up conditions
- Initial mis-alignments & -calibrations as expected:
 a) before collisions,
 b) after 1 pb⁻¹ of data
- Situation significantly different from the one at LHC design luminosity (→ Physics TDR)
 - not yet a high rate of “golden” event signatures
 - example: $Z^0 \rightarrow \mu^+\mu^-$ decays for alignment
- Full complexity of many concurrent alignment & calibration end-to-end workflows (with interdependencies)
- Realistic analyses based on the derived constants
The CSA08 Scenarios

- Assumed two scenarios as they are expected to appear during the beam commissioning of the LHC:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bunch schema</th>
<th>Luminosity</th>
<th>Duration</th>
<th>Integrated luminosity</th>
<th>HLT Output Rate</th>
<th>#Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>S43</td>
<td>43x43</td>
<td>$2 \cdot 10^{30}$ cm$^{-2}$s$^{-1}$</td>
<td>6 days</td>
<td>1 pb$^{-1}$</td>
<td>300 Hz</td>
<td>150 M</td>
</tr>
<tr>
<td>S156</td>
<td>156x156</td>
<td>$2 \cdot 10^{31}$ cm$^{-2}$s$^{-1}$</td>
<td>6 days</td>
<td>10 pb$^{-1}$</td>
<td>300 Hz</td>
<td>150 M</td>
</tr>
</tbody>
</table>

- Consequently, the data are governed by low luminosity
 - dominated by minimum bias, jet triggers
 - small sets of high p_T leptons & Z^0 decays
 - non-collision samples:
 - cosmic muons passing tracker
 - HCAL noise
Offline Workflow in CSA08

Alignment & calibration

Prompt analysis

Offline Conditions Database

MC Datasets from pre-production (T0, T1, T2)

CAF

Promp reconstruction & AlCaReco skimming

Reprocessing

Analysis

Conditions

skims containing minimal information for calibration/alignment algorithms
May 08

- Both the 1 pb\(^{-1}\) and 10 pb\(^{-1}\) data samples are each based on a week of “simulated” data-taking
- Planned O(1 week) for prompt reconstruction
- Target for alignment & calibration: constants ready after 1 week for each sample
- The essential milestones of the CSA08 challenge have been kept
Computing Performance
Computing Performance: Pre-Production (Event Simulation)

- On average ~8000 concurrent jobs, at all WLCG tier levels: T0/T1/T2

Approx batch slot usage
12 Days from 2008-05-01 to 2008-05-13 UTC
Computing Performance: Prompt Reconstruction (at T0)

- 150 M events reconstructed in less than 4 days
Computing Performance: Data Transfers into CERN

- Pre-production: transfers from various T1+T2 into CERN
- Driven by production. (Not saturating capacity)
Alignment & calibration workflows in CSA08

Note: workflows were performed “in real time”
→ no additional optimization possible
Alignment & Calibration in CSA08

- The following alignment & calibration workflows were performed:
 - Tracker alignment with MillePede-II, HIP & Kalman filter algorithms
 - Muon system alignment with MillePede-like and HIP algorithms
 - ECAL calibration exploiting ϕ-symmetry, & using response from $\pi^0 \rightarrow \gamma \gamma$ and $Z \rightarrow \text{ee}$ decays
 - HCAL calibration exploiting ϕ-symmetry, single-pion response & balancing with di-jet signatures
 - Muon drift tube calibration: time pedestals & drift velocity
 - Pixel tracker calibration: Lorentz angle
 - Strip tracker calibration: Lorentz angle & cluster charge
 - Determination of beam spot (before & after alignment)

See also: Commissioning the CMS Alignment and Calibration Framework (David Futyan) [Poster]
Tracker Alignment

- Several algorithms used:
 - HIP (Hit and Impact Point)
 - Kalman filter
 - MillePede-II (shown)

- Results:
 - 1 pb$^{-1}$ (S43): only minimum bias (6.6M) and muon ($p_T>$5 GeV) samples used
 - 10 pb$^{-1}$ (S156): cosmics, muon ($p_T>$11 GeV) and di-muon samples added

uable improvement of track quality

\[\frac{\chi^2}{n_{\text{dof}}} \] already close to ideal

See also: Application of the Kalman Alignment Algorithm to the CMS Tracker (Edmund Widl) [Poster]
Tracker Alignment: Accuracy

- Precision relative to true geometry, after undoing global shifts & rotations
 - quality of internal alignment of these structures

<table>
<thead>
<tr>
<th>Tracker Subsystem</th>
<th>Startup*</th>
<th>S43 (1 pb⁻¹)</th>
<th>S156 (10 pb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel Pixel</td>
<td>105</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Tracker Inner Barrel</td>
<td>482</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Tracker Outer Barrel</td>
<td>106</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Forward Pixel</td>
<td>120</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Tracker Inner Disks</td>
<td>445</td>
<td>48</td>
<td>38</td>
</tr>
<tr>
<td>Tracker End Cap</td>
<td>92</td>
<td>29</td>
<td>26</td>
</tr>
</tbody>
</table>

The expected “startup” alignment will be revised according to the results of extensive data-taking with cosmic muons
Tracker Alignment (cont’d)

- p_T resolution at high momentum very sensitive to coordinate resolution & thus to alignment
 - also systematic effects (e.g. due to weak modes) can show here

- Visible improvement (Gaussian fits):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MillePede S43</td>
<td>3.0%</td>
</tr>
<tr>
<td>MillePede S156</td>
<td>2.2%</td>
</tr>
<tr>
<td>Ideal</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

- Underlines crucial rôle of cosmics
Tracker Calibration

- Cluster charge calibration of the strip tracker
 - artificial mis-calibration: 5% in S156 (10% in S43)
 - 23 M minimum bias events
 - fit most probable value (MPV) of cluster charge spectrum for each sensor (Landau) \(\rightarrow \) calibration factor
 - sharp peaks after calibration, calibration accuracy <1%
- Lorentz angle calibration of pixel tracker
 - using “grazing angle” technique
 - applied on global muon tracks
 - error of global fit 0.1%

See also: The CMS Tracker calibration workflow: experience with cosmic ray data (Simone Frosali) [Poster]
Muon System Alignment I

- Caveat: normally we expect to need 50-100 pb\(^{-1}\) to align the muon system
- Try internal alignment of barrel muon system using Millepede-like algorithm
- With 10 pb\(^{-1}\) sample, see first correlation between measured and simulated misalignments

- Typical accuracy
 700-800 μm in measurement direction
 ➔ as expected, limited by number of high-\(p_T\) muons
 ➔ need more integrated luminosity for accurate alignment
- Also alignment of muon chambers with tracker as reference (HIP algorithm) successfully operated

See also: The CMS Muon System Alignment (Pablo Martinez)
Calibration of Muon Drift-Tube Chambers

- Time pedestal calibration
- Drift velocity calibration
 - using “mean timer” method
- Homogeneous results for drift velocity of \(\sim 54.2 \ \mu\text{m/ns} \)
 - as expected, lower values for inner chambers of wheels near end cap regions (non-linearities due to inhomogeneous stray field)
- Analysis of residuals from 3D segments gives measure of resolution after calibration
 - as expected, higher values for inner chambers of wheels near end caps regions (non-linearity), and for MB4 chambers (only one projection available)

See also: Calibration of the Barrel Muon DT System of CMS (Silvia Maselli) [Poster]
Calibration of Electromagnetic Calorimeter

- At startup, ECAL will already be pre-calibrated at a level of ~1.5% (barrel) and ~10% (end caps)
- Exploiting the ϕ-symmetry of minimum bias events, the residual mis-calibration in the ECAL end caps is reduced to a few percent soon after startup
 - 20 M minimum bias events used (10 pb$^{-1}$ sample)
- Z decays with one electron in barrel and one in end caps validate inter-calibration of barrel and set absolute energy scale

$$Z \rightarrow e_{\text{Barrel}} e_{\text{Endcap}}$$

- $\sigma_{\text{bef}} = 5.30 \pm 0.19$
- $\sigma_{\text{aft}} = 4.13 \pm 0.15$
Physics Analyses Based on CSA08 Data Samples

- Physics analyses were carried out in four main areas:
 - measurement of charged particle spectra & analysis of the underlying event
 - early observation of muons, measurement of the di-muon mass spectrum, observation of J/Ψ, Υ and Z resonances
 - early observation of electrons, observation of the Z resonance
 - early observation of jets, their corrections and the extraction of early jet physics

- These analyses were carried out:
 - during CSA08 using prompt S43 + S156 reconstruction, and re-reconstructed S43 data
 - during the 2 weeks following CSA08 using re-reconstructed S156 data

 ➔ Important validation of alignment & calibration constants
Lessons

- **Computing**
 - though pre-production & prompt reconstruction were partly concurrent, *overall traffic was still manageable*
 - overhead in merging & registration procedures observed → corrected

- **Alignment & calibration**
 - interdependencies turned out to be very important
 - tracker alignment & muon system alignment
 - tracker alignment & Lorentz angle calibration
 - beam spot & alignment
 - these were *properly addressed* in the 10 pb⁻¹ workflows
 - all alignment & calibration workflows technically fit into a 24h window
 - important for *prompt calibration workflow*

- **Note:** due to e.g. the extended runs with cosmic muons, in several aspects CMS initial alignment & calibration in reality will be better than assumed for CSA08
Summary

- CSA08 has **successfully demonstrated** significant components of the CMS computing workflow
- In particular the **alignment & calibration framework** has been successfully proven
 - 1 pb\(^{-1}\) & 10 pb\(^{-1}\) exercises completed on time by all sub-detectors
 - all required constants uploaded to the production database
 - re-reconstruction could proceed on schedule
- **Organizational challenges were mastered**
 - complexity of a large number of workflows
 - inter-dependencies between workflows
 - management of database conditions
- **Realistic physics analysis performed with low latency**
 - preparation for early observations with LHC
Additional Material
CMS Design Offline Workflow (with Prompt Calibration)

- HLT
 - Storage Manager
 - P5
 - Physics Express Calibration

- Alignment & calibration
 - Commissioning/Physics DQM
 - CAF
 - AlCaReco
 - Conditions

- Express reconstruction* (within 1-2 h)

- Repacker
 - Primary Datasets

- Prompt reconstruction* (within ~24 h after align/calib)
 - Offline Conditions Database
 - AlCaReco

- Distribution & analysis

*including AlCaReco skims

24-Mar-2009
R. Mankel; CMS Computing, Software & Analysis Challenge
The Conditions Database

Point 5

OMDS
Oracle Relational DB
Serves L1 trigger

Transformation (020) from oracle to Pool-ORA (CMSSW) objects

ORCON
Pool-ORA DB
Serves HLT

Automatic streaming - synchronize online and offline DBs

ORCOF
Pool-ORA DB
Serves Offline Applications

Read only

POOL-ORA (Object Relational Access): provides mapping from relational DB to a C++ objects.

24-Mar-2009
R. Mankel; CMS Computing, Software & Analysis Challenge
For reading, ORCON and ORCOF are accessed via an intermediate caching layer called Frontier:

- Each database query is cached on the Frontier squids (http based proxy servers) to avoid the database itself being overloaded with repeated requests to access the same tables.
- T0 has 4 squids, FNAL has 2, all other T1, T2 sites have a single squid.