Dark Forces and Dark Matter in a Hidden Sector

Sarah Andreas

DESY

June 29, 2011

PATRAS 2011

in collaboration with:

M. Goodsell and A. Ringwald
Outline

1 Motivation
2 Hidden Photon
3 Hidden Dark Matter
4 Conclusions
Outline

1 Motivation
 - Hidden Sector
 - GeV-scale Dark Force

2 Hidden Photon

3 Hidden Dark Matter

4 Conclusions
Motivation: Hidden Sector

- String theories usually predict existence of HS
- Various supersymmetric models contain HS
 - HS needed as source of SUSY breaking
- HS not charged under SM gauge groups and v. v.
 - No direct interaction between HS and SM
 - Connection only through messenger particles
- HS can contain gauge fields and matter particles

⇒ Dark Forces and Dark Matter
Motivation: Dark Force and Dark Matter

- breaking of larger gauge groups can yield hidden U(1)s
 - light hidden Photon γ'
 - couples weakly via kinetic mixing χ

- indirect & direct DM experiments
 - observations by PAMELA, Fermi, DAMA, CoGeNT
 - favor DM models where light messenger particle
 - generates Sommerfeld enhancement,
 - allows leptophilic DM annihilation,
 - mediates scattering on nuclei

\Rightarrow GeV-scale Dark Force
Motivation: GeV-scale Dark Force

Stückelberg mechanism

- simplest mechanism to give mass to abelian gauge boson γ'
- in certain string compactifications e.g. D7-branes
 mass depends on volume of extra dimension i.e. string-scale
 \[m_{\gamma'} \gtrsim \frac{M_S^2}{M_{Pl}} \]
- intermediate string-scale: $M_S \sim 10^9 - 10^{10}$ GeV
 gives right regime for axion decay constant and SUSY breaking scales

\[\Rightarrow m_{\gamma'} \sim \text{GeV-scale} \]
Motivation: GeV-scale Dark Force

Higgs mechanism

- kinetic mixing transfers symmetry breaking from visible sector to HS
- masses in HS roughly suppressed by χ

$$m_{\gamma'} \approx \sqrt{g_Y g_h c_\beta} \sqrt{\chi} v$$

Kinetic mixing χ

- integrating out heavy particles charged under both U(1)s
- kinetic mixing generated at loop level

$$\chi \approx \frac{g_Y g_h}{16\pi^2} \times \kappa \sim 10^{-3} - 10^{-4} \quad (\kappa \sim \mathcal{O}(1))$$

$$\Rightarrow m_{\gamma'} \sim \text{GeV-scale}$$
Outline

1 Motivation

2 Hidden Photon
 - Introduction
 - Constraints

3 Hidden Dark Matter

4 Conclusions
Hidden Photon and Kinetic Mixing

- HS with extra U(1)-symmetry
 \[\Rightarrow \text{hidden photon } \gamma' \]

- simplest scenario:
 - mass-term for \(\gamma' \)
 - kinetic mixing between \(\gamma \) and \(\gamma' \)

- most general Lagrangian
 \[
 \mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{\chi}{2} X_{\mu\nu} F^{\mu\nu} + \frac{m_{\gamma'}^2}{2} X_\mu X^\mu + g_{\gamma} j_{\text{em}}^\mu A_\mu
 \]

- \(\gamma' \) couples and can decay to SM fermions through kinetic mixing
Constraints I: Precision Measurements

Muon & Electron $g-2$ [Pospelov '09]

- 1-loop contribution from γ'

SM precision measurements [Hook et al. '10]

- deviations from SM measurements
- notably corrections to Z^0-mass

BaBar: $\Upsilon(3S)$ decay [Essig et al. '10]

- search for decay into pseudoscalar a
 $$e^+ e^- \rightarrow \gamma a \rightarrow \gamma \mu^+ \mu^-$$
- reinterpretation since identical final state
 $$e^+ e^- \rightarrow \gamma' \rightarrow \gamma \mu^+ \mu^-$$
Constraints II: Fixed-target Experiments

- γ' Bremsstrahlung off e^-/p-beam
- decay $\gamma' \rightarrow e^+e^-$

Past e^--beam dump searches [Bjorken et al. '09]

New and rediscovered experiments

- thin target at **MAMI** [A1 collaboration '11]
- **Serpukhov** p-beam dump [Blümlein, Brunner'11]
- e-beam dump at **Orsay** [SA, Niebuhr, Jacobsohn, Ringwald, *in prep.*]
Constraints II: Fixed-target Experiments

- γ' Bremsstrahlung off e^-/p-beam
- decay $\gamma' \to e^+e^-$

Past e^--beam dump searches [Bjorken et al. '09]

New and rediscovered experiments
- thin target at MAMI [A1 collaboration '11]
- Serpukhov p-beam dump [Blümlein, Brunner'11]
- e-beam dump at Orsay [SA, Niebuhr, Jacobsohn, Ringwald, in prep.]

Sensitivities of future experiments
- JLab: APEX, HPS, DarkLight
- Mainz: MAMI, MESA
- DESY: HIPS at 6 GeV in 2013
Outline

1 Motivation

2 Hidden Photon

3 Hidden Dark Matter
 ■ Toy Model
 ■ More sophisticated Model

4 Conclusions
Toy-Model: Fermionic DM

Additional Dirac fermion ψ

- one extra mass parameter m_ψ

Relic abundance Ωh^2

- annihilation of ψ through and into γ'
- resonance for $m_{\gamma'} = 2 m_\psi$

$\Rightarrow \psi$ total DM or subdominant component

[Pospelov et al. '08, Chun et al. '10, Mambrini '10, SA, M. Goodsell, A. Ringwald, work in progress]
Toy-Model: Fermionic DM

Direct Detection

- elastic scattering on nuclei
- mediated by γ'
- spin-independent vector-like interaction

\[
\psi \xrightarrow{\gamma'} \psi
\]

\[
\mathcal{N} \xrightarrow{\gamma'} \mathcal{N}
\]

Comparison with experiments

- limits on σ_{SI} from XENON & CDMS
- potential signature in DAMA & CoGeNT

[SA, M. Goodsell, A. Ringwald, work in progress]
Toy-Model: Fermionic DM

Direct Detection

- elastic scattering on nuclei
- mediated by γ'
- spin-independent vector-like interaction

\[
\begin{align*}
\psi & \rightarrow \gamma' \rightarrow \psi \\
N & \rightarrow \gamma' \\
N & \rightarrow \gamma' \\
\end{align*}
\]

Comparison with experiments

- limits on σ_{SI} from XENON & CDMS
- potential signature in DAMA & CoGeNT

[SA, M. Goodsell, A. Ringwald, work in progress]
SUSY U(1) HS

- consider MSSM in visible sector
- most simple anomaly-free HS:
 - three chiral superfields
 - superpotential: \(W \supset \lambda S \bar{SH}^+ H^- \)

Gauge mediation

- Dirac fermion is DM as in toy-model

Gravity mediation

- lightest particle is Majorana fermion
- annihilation through \(\gamma' \Rightarrow \) total or subdominant DM
- axial coupling gives spin-dependent scattering
 - Picasso, COUPP & KIMS constrain \(\sigma_{SD} \)

[SA, M. Goodsell, A. Ringwald, *work in progress*]
Outline

1 Motivation

2 Hidden Photon

3 Hidden Dark Matter

4 Conclusions
Conclusions

- **HS** motivated by various aspects
 - both from **top-down** (string theory, SUSY) and **bottom-up** (DM)
- potentially rich content: dark forces and dark matter
- weakly coupled but still phenomenologically interesting
- hidden photons as dark force
 - \(\Rightarrow \) constrained by past & further tested in future experiments
- **HS** can contain **viable dark matter candidates**
- many **SUSY & string inspired models** give well motivated HS dark matter
 - \(\Rightarrow \) interesting phenomenology still to be studied