Subjet Distributions in NC DIS

Elias Ron (Universidad Autónoma de Madrid, Spain)

$e (E_e = 27.5 \text{ GeV}) \quad p (E_p = 920 \text{ GeV}) \quad \sqrt{s = 318 \text{ GeV}}$

HERA
The investigation of the internal structure of jets gives insight into the transition between a parton produced in a hard process and the experimentally observable jet of hadrons.

At sufficiently high E_T^{jet}, the internal structure of jets is expected to be calculable in pQCD, since the fragmentation effects are small.

Parton radiation is described in pQCD by means of the splitting functions $P_{ab}(x, \mu)$, which give the probability of a parton b arising from a parton a with a fraction x of its momentum.

$O(\alpha_s^2)$ calculations can be obtained in the laboratory frame with up to have 3 partons in one jet, which corresponds to the NLO contribution to substructure.
The internal structure of jets can be studied by means of **subjets**.

Subjets are obtained within a jet by **reapplying the** k_T **cluster algorithm** on all the particles belonging to the jet, until for every pair of clusters the distance between them is greater than d_{cut}, with

$$d_{cut} = y_{cut} (E_T^{jet})^2$$

$y_{cut} = \text{resolution parameter}$

The remaining clusters are called **subjets**.

The **subjet multiplicity** depends on the value of y_{cut}.
In this analysis, jets were reconstructed in NC DIS events with $Q^2 > 125 \text{ GeV}^2$

The jets must satisfy:

- $E_T^{jet} > 14 \text{ GeV}$ and $-1 < \eta^{jet} < 2.5$

We studied in detail the pattern of QCD radiation from a primary parton by measuring normalised cross sections as a function of the subjet observables in two different jet samples.

- The first sample corresponds to jets with exactly two subjets at a value of $y_{cut} = 0.05$. (82 pb^{-1} of ZEUS data)
- The second sample corresponds to jets with exactly three subjets at a value of $y_{cut} = 0.03$. (334 pb^{-1} of ZEUS data)
• Measurements of normalised cross sections as functions of observables sensitive to the pattern of parton radiation:

\[\frac{E_{T}^{s\text{bj}}}{E_{T}^{\text{jet}}}, \eta^{s\text{bj}} - \eta^{\text{jet}}, |\phi^{s\text{bj}} - \phi^{\text{jet}}| \text{ and } \alpha^{s\text{bj}} \]

and their variation with the scale by studying the dependence with:

\[E_{T}^{\text{jet}}, Q^{2} \text{ and } x_{\text{BJ}} \]

• The value of \(y_{\text{cut}} = 0.05 \) and \(y_{\text{cut}} = 0.03 \) chosen are a compromise between statistics, resolution and hadronisation corrections.
NLO CALCULATIONS

- Next to leading order calculations were performed using DISENT
- Some of the contributing diagrams are

The following uncertainties were considered:
- Uncertainty in the modelling of the parton shower
- Contribution of higher-order terms
- Choice of μ_F
- Uncertainty in PDFs
- Uncertainty in α_s
DATA vs NLO: RESULTS

Two-subjet jets

- Normalised cross sections for:
 - $E_T^{s_bj}/E_T^{jet}$
 - $\eta^{s_bj} - \eta^{jet}$
 - $|\phi^{s_bj} - \phi^{jet}|$
 - α^{s_bj}

- NLO calculations give an adequate prediction of the data
- We also study the **coherence effects** between initial and final states parton radiation.

- Soft emissions (low-E_T subjets) will tend to be in the direction of the **proton beam**.
- Highest E_T subjet expected to be in the **rear part** of the jet.

Jet axis is reconstructed as the transverse-energy-weighted of the subjet axes. Highest E_T subjet tends to be closer to jet axis.

- Expectation of the **colour-coherence effects** **supported**.
DATA vs NLO: RESULTS

- Normalised cross sections for:
 - E_T^{sbj} / E_T^{jet}
 - $\eta^{sbj} - \eta^{jet}$
 - $|\phi^{sbj} - \phi^{jet}|$
 - α^{sbj}

 versus the gluon- and quark- induced processes separately.

- The $O(\alpha_S^2)$ prediction: 82% of q-induced and 18% of g-induced

- The data are better described by the prediction of the q-induced processes.
DATA vs NLO: RESULTS

Two-subjet jets

Dependence with E^jet_T

- Data have similar shape for all E_T regions, which agrees with the expected scaling behaviour of the splitting functions.

- These features are reasonably reproduced by the NLO calculations.
DATA vs NLO: RESULTS

Two-subjet jets

Dependence with E_T^{jet}

- Data have similar shape for all E_T regions, which agrees with the expected scaling behaviour of the splitting functions.

- These features are reasonably reproduced by the NLO calculations.

Elias Ron (UAM)
DATA vs NLO: RESULTS

Two-subjet jets

Dependence with Q^2

- fraction of gluon-induced events varies from 32% in the first bin to 14% in the other regions.

- At low Q^2 scaling violations are more prominent.

- These features are reasonably reproduced by the NLO calculations.

Elias Ron (UAM)
DATA vs NLO: RESULTS

Two-subjet jets

Dependence with x_{BJ}

- Data have similar shape for all x_{BJ} regions, which agrees with the expected scaling behaviour of the splitting functions.

- At low x_{BJ} scaling violations are more prominent.

- Similar features as in Q^2
Subjet distributions in NC DIS

Three-subjet jet structure

- We now extend our studies of jet substructure by measuring subjet cross sections with respect to the variables:

 α^{sbj}: The angle, as viewed from the jet centre in the $\eta - \phi$ plane, between the lowest E_T subjet and the proton beam direction.
DATA vs LO: RESULTS

- Normalised cross sections for:
 \(E_T^{\text{subj}} / E_T^{\text{jet}} \), \(\eta^{\text{subj}} - \eta^{\text{jet}} \), \(|\phi^{\text{subj}} - \phi^{\text{jet}}| \)

Three-subjet jets at \(y_{cut} = 0.03 \)

The \(O(\alpha_s^2) \) calculations describe the data adequately.
Subjet distributions in NC DIS

DATA VS LO: RESULTS

- Normalised cross sections for:
 \(\alpha^{s\text{bj}} \), \(\eta^{s\text{bj}} - \eta^{\text{jet}} \), \(\eta^{s\text{bj}} - \eta^{\text{jet}} \)

Three-subjet jets at \(y_{\text{cut}} = 0.03 \)

The \(O(\alpha_s^2) \) calculations describe the data adequately
CONCLUSIONS

- The data show:
 - Subjets tend to have similar transverse energies.
 - The lowest E_T subjet tends to be in the forward direction.
 This supports the presence of colour coherence effects between initial and final states.

- In the two-subjet sample:
 - A weak dependence on E_T^{jet} is observed, in agreement with the expected scaling behaviour of the splitting functions.
 - At low Q^2 and low x some differences are observed, which can be attributed to scaling violations.

- This features about the pattern of QCD radiation, as well as the evolution of the cross sections with the scale are reasonably well described by the NLO calculations.

- As well, the data are better described by the calculations for jets arising from a quark-gluon pair.