Selected spin physics results from COMPASS, HERMES and RHIC

K. Rith, CIPANP06, 2.6.2006

\[S_z = \frac{1}{2} = J_q + J_g = \frac{1}{2} \Delta \Sigma + L_q + (\Delta G + L_g) \]
The Experiments
Inclusive Asymmetries
Quark helicity distributions
Gluon helicity distribution
(Exclusive processes \rightarrow GPDs)
M. Garcon

Transverse spin physics
- Transversity - Collins fragmentation function
- Sivers distribution function
- A_N in pp collisions

Conclusions
Two stage spectrometer

Polarized beam and target

- ~80%
- ≥50%

SAT, LAT, PID

$10^{-5} < x < 0.5$, $10^{-3} < Q^2 < 100$ (GeV/c)^2
HERA e^+/e^- beam of 27.6 GeV
Polarized internal gas target (H, D, 3He)
kinematics: $0.02 < x < 0.6$, $1.0 < Q^2 < 15$ GeV2
tracking: $\delta p/p \sim 2\%$, $\delta \Theta < 0.6$ mrad, 40-220 mrad
PID: Calorimeter, Preshower, TRD, RICH

hadron separation

Aerogel $n=1.03$
C_4F_{10} $n=1.0014$
2006: 1 MHz collision rate; P~0.6

Congratulations!!!
100% transverse spin!
Two spectrometer arms with good particle ID at high momenta
Four spectrometer arms with excellent trigger and DAQ capabilities.
Large acceptance TPC and EMC -1<\eta<2
Spin-dependent DIS

\[\nu = E - E' \]

\[Q^2 = -q^2 \]

\[x = \frac{Q^2}{2M \nu} = \text{fraction of nucleon's momentum carried by struck quark} \]

Helicity DF: \(\Delta q(x) := q^+(x) - q^-(x) \)

Asymmetry: \(A_1 = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \leq \frac{g_1}{F_1} \)

\[g_1(x) := \frac{1}{2} \sum q z_q^2 \Delta q(x) \]

\[F_1(x) := \frac{1}{2} \sum q z_q^2 q(x) \]
Asymmetries in polarized pp collisions

\[A_{LL} = \frac{\sigma(++) - \sigma(+-)}{\sigma(++) + \sigma(+-)} \]

\[A_{TT} = \frac{\sigma(\uparrow\uparrow) - \sigma(\uparrow\downarrow)}{\sigma(\uparrow\uparrow) + \sigma(\uparrow\downarrow)} \]

\[A_L = \frac{\sigma(+) - \sigma(-)}{\sigma(+) + \sigma(-)} \]

\[A_T = \frac{\sigma(\uparrow) - \sigma(\downarrow)}{\sigma(\uparrow) + \sigma(\downarrow)} \]
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Dom. partonic process</th>
<th>probes</th>
<th>LO Feynman diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{p}p \rightarrow \pi + X$</td>
<td>$q\bar{q} \rightarrow gg$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$q\bar{q} \rightarrow gg$</td>
<td></td>
<td>(as above)</td>
</tr>
<tr>
<td>$\bar{p}p \rightarrow \text{jet(s)} + X$</td>
<td>$q\bar{q} \rightarrow gg$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$q\bar{q} \rightarrow qg$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{p}p \rightarrow \gamma + X$</td>
<td>$q\bar{q} \rightarrow \gamma q$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$q\bar{q} \rightarrow \gamma q$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td>$\bar{p}p \rightarrow \gamma + \text{jet} + X$</td>
<td>$q\bar{q} \rightarrow \gamma q$</td>
<td>$\Delta q, \Delta \bar{q}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$q\bar{q} \rightarrow \gamma\gamma$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{p}p \rightarrow DX, BX$</td>
<td>$q\bar{q} \rightarrow c\bar{c}, b\bar{b}$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td>$\bar{p}p \rightarrow \mu^+\mu^- X$ (Drell-Yan)</td>
<td>$q\bar{q} \rightarrow \gamma^* \rightarrow \mu^+\mu^-$</td>
<td>$\Delta q, \Delta \bar{q}$</td>
<td></td>
</tr>
<tr>
<td>$\bar{p}p \rightarrow (Z^0, W^\pm)X$</td>
<td>$q\bar{q} \rightarrow Z^0, q\bar{q} \rightarrow W^\pm$</td>
<td>$\Delta q, \Delta \bar{q}$</td>
<td></td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow (Z^0, W^\pm)X$</td>
<td>$q\bar{q} \rightarrow W^\pm, q\bar{q} \rightarrow W^\pm$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inclusive asymmetries in DIS
\[A_1 \cong g_1/F_1 - \text{Proton} \]

- \(g_1^p/F_1^p \) well known for \(x \ll 10^{-3} \)
- Excellent agreement between all experiments
- \(g_1^p/F_1^p \) (within errors) 'independent' of \(Q^2 \), accuracy still insufficient to confirm \(Q^2 \) dependence predicted by QCD
- \(\langle Q^2 \rangle = f(x) \)
- Extrapolation to \(x \to 0 \) for \(Q^2 = Q_0^2 ? \)
- \(g_1^p/F_1^p \to 1 \) for \(x \to 1 \)

\(g_1^p/F_1^p \) is shown in the graph, with data points from HERMES, low-x preliminary, E-143, and SMC.
$A_1 \equiv g_1/F_1$ - Proton and Deuteron

- A_{1d} vanishes below $x = 0.05$
- $A_{1d} \to \ ?$ for $x \to 1$
- High x: JLAB-12 GeV
A_1^d and g_1^d at low x and Q^2

But:

What is the interpretation of g_1^d at these low values of Q^2?
Quark helicity distributions
Quark helicity distributions from SIDIS

Leading hadron originates with large probability from struck quark

$D(z) := \text{Fragmentation function (FF)}$

$q(x), \Delta q(x) := \text{Distribution functions (DF)}$

Measure hadron asymmetries

$$A_1^h(x,z) = \frac{\sum_q z_q^2 \Delta q(x) \ D_q^h(z)}{\sum_d z_d^2 \ q(x) \ D_q^h(z)}$$

$$\nu = E - E'$$

$$z = \frac{E_h}{\nu}$$
The HERMES data are consistent with flavour symmetry of sea quark helicity distributions
\[\Delta u(x) > 0, \quad \Delta d(x) < 0, \quad \Delta u(x), \Delta d(x) \cong 0 \]

Data with much higher statistical accuracy urgently needed

\[
\begin{align*}
\int \Delta u(x) \, dx &= +0.601 \pm 0.063 \\
\int \Delta d(x) \, dx &= -0.226 \pm 0.063 \\
\int \Delta u(x) \, dx &= -0.002 \pm 0.043 \\
\int \Delta d(x) \, dx &= -0.054 \pm 0.035 \\
\int \Delta s(x) \, dx &= +0.028 \pm 0.034
\end{align*}
\]

In measured range (0.023 - 0.6):

\[x(\Delta \bar{u} - \Delta \bar{d}) \]

\[Q^2 = 2.5 \text{ GeV}^2 \]

P.R.L.92 (2004) 012005
Inputs:

- Multiplicities for K^+ and K^- with deuteron target
- Inclusive deuteron symmetry A_1^d
- Asymmetries for K^+ and K^- from deuteron: A_1^{K+}, A_1^{K-}

\[\int x \Delta s(x) dx = 0.006 \pm 0.029 \pm 0.007 \]
Typical example: AAC06, hep-ph/0603213

Assumptions:
- Helicity distribution of sea quarks flavour symmetric
- Δu_v and Δd_v constraint by F and D (SU(3) symmetry)

Results for $Q_0^2 = 1 \text{ GeV}^2$:
- $\Delta \Sigma = 0.25 \pm 0.10$
- $\Delta G = 0.47 \pm 1.08$
- ΔG undetermined by only DIS

Note: From g_1^d
- $\Delta \Sigma(0.01 < x < 1)_{\text{exp}} \approx 0.35 \pm 0.03$
- From NLO fits $\Delta \Sigma(0 < x < 0.01)_{\text{fit}} \approx -0.13 \pm 0.11$

Low-x data urgently needed \rightarrow e-RHIC
\[\Delta q - \Delta \bar{q} \text{ at RHIC via } W \text{ production} \]

\[\Delta d + \bar{u} \rightarrow W^- \]
\[\Delta \bar{u} + d \rightarrow W^- \]
\[\Delta \bar{d} + u \rightarrow W^+ \]
\[\Delta u + \bar{d} \rightarrow W^+ \]

\[A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

Expected start: 2009
The Gluon helicity distribution
\[A_{\parallel} = R_{PGF} \times a_{LL}^{PGF} \times \left(\frac{\Delta G}{G} \right) + A_{Bkg} \]
Two high p_T hadrons, $p_T > 0.7$ GeV/c, $\Sigma p_T^2 > 2.5$ (Gev/c)²

- $Q^2 < 1$ (GeV/c)² analysis - large statistics
 - perturbative QCD scale from Σp_T^2
 - PHYTIA MC used to evaluate physical Bkg, low p_T, resolved γ,

- $Q^2 > 1$ (GeV/c)² analysis - lower statistics
 - perturbative QCD scale from Q^2,
 - LEPTO MC used to evaluate Bkg, better controlled

Different data sets and analysis. Independent results

From A. Magnon
\[D^0 \rightarrow K + \pi \quad \text{untagged} \]

\[D^* \rightarrow D^0 + \pi_s \rightarrow K + \pi + \pi \quad \text{tagged} \]

We have now estimate for \(\sigma \) (nb)

From A. Magnon
High p_T hadron pairs, $Q^2 > 1$ GeV2: $\Delta G/G = 0.06 \pm 0.31$ (stat) ± 0.06 (syst) $\langle x_g \rangle \sim 0.13$

High p_T hadron pairs, $Q^2 < 1$ GeV2: $\Delta G/G = 0.016 \pm 0.058$ (stat) ± 0.055 (syst) $\langle x_g \rangle \sim 0.085$

Open charm: $\Delta G/G = -0.57 \pm 0.41$ $\langle x_g \rangle \sim 0.15$

$\Delta G/G (x_g \approx 0.1)$ is small
How to measure Δg:

$$A_{LL}^{\pi^0} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \sim a_{gg} \ast \Delta g^2 + b_{gq} \ast \Delta g + c_{qq}$$

$\Delta G/G$ from polarized pp collisions
QCD prediction

$|\eta| < 0.35$

Mid-rapidity: PHENIX

PRL 91, 241803 (2003)

ΔG from $A_{LL}(\pi^0)$

Theory model	C.L. (%)
GRSV-std | 21.7-17.1
*GRSV-max ($\Delta g=g$) | 0.0-0.0
*GRSV $\Delta g=0$ | 16.7-18.4
*GRSV $\Delta g=-g$ | 0.7-0.0

* At input scale: $Q^2 = .4$ Gev
Theory calculation shows good agreement with the experimental cross section.

Direct Photon Cross section

Inclusive Jet Cross section

$pp \rightarrow \gamma + X$, $pp \rightarrow \text{jet} + X$
Results limited by statistical precision

Total systematic uncertainty \(\sim 0.01 \) (STAR) + beam pol. (RHIC)

GRSV-max gluon polarization scenario disfavored

\[\hat{p} + \hat{p} \rightarrow \text{jet} + X \text{ at } \sqrt{s} = 200 \text{ GeV} \quad 0.2 < |\eta^{\text{jet}}| < 0.8 \]
Significant reduction of ΔG uncertainty
$\Delta G = 0.31 \pm 0.32$ (DIS+p^0)
$\Delta G = 0.47 \pm 1.08$ (DIS only)

Sign problem: gg dominates
Similar χ^2 for ($\Delta G(x) > 0$) and ($\Delta G(x) < 0$)

Consistent results for partial 1^{st} moment ($0.1 < x < 1$)
$\Delta G(x) > 0$: 0.30 ± 0.30
$\Delta G(x) < 0$: 0.32 ± 0.42
Transverse Spin physics
Transversity DF $\delta q(x)$ and Sivers DF $f_{1T\perp q}(p_T^2)$

$\delta q(x,Q^2)$
- DF of transv. polarized quarks in a transv. polarized nucleon
- 3$^{\text{rd}}$ leading twist DF. As important as $q(x)$ and $\Delta q(x)$
- δq is chiral-odd: not accessible in DIS
- Need 2$^{\text{nd}}$ chiral-odd object Collins FF

$f_{1T\perp q}(p_T^2)$
- DF of unpolarised quark with transv. momentum p_T in a transv. polarised nucleon.
- Non-zero Sivers DF requires non-vanishing orbital angular momentum in nucleon WF
- Chiral-even & naïve T-odd
Azimuthal angular asymmetries in SIDIS

\[A_{UT}(\phi, \phi_S) = \frac{1}{S_\perp} \frac{N^\uparrow(\phi, \phi_S) - N^\downarrow(\phi, \phi_S)}{N^\uparrow(\phi, \phi_S) + N^\downarrow(\phi, \phi_S)} \]

U: unpol. beam
T: transv. pol. Target

\[A_{UT}(\phi, \phi_S) \sim \ldots \sin(\phi + \phi_S) \]

\[\ldots \sin(\phi - \phi_S) \]

\[+ \ldots \]

\[\ldots + \ldots \]

\[\ldots \]

Collins

\[\sum_q e_q^2 \mathcal{I} \left[\ldots \delta q(x, \vec{p}_T^2) \cdot H_{1T}^q(z, \vec{k}_T^2) \right] \]

\[\sum_q e_q^2 q(x) \cdot D_1^q(z) \]

Sivers

\[\sum_q e_q^2 \mathcal{I} \left[\ldots f_{1T}^q(x, \vec{p}_T^2) \cdot D_1^q(z, \vec{k}_T^2) \right] \]

\[\sum_q e_q^2 q(x) \cdot D_1^q(z) \]

\[\mathcal{I}[\ldots]: \text{convolution integral over quark transverse momenta } \vec{p}_T \text{ and } \vec{k}_T \]
Collins amplitudes for $\pi^+/-$ (proton)

$$A_{UT}^{\sin(\phi+\phi_S)} \sim \delta q(x) \cdot H_1^{(1/2)}(z)$$

also: A. Airapetian et al, P. R. L. 94 (2005) 012002

- Non-zero Collins effect
- Both Collins FF and transversity DF sizeable
- Surprisingly large π^- asymmetry
- Possible source: large contribution (with opposite sign) from unfavored fragmentation, i.e.
 \[u \rightarrow \pi^-\]
 \[H_{1,\text{disf}} \approx -H_{1,\text{fav}}\]
- Substantial contribution to pion sample from exclusively produced vector mesons (PYTHIA)
Collins amplitudes for $\pi^+/-$ and $K^+/-$

$A_{UT} \sin(\phi + \phi_S) \sim \delta q(x) \cdot H_{1}^{1/2}(z)$

also: A. Airapetian et al, P. R. L. 94 (2005) 012002
Collins Asymmetries – D target

Note: different convention: $\phi_{\text{Coll}} = \phi + \phi_S - \pi$ also: V. Yu. Alexakhin et al, PRL 94 (2005) 202002

Consistent with zero. Cancellation due to deuteron target?
LO-QCD Analysis of HERMES and BELLE Results

Combined fit to Hermes asymmetries (Transversity x Collins-FF) and Belle asymmetries (Collins-FF^2) \(\Rightarrow\) Excellent agreement!

From M. Grosse Perdekamp, DIS06
Sivers amplitudes for $\pi^+/-$ (2002-2004)

$A_{UT}^{\sin(\phi-\phi_S)} \sim f_{1T}^{1/2}(x) \cdot D_1(z)$

\[\pi^+ \] asymmetry significantly different from zero and positive

First hint of naive T-odd DF from DIS

orbital angular momentum L_z^q

But: Contribution of L_z^q to nucleon spin unclear

\[\pi^- \] asymmetry consistent with zero

Substantial contribution to pion sample from exclusively produced vector mesons (PYTHIA)
Sivers amplitudes for $\pi^+/-$ and $K^+/-$

$$A^{\sin(\phi-\phi_S)}_{UT} \sim f_{1T}^{1/2}(x) \cdot D_1(z)$$

also: A. Airapetian et al, P. R. L. 94 (2005) 012002

large!

Sea contribution non-negligible
Sivers Asymmetry – D target

also: V. Yu. Alexakhin et al, PRL 94 (2005) 202002

\[A_{Siv} = \frac{A_{UT}^{\sin \phi_c}}{f \cdot P} \]

Consistent with zero. Cancellation due to deuteron target?
Detection of two final state pions with opposite charge:

\[A_{UT}(\phi_{R\perp}, \phi_S) \sim \ldots \sin(\phi_{R\perp} + \phi_S) \frac{\sum_q e_q^2 \delta q(x) \cdot H_1^{\leq q}(z, M_{\pi\pi}^2)}{\sum_q e_q^2 q(x) \cdot D_1(z, M_{\pi\pi}^2)} + \ldots \]

\[H_1^{\leq q}(z, M_{\pi\pi}^2), D_1(z, M_{\pi\pi}^2) : \text{two pion fragmentation functions} \]

- no assumptions for \vec{p}_T and \vec{k}_T
- completely independent from single pion analysis
Two-pion Asymmetries - H target

- hadrons assumed to be pions
- fit $A_{UT}(\phi_{R\perp} + \phi_{S})/\langle \sin \theta \rangle$ with $p_1 + p_2 \sin(\phi_{R\perp} + \phi_{S})$
- significant $\sin(\phi_{R\perp} + \phi_{S})$ behaviour!
- extract $A_{UT}^{\sin(\phi_{R\perp} + \phi_{S}) \sin \theta}$ from $A_{UT}(\phi_{R\perp}, \phi_{S}, \theta)$ by three-dimensional fit

$$A_{UT}^{\sin(\phi_{R\perp} + \phi_{S}) \sin \theta} = 0.040 \pm 0.009 \text{ (stat)} \pm 0.003 \text{ (syst)}$$
Two-pion Asymmetries - H target

- positive asymmetry amplitudes in all bins
- no sign change at m_{ρ^0}!
- significant result for $A_{UT}^{\sin(\phi_{R\perp} + \phi_S) \sin \theta}$
 \rightarrow non-zero IFF!
Asymmetries compatible with zero

Results from 2004 data analysis about to be released. Event sample has doubled
Transversity from transverse Λ polarisation

$$P_T^\Lambda = f P_T D \frac{\sum_q e_q^2 \times \Delta T q \times \Delta D^\Lambda_q}{\sum_q e_q^2 \times q \times D^\Lambda_q}$$

All 2002+2003 transversity data

- All Q^2
- $0.1 < y < 0.9$

Preliminary

Statistics will double with 2004 data

Negative trend for $Q^2 > 1$ GeV2, but deviation from zero not significant

But: HERMES data for quasi-real photoproduction from unpolarized and longt. polarized target: $p_T^\Lambda \sim +5\%$
Single transverse Spin Asymmetry A_N in pp

- Large A_N has been observed at forward rapidities in hadronic reactions: E704 and STAR.
- Possible origins:
 - Collins FF
 - Sivers DF
 - Twist-3
 - Combinations of above
- Possible connection to orbital angular momentum L?
- For consistent partonic description:
 Need flavor dependent $A_N(E, x_F, p_T)$,
A_N for identified hadrons

- π^+ positive $\sim A_N(\pi^-)$ negative
- $A_N(K^+)$ $\sim A_N(K^-)$ positive
 (in disagreement with expectation from valence quark fragmentation)
- $A_N(p) \sim 0$, $A_N(\bar{p})$ positive
- More theoretical input needed
Conclusions

- Plenty of new data from COMPASS, HERMES, RHIC improve our understanding of nucleon spin structure

- Gluon and sea quark polarisations small. Further improvements expected soon, especially from RHIC

- First results on transverse spin physics (Transversity DF, Collins FF, Sivers DF, A_N) very promising

Stay tuned ...
New exiting results will come soon!

Special thanks to G. Bunce and A. Magnon