Searching for new physics in the Higgs, Top and Electroweak sectors in EFT frameworks

ALPS 2018, Obergurgl

James Keaveney on behalf of the ATLAS and CMS collaborations
why EFT?
- the basic idea
- general theoretical and experimental considerations

the status of efforts to constrain new physics in EFT
- a selection of Higgs, Top and Electroweak experimental results
 - focusing on 13 TeV measurements including EFT interpretation
 - also highlight some results that could be reinterpreted

outlook
the search for new physics

- no new BSM light particles observed at the LHC so far...
- **why?** is the NP scale (Λ_{NP}) far larger than the LHC scale?
- extend the SM Lagrangian with higher-order operators to model NP @ Λ_{NP}

famous example of Fermi theory of Beta decay

\[\mathcal{L}^{(6)}_{SM} = \mathcal{L}^{(4)}_{SM} + \sum_i \frac{c_i}{\Lambda^2} O_i + \ldots \]

LHC example - O_{tG} affecting rate and kinematics of tt production

modified g_{tt} vertices

arXiv:1505.08841

new gg_{tt} vertex

searching for new particles \Rightarrow searching for new interactions

bump-hunting \Rightarrow determining c_i
why EFT?

- well-defined parameterisation of array of new physics
- model-independent
- but for EFT to make sense, *all* operators must be considered together
- **long term goal**: (semi) **global analyses** to simultaneously constrain many c_i using multiple measurements

- **theory considerations**
 - NLO vs LO
 - what operators to consider?
 - how to estimate theory uncertainties

- **sensitivity**
- detector level fit

- **scalability**
- unfold to particle-level

experiment-theory collaboration is crucial
EFT in the Higgs sector

- rich Higgs phenomenology at the LHC
 - multiple production and decay modes
 - diverse experimental signatures
- many observables to measure
 - inclusive cross sections, fiducial rates,
 - rates by production mode, decay mode
- large statistics \Rightarrow detailed studies
 - (double) differential cross sections
 - jet activity in higgs production
 - rare production modes accessible - ttH
- observables affected by EFT operators
 - rescaling of rates
 - deformations of distribution shapes

example
- operator modifies the top loop in gg Higgs production mode
ttH observation

• observation of ttH @ 7 + 8 + 13 TeV
• significance across H decay channels and COM energies:
 – 5.2σ (obs.), 4.2σ (exp.)
• signal strength (relative to SM) $\mu = 1.26^{+0.31}_{-0.26}$
• signal strength in all decay channels consistent with SM
• important milestone – paves the way for more detailed measurements

consequences for EFT
• dim-6 operators O_{hg}, O_{HG}, O_{H}, O_{Hy} contribute to ttH production at tree-level
• O_{H}, O_{Hy} affect ttH rate,
 • can already be constrained
• O_{hg}, O_{HG} alter distribution shapes
 • can be constrained with more detailed future measurements
$H \rightarrow \gamma \gamma$

- $H \rightarrow \gamma \gamma$ @ 13 TeV with 36.1 fb$^{-1}$
- large stats allow detailed measurements
- signal strength $\mu = 0.99^{+0.15}_{-0.14}$
- diff. results agree with SM

EFT reinterpretation

- dim-6 operators
 - O_g, $\tilde{O}_g \Rightarrow$ ggH interactions
 - O_{HW}, $\tilde{O}_{HW} \Rightarrow$ HWW, HZZ, HZ γ interactions
 - shape + rate changes
 - O_{HB}, $\tilde{O}_{HB} \Rightarrow$ HZZ, HZ γ interactions
- diff. distributions constrain associated c_i

NEW arXiv:1802.04146
EFT in the electroweak sector

- Large stats. @ LHC allow EW studies in great detail
- Rare EW processes measured e.g. EW V+jets, EW ZZ, same sign WW
- Sufficient stats for differential measurements in some cases
- Subtle effects of NP in multiboson events

Triple-Gauge-Couplings (TGC)

- Fixed in SM
- α_{TGC} in EFT increases cross section especially at large energy scales
- Diboson and Higgs production are related in EFT

11/04/18
ZZ production

- inclusive and differential ZZ cross sections at 13 TeV with 36.1 fb$^{-1}$
- 4l final state
- differential cross sections for a range of observables

EFT reinterpretation

- aTGC vertex forbidden in SM
 - enhanced in BSM @ large energy scales
- leading $Z P_T$ distribution constrains aTGC
- data consistent with no aTGC

<table>
<thead>
<tr>
<th>EFT parameter</th>
<th>Expected 95% CL [TeV$^{-4}$]</th>
<th>Observed 95% CL [TeV$^{-4}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{BW}/Λ^4</td>
<td>$-8.1, 8.1$</td>
<td>$-5.9, 5.9$</td>
</tr>
<tr>
<td>C_{WW}/Λ^4</td>
<td>$-4.0, 4.0$</td>
<td>$-3.0, 3.0$</td>
</tr>
<tr>
<td>C_{BB}/Λ^4</td>
<td>$-4.4, 4.4$</td>
<td>$-3.3, 3.3$</td>
</tr>
<tr>
<td>C_{BB}/Λ^4</td>
<td>$-3.7, 3.7$</td>
<td>$-2.7, 2.8$</td>
</tr>
</tbody>
</table>

EFT coefficients constrained individually

11/04/18
EW ZZ production

- measurement of EW production of ZZ+2jets @ 13 TeV with 35.9 fb⁻¹
 - four lepton + 2jet final state
 - BDT discriminant distinguishes QCD and EW processes
 - signal extracted with 2.7 σ significance
 - fiducial cross section result consistent with SM

EFT reinterpretation

- m_{ZZ} distribution used to constrain EFT parameters f_{T_i}/Λ^4 describing aQGC

- coefficients constrained individually
 - most precise constraints to date
- first results on EW ZZ production
EW Z+2jet

- EW Z+2jet @ 13 TeV with 35.9 fb$^{-1}$
 - 2 lepton + 2 jet final state
 - BDT discriminant distinguishes Drell-Yan and signal
 - cross section extracted from fit to BDT
 - result consistent with SM

EFT reinterpretation

- P_{Tz} distribution used to constrain EFT parameters c_{WWW}/Λ^2, c_{W}/Λ^2
- results consistent with SM
- parameters constrained individually and in pair
same sign WW

- measurement of same-sign WW @ 13 TeV with 35.9 fb\(^{-1}\)
 - 2 SS lepton + 2 jet + MET
 - signal extracted with 5.5 \(\sigma\)
 - result consistent with SM
 - first observation of SS WW

EFT reinterpretation
- \(m_{ll}\) distribution used to constrain dim-8 EFT operators
- independently constrain 9 \(c_i\)
- bounds improved by up to factor of 6 on previous results

<table>
<thead>
<tr>
<th>Observed limits ((\text{TeV}^{-4}))</th>
<th>Expected limits ((\text{TeV}^{-4}))</th>
<th>Previously observed limits ((\text{TeV}^{-4}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{S0}/\Lambda^4)</td>
<td>([-7.7, 7.7])</td>
<td>([-7.0, 7.2])</td>
</tr>
<tr>
<td>(f_{S1}/\Lambda^4)</td>
<td>([-21.6, 21.8])</td>
<td>([-19.9, 20.2])</td>
</tr>
<tr>
<td>(f_{M0}/\Lambda^4)</td>
<td>([-6.0, 5.9])</td>
<td>([-5.6, 5.5])</td>
</tr>
<tr>
<td>(f_{M1}/\Lambda^4)</td>
<td>([-8.7, 9.1])</td>
<td>([-7.9, 8.5])</td>
</tr>
<tr>
<td>(f_{M6}/\Lambda^4)</td>
<td>([-11.9, 11.8])</td>
<td>([-11.1, 11.0])</td>
</tr>
<tr>
<td>(f_{M7}/\Lambda^4)</td>
<td>([-13.3, 12.9])</td>
<td>([-12.4, 11.8])</td>
</tr>
<tr>
<td>(f_{T0}/\Lambda^4)</td>
<td>([-0.62, 0.65])</td>
<td>([-0.58, 0.61])</td>
</tr>
<tr>
<td>(f_{T1}/\Lambda^4)</td>
<td>([-0.28, 0.31])</td>
<td>([-0.26, 0.29])</td>
</tr>
<tr>
<td>(f_{T2}/\Lambda^4)</td>
<td>([-0.89, 1.02])</td>
<td>([-0.80, 0.95])</td>
</tr>
</tbody>
</table>
WWγ, WZγ

- search for WWγ WZγ production @ 8TeV with 20.2fb⁻¹
 - e, mu, γ, 2 jet, MET
 - fiducial region defined to be optimal wrt aQGC effects
 - backgrounds determined from control regions
 - upper limit placed on cross sections in optimal fiducial region for BSM

EFT reinterpretation
- upper limit used to constrain dim-8 EFT
- aQGC affect fiducial rates
- independently constrain 14 cᵢ describing anomalous WWZγ and WWγγ
- results consistent with SM

11/04/18
EFT in the top sector

- **top observables at the LHC**
 - $t\bar{t} \rightarrow$ precision regime: percent level incl. cross section, multi-differential, jet spectra, charge asymmetries, spin correlations
 - **single-top** \rightarrow detailed diff measurements: t-channel, tW, tZq channels,
 - $t\bar{t}V \rightarrow$ observed, first inclusive measurements
 - $t\bar{t}t\bar{t} \rightarrow$ approaching observation
 - **FCNC decays** \rightarrow upper limits at the 10^{-5} level

- **EFT in top**
 - many top observables modified in EFT
 - both rate increase and shape deformations
 - interplay with Higgs sector in $t\bar{t}H$, $t\bar{t}t\bar{t}$ and FCNC
 - NLO QCD EFT predictions for many observables already available
 - suggested “common standards” from theory experts

limits on FCNC branching ratios @ 8TeV

- $t \rightarrow Hc$
- $t \rightarrow Hu$
- $t \rightarrow \gamma c$
- $t \rightarrow \gamma u$
- $t \rightarrow gc$
- $t \rightarrow gu$
- $t \rightarrow Zc$
- $t \rightarrow Zu$

- $t \rightarrow Hc$
- $t \rightarrow Hu$
- $t \rightarrow \gamma c$
- $t \rightarrow \gamma u$
- $t \rightarrow gc$
- $t \rightarrow gu$
- $t \rightarrow Zc$
- $t \rightarrow Zu$

- **BSM alters $t\bar{t}t\bar{t}$ rate in EFT**
- **dim-6 operator in ttZ production**
- **BSM loop modifying Br(FCNC) in EFT**

11/04/18
top FCNC decays

- $t\rightarrow uZ$, $t\rightarrow cZ$ decays @ 13 TeV with 36.1 fb$^{-1}$
- anomalous $t\rightarrow uZ$, $t\rightarrow cZ$ branching ratios is a feature of BSM scenarios

- strategy
 - tt events where one top decays to uZ, or cZ
 - require 3 leptons, 2 jets, 1 b-tag and MET
 - kin. reco. to find $t\rightarrow uZ$ or $t\rightarrow cZ$ decays
 - binned likelihood fit to kinematic distributions

result - no evidence of $t\rightarrow uZ$, $t\rightarrow cZ$ decays
- upper limits on branching ratios @ 95% CL
 - $\text{Br}(t\rightarrow uZ) < 1.7 \times 10^{-4}$
 - $\text{Br}(t\rightarrow cZ) < 2.4 \times 10^{-4}$

interpretation in TopFCNC EFT model
- assume only one operator has non-zero value

11/04/18
tt + V

- measurement of $tt+Z$ and $tt+W$ cross sections at 13 TeV with 35.9 fb$^{-1}$
- $tt + V$ rates increased in NP scenarios
 - same-sign dileptons \rightarrow optimal for $tt+W$
 - 3, 4 leptons \rightarrow optimal for $tt+Z$
 - BDT discriminator in same-sign dilepton

- 8 c_i independently constrained
- results consistent with SM

11/04/18
summary and outlook

- EFT provides a model-independent framework in which to search for subtle hints of new physics at the LHC
- facilitates the simultaneous usage of Top, Higgs and EW data in global analysis
- global analysis becoming more feasible with wealth of Higgs, EW and Top measurements
- many analyses from ATLAS and CMS appearing with stand-alone EFT reinterpretations
 - so far no hints of new physics
- particle-level, fiducial measurements crucial to move towards desired global analysis