Toward Optimization of Centrifugal Barrel Polishing Procedure for Treatment of Niobium Cavities

Alena Prudnikava, Yegor Tamashevich, Kazimir Yanushkevich, Heshmat Noei, Dieter Lott, Andreas Stierle, and Brian Foster

Abstract—Centrifugal barrel polishing (CBP) is a simple and environmentally friendly method that can be applied for mechanical abrasion of the cavity interior in order to remove the mechanically damaged surface after its production. The CBP recipes described in the literature, however, require CBP to be performed in many stages, require long processing times and nevertheless are unable to provide good cavity RF performance without additional chemical processing. Here, we report new results on characterization of cavity surfaces treated with a typical CBP recipe, including the contamination with abrasive particles, plastic deformation and hydrogen contamination, and critically evaluate it. Methods to reduce the depth of significant plastic deformation as well as the modified commercially viable CBP procedure followed by final electropolishing are proposed and tested on samples.

Index Terms—Abrasives, linear particle accelerator, materials processing, superconducting materials, Type II superconductors.

I. INTRODUCTION

ELECTROPOLISHING (EP) is an important technological step in the current manufacturing process of niobium superconducting radio frequency (SRF) cavities [1]. Firstly, a so-called “bulk” EP (H2SO4:HF) is applied to remove a mechanically damaged layer (up to 200 μm) from the interior surface of the cavity left after the rolling and forming steps, followed by annealing (600-900 °C) to degas hydrogen absorbed in this process, a second “light” EP (10–40 μm) has to be applied in order to provide a high-quality surface after this annealing in relatively poor vacuum conditions (10−5 – 10−8 mbar) [1], [2]. Along with the technological complexity and environmental unfriendliness, EP has inherently limited efficiency in smoothing out pits at cavity equator areas and inclusions of foreign material.

Centrifugal Barrel Polishing (CBP) is an alternative technique and is free of the aforementioned drawbacks. It has been studied since the 1960s [3]. Considerable contributions to cavity processing by CBP was made by T. Higuchi et al. [4], [5]. During CBP, the cavity fixed in the CBP machine is rapidly rotated with its interior partially filled with abrasives whose characteristic size is reduced at each treatment step, thus gradually improving the surface quality (roughness, amount of plastic deformations).

In recent years, a 5-step CBP recipe was investigated by Fermilab and JLab [6], [7], which allows a mirror-smooth cavity surface (< 15 nm RMS roughness) to be produced [8], aiming at chemistry-free cavity processing. Despite substantial progress, no reasonable quality factor and accelerating gradient have been achieved without chemical postprocessing [8], [9].

Considering the fact that chemical treatment is the best for achieving the highest surface quality, especially for ductile materials as niobium, our aim is to decrease chemical usage in industrial cavity production by replacing “bulk” EP with CBP which has to be optimized for that purpose.

II. PREVIOUS RESULTS

Our activities have been focused on a detailed study of the CBP recipe similar to the one described in [6], [7]. Briefly, a four-step CBP procedure (here steps are numbered as CBP#1, CBP#2 and so on), firstly with ceramic triangles (Duramedia ACT), then plastic cones (VF-RG 22), alumina mesh #600 and finally colloidal silica (40 nm) as abrasives resulted in a mirror surface finish of single-cell cavity. A technique of surface examination with the use of small removable coupons installed in a “coupon” cavity is described in detail in [10]. In particular, the removal rate from cavity walls as well as SEM investigations of Nb surface at iris and equator after each CBP step was reported. Drawbacks such as abrasive particles (Al2O3) becoming embedded at CBP#3, were observed, in agreement with [6]. Moreover, they were found to produce new scratches during the following (final) step (Fig. 1). This problem was partially resolved (i.e., the number of embedded particles was reduced) by additional washing in an ultrasonic bath and renewing the polishing solution at the final CBP step. Field emission studies of a coupon located in the end-tube treated with CBP followed by buffered chemical polishing demonstrated low onset fields of 40 MV/m (for more detail, see [11]). Additionally, investigation...
Fig. 1. The surface topography of equator coupon after the full cycle 4-step CBP treatment with a mirror surface finish (laser Differential Interference Contrast (DIC) image, 3D laser scanning microscopy). The grain boundaries as well as the freshly produced scratches by the released polishing media which has been used at CBP#3 (Al₂O₃) are visible.

Fig. 2. SE (a) and a corresponding BSE (b) SEM image of the end-tube coupon with embedded Al₂O₃ particles after the full cycle 4-step CBP treatment. (c) SE image of the typical defects (pits) found at the equator coupon after the same treatment. (d) BSE image depicting a high degree of particle embedding at end-tube area.

Fig. 3. (a) Laser DIC image depicting the surface relief features left by the precipitated at low temperatures NbHₓ. (b) XPS spectra of Nb 3d region measured at room temperature (lower spectrum) and at 90 K (upper spectrum).

III. ONGOING ACTIVITIES

A. SEM Studies of Nb Coupons After the 4-step CBP

We have continued to explore the basic 4-step CBP recipe. In particular, surface quality in the different locations of the 1.3 GHz elliptical single-cell cavity having a mirror-smooth surface after the full-cycle CBP with refreshing of the polishing media at final polishing step was further studied by means of coupons and High-Resolution Scanning Electron Microscopy (HR-SEM) with a backscattered electron imaging (BSE) and Energy-dispersive X-ray Spectroscopy (EDX). The use of the backscattered electron imaging, as compared to secondary electron (SE) imaging, due to atomic-number contrast effects allows the inclusions of foreign materials in niobium to be unambiguously distinguished. This is demonstrated in Fig. 2 where SE (a) and a corresponding BSE (b) SEM image of the end-tube coupon with embedded Al₂O₃ particles after the basic 4-step CBP treatment are presented. It was revealed that after the final CBP step the surface of the coupons located in the end-tube (the narrowest) area of the cavity contained the highest density of alumina particles, while the coupons installed in the equator area demonstrated mainly pits and scratches produced by these particles (Fig. 2(c)). The estimated dimension of alumina particles in the end-tube area is in the range of 1.5–15 μm, the particle distribution density was 30–40 particles over the area of 25 μm × 25 μm. This and previous results demonstrate that alumina mesh #600 is an inappropriate polishing medium for processing niobium cavities (at least for the current CBP recipe).

In order to remove the observed particles from irises and smooth out the pits at equators, a substantial amount of chemical post processing would be required, which is not in line with our goals.

B. Niobium Hydrides by X-Ray Photoelectron Spectroscopy

The hydrogen contamination facilitated by mechanical abrasion which is known to be responsible for the Q₀ disease phenomenon in CBP-treated cavities [13], was studied by X-ray Photoelectron Spectroscopy (XPS) at room temperature and upon cooling to 90 K (Fig. 3).

The XPS measurements were carried out using a high-resolution 2D delay line detector. A monochromatic AlKα X-ray source (photon energy 1486.6 eV) was used as incident radiation [14]. For all spectra, the binding energies were calibrated based on the C 1s peak at 284.8 V. The area ratio for the Nb 3d spin-orbit doublets was fixed to 1:0.67 with an energy difference of 2.7 eV. The existence of Nb-hydride was confirmed with the peaks at low binding energy regions between 201.3 and 203.3 eV, which remarkably changed after cooling by shifting to lower binding energies and becoming narrower (Fig. 3(b)).
The way to reduce hydrogen loading during CBP is via the implementation of milder conditions of material removal (abrasion), thus reducing the mechanically deformed layer, or/and decreasing the duration of polishing. Nevertheless, currently at an industrial scale, the problem with the excess amount of hydrogen in cavities is resolved by implementing a so-called high-temperature baking (600–900 °C), which is used to relax the mechanical strain in the cavity and simultaneously degas the absorbed hydrogen. Since this technological step has to be applied anyway, the development of hydrogen-free polishing becomes less important.

C. Toward Optimization of the Current CBP Recipe

One way to decrease the plastically deformed layer is to apply a milder polishing condition, i.e., decrease the force pressing the abrasive to the polished cavity surface. The latter is controlled by the mass of polishing media and the rotation speed of the barrels. The amount of abrasive media should provide reasonable polishing efficiency. The barrel rotation speed should not be too low otherwise the polishing media would drop to the lowest part of the cavity after each rotation period. In our CBP machine, the rotation speed of the main drive determines the centrifugal force acting between the polishing media and the cavity walls (see [15]). As the gear ratio of the main drive to the barrel is fixed (1:2), the main shaft rotation speed is the only variable parameter. The centripetal acceleration, \(a = \omega^2 \cdot r \), and the speed of the cavity surface relative to the polishing media, \(v = \omega \cdot r \) (where \(r \) is the distance from the main shaft to corresponding cavity area), calculated for various main shaft rotation speeds, \(\omega \), are shown in Fig. 4.

In order to reduce the depth of damage layer the rotation speed of the main shaft was reduced to 70 rpm instead of 100 rpm during CBP#1 and CBP#2. The abrasion rate and the depth of the observed deformed layer are summarized in Table I. The maximal depth of local damage is shown in brackets. The metallographically prepared cross-sections of coupons are shown in [12]. Thus, for CBP#1 the material abrasion rate decreased by a factor of three while the depth of significant deformation in most crucial areas of the cavity decreased by up to 50% as compared to 100 rpm. It is notable, that after CBP#1 followed by CBP#2 as well as after the standalone CBP#2, no visible deformations from the standard 100 rpm recipe were observed.

Our earlier SEM studies showed that the CBP#2 step causes no abrasive embedding into the niobium surface. Therefore, CBP#2 can be considered for a simplified one-step CBP scheme with chemical post-processing. In this case the duration of the polishing as compared to CBP#1 should be increased (∼3 times) to compensate lower removal rate [10].

The modified scheme was tested using the coupon cavity. Newly prepared coupons were treated with a single CBP#2 during 20 h at 100 rpm rotation of the main shaft of CBP machine. 50 \(\mu \)m was removed from equator and 16.5 \(\mu \)m from irises. The microstructure of the coupons was tested by the Vickers method. Indentations were made with different loads ranging from 0.005 to 0.05 kgf (testers Shimadzu HVM-2000 and Zwick Roell HZV30/ZwickLine). The Vickers hardness values of the equator coupon before and after CBP#2 are presented vs the depth of indentation in Fig. 5. The depth of each indentation was measured with a laser microscope (Keyence VK-X100).

The presented data are the average of five indentation tests at each load with minimal and maximal values obtained during measurements depicted as error bars. It is seen from the plot that at the indentation depth of 15 \(\mu \)m, the hardness of the pol-
TABLE II
SURFACE ROUGHNESS IN μM, MEASURED OVER AREA OF 270 μM × 270 μM
OF CELL COUPON AFTER BASIC CBP, CBP#2 AND CBP#2 WITH EP

<table>
<thead>
<tr>
<th>Step</th>
<th>Rp</th>
<th>Rq</th>
<th>Rv</th>
<th>Rz</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-step CBP</td>
<td>0.74 ± 0.27</td>
<td>1.54 ± 0.79</td>
<td>2.28 ± 0.85</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>CBP#2</td>
<td>1.88 ± 0.41</td>
<td>2.00 ± 0.24</td>
<td>3.87 ± 0.65</td>
<td>0.21 ± 0.01</td>
</tr>
<tr>
<td>CBP#2+EP</td>
<td>0.42 ± 0.08</td>
<td>0.60 ± 0.13</td>
<td>1.02 ± 0.21</td>
<td>0.10 ± 0.01</td>
</tr>
</tbody>
</table>

Rp = simple average; Rq = aver. valley depth; Rv = aver. peak-to-valley distance; Rz = aver. peak height.

![Fig. 6. The surface topography of the cell coupon after CBP#2 (a, b), and after subsequent EP (c, d). (3D laser scanning microscopy). (a) – laser image; (c) – laser DIC image; (b, d) – height profile images. The scale bar is valid for all the images.](image)

![Fig. 7. XRD patterns of Nb coupons after 4-step CBP, after CBP#2 and after CBP#2 followed by EP of 18 μm (from bottom to up). Insert: magnified view of the Bragg peak centered at 2θ = 69.76° of the CBP#2 coupon before and after EP.](image)

detector. The XRD patterns were measured at a fixed incident angle of 5° with the scattering angle ranging from 2θ = 30° to 120°. The measured XRD patterns (after the background subtraction) of the cell area coupons treated with basic 4-step CBP, CBP#2 and following EP, presented in Fig. 7, coincide well with 34-0370 and 35-07893 data files. The (hkI) indices of Bragg peaks corresponding to bcc Nb are indicated. While XRD peaks after mechanical processing look alike and rather broad, after additional EP they become so narrow that the CuKα fine structure of the X-ray source become visible in the diffraction pattern (Fig. 7, insert). These peaks are to be further analyzed to determine whether additional phases were formed upon EP (oxides, etc.). The mean crystallite size determined using the Scherrer equation [16] for the CBP#2 treated coupon was 12.98 nm, while after EP the peak width reaches the resolution limit of the experimental setup. Therefore, only a lower limit of the mean crystallite size of 133.4 nm could be determined, with the corresponding density of dislocations, i.e. the length of dislocation lines per unit volume of the crystal, 5.9 · 10^{-17} and 5.6 · 10^{-18} cm^{-2} [17]. The similarly obtained values for the coupon processed with basic 4-step CBP are just 25.22 nm and 1.57 · 10^{-17} cm^{-2} despite the mirror-smooth surface.

IV. Conclusion

In this paper, we performed characterization of niobium samples processed with CBP using a coupon cavity. We updated the results of our recent studies of the basic 4-step CBP recipe. Particularly, with backscattered electron imaging, the embedded alumina particles were precisely visualized at the narrowest area of the cavity, while at equator/cell area coupons mainly pits left by these particles were present. Summing up our findings, we conclude that alumina mesh #600 is an inappropriate polishing medium in the current CBP recipe. For the first time, a large plastically deformed layer produced in a cavity interior surface during CBP was demonstrated using metallographic sample preparation. The effect of the rotation speed of the barrel was demonstrated in practice. A simplified scheme for cavity preparation involving both CBP and EP is proposed which is likely...
to be competitive with the present industrial cavity preparation procedure.

ACKNOWLEDGMENT

The authors would like to thank X. Singer and W. Singer for providing the high quality niobium for the current investigation. We are very grateful to our colleagues A. Navitski, A. Ermakov, J. Schaffran for the enormous input for the startup of the current studies. We express our thanks to KEK colleagues and especially Takayuki Saeki and Shigeki Kato for the fabrication of the coupon cavity.

REFERENCES

Toward Optimization of Centrifugal Barrel Polishing Procedure for Treatment of Niobium Cavities

Alena Prudnikava, Yegor Tamashevich, Kazimir Yanushkevich, Heshmat Noei, Dieter Lott, Andreas Stierle, and Brian Foster

Abstract—Centrifugal barrel polishing (CBP) is a simple and environmentally friendly method that can be applied for mechanical abrasion of the cavity interior in order to remove the mechanically damaged surface after its production. The CBP recipes described in the literature, however, require CBP to be performed in many stages, require long processing times and nevertheless are unable to provide good cavity RF performance without additional chemical processing. Here, we report new results on characterization of cavity surfaces treated with a typical CBP recipe, including the contamination with abrasive particles, plastic deformation and hydrogen contamination, and critically evaluate it. Methods to reduce the depth of significant plastic deformation as well as the modified commercially viable CBP procedure followed by final electropolishing are proposed and tested on samples.

Index Terms—Abrasives, linear particle accelerator, materials processing, superconducting materials, Type II superconductors.

I. INTRODUCTION

ELECTROPOLISHING (EP) is an important technological step in the current manufacturing process of niobium superconducting radio frequency (SRF) cavities [1]. Firstly, a so-called “bulk” EP (H2SO4:HF) is applied to remove a mechanically damaged layer (up to 200 μm) from the interior surface of the cavity left after the rolling and forming steps, followed by annealing (600-900 °C) to degas hydrogen absorbed in this process, a second “light” EP (10–40 μm) has to be applied in order to provide a high-quality surface after this annealing in relatively poor vacuum conditions (10−5 – 10−8 mbar) [1], [2]. Along with the technological complexity and environmental unfriendliness, EP has inherently limited efficiency in smoothing out pits at cavity equator areas and inclusions of foreign material.

Centrifugal Barrel Polishing (CBP) is an alternative technique and is free of the aforementioned drawbacks: It has been studied since the 1960s [3]. Considerable contributions to cavity processing by CBP was made by T. Higuchi et al. [4], [5]. During CBP, the cavity fixed in the CBP machine is rapidly rotated with its interior partially filled with abrasives whose characteristic size is reduced at each treatment step, thus gradually improving the surface quality (roughness, amount of plastic deformations). In recent years, a 5-step CBP recipe was investigated by Fermilab and JLab [6], [7], which allows a mirror-smooth cavity surface (<15 nm RMS roughness) to be produced [8], aiming at chemistry-free cavity processing. Despite substantial progress, no reasonable quality factor and accelerating gradient have been achieved without chemical postprocessing [8], [9].

Considering the fact that chemical treatment is the best for achieving the highest surface quality, especially for ductile materials as niobium, our aim is to decrease chemical usage in industrial cavity production by replacing “bulk” EP with CBP which has to be optimized for that purpose.

II. PREVIOUS RESULTS

Our activities have been focused on a detailed study of the CBP recipe similar to the one described in [6], [7]. Briefly, a four-step CBP procedure (here steps are numbered as CBP#1, CBP#2 and so on), firstly with ceramic triangles (Duramedia ACT), then plastic cones (VF-RG 22), alumina mesh #600 and finally colloidal silica (40 nm) as abrasives resulted in a mirror surface finish of single-cell cavity. A technique of surface examination with the use of small removable coupons installed in a “coupon” cavity is described in detail in [10]. In particular, the removal rate from cavity walls as well as SEM investigations of Nb surface at iris and equator after each CBP step was reported. Drawbacks such as abrasive particles (Al2O3) becoming embedded at CBP#3, were observed, in agreement with [6]. Moreover, they were found to produce new scratches during the following (final) step (Fig. 1). This problem was partially resolved (i.e., the number of embedded particles was reduced) by additional washing in an ultrasonic bath and renewing the polishing solution at the final CBP step. Field emission studies of a coupon located in the end-tube treated with CBP followed by buffered chemical polishing demonstrated low onset fields of 40 MV/m (for more detail, see [11]). Additionally, investigation...
of coupons after each CBP step with laser profilometry showed that alumina mesh made no improvement to the topography and surface roughness [12]. Metallographic preparation of coupons revealed a plastically deformed surface layer especially at equator areas after CBP#1. On the contrary, the maximal amount of microscale damage after the final CBP treatment was detected by a Vickers hardness test at the end-tube coupons [12]. Precipitation of niobium hydrides upon cooling was observed ex-situ, which evidenced a pronounced hydrogen absorption during CBP, probably enhanced by severe abrasion conditions as demonstrated by the metallographic study.

III. ONGOING ACTIVITIES

A. SEM Studies of Nb Coupons After the 4-step CBP

We have continued to explore the basic 4-step CBP recipe. In particular, surface quality in the different locations of the 1.3 GHz elliptical single-cell cavity having a mirror-smooth surface after the full-cycle CBP with refreshing of the polishing media at final polishing step was further studied by means of coupons and High-Resolution Scanning Electron Microscopy (HR-SEM) with a backscattered electron imaging (BSE) and Energy-dispersive X-ray Spectroscopy (EDX). The use of the backscattered electron imaging, as compared to secondary electron (SE) imaging, due to atomic-number contrast effects allows the inclusions of foreign materials in niobium to be unambiguously distinguished. This is demonstrated in Fig. 2 where SE (a) and a corresponding BSE (b) SEM image of the end-tube coupon with embedded Al₂O₃ particles after the basic 4-step CBP treatment are presented. It was revealed that after the final CBP step the surface of the coupons located in the end-tube (the narrowest) area of the cavity contained the highest density of alumina particles, while the coupons installed in the equator area demonstrated mainly pits and scratches produced by these particles (Fig. 2(c)). The estimated dimension of alumina particles in the end-tube area is in the range of 1.5–15 μm, the particle distribution density was 30–40 particles over the area of 25 μm × 25 μm. This and previous results demonstrate that alumina mesh #600 is an inappropriate polishing medium for processing niobium cavities (at least for the current CBP recipe).

In order to remove the observed particles from irises and smooth out the pits at equators, a substantial amount of chemical post processing would be required, which is not in line with our goals.

B. Niobium Hydrides by X-Ray Photoelectron Spectroscopy

The hydrogen contamination facilitated by mechanical abrasion which is known to be responsible for the Q₀ disease phenomenon in CBP-treated cavities [13], was studied by X-ray Photoelectron Spectroscopy (XPS) at room temperature and upon cooling to 90 K (Fig. 3).

The XPS measurements were carried out using a high-resolution 2D delay line detector. A monochromatic AlKα X-ray source (photon energy 1486.6 eV) was used as incident radiation [14]. For all spectra, the binding energies were calibrated based on the C 1s peak at 284.8 eV. The area ratio for the Nb 3d spin-orbit doublets was fixed to 1:0.67 with an energy difference of 2.7 eV. The existence of Nb-hydride was confirmed with the peaks at low binding energy regions between 201.3 and 203.3 eV, which remarkably changed after cooling by shifting to lower binding energies and becoming narrower (Fig. 3(b)).
The way to reduce hydrogen loading during CBP is via the implementation of milder conditions of material removal (ablation), thus reducing the mechanically deformed layer, or/and decreasing the duration of polishing. Nevertheless, currently at an industrial scale, the problem with the excess amount of hydrogen in cavities is resolved by implementing a so-called high-temperature baking (600–900 °C), which is used to relax the mechanical strain in the cavity and simultaneously degas the absorbed hydrogen. Since this technological step has to be applied anyway, the development of hydrogen-free polishing becomes less important.

C. Toward Optimization of the Current CBP Recipe

One way to decrease the plastically deformed layer is to apply a milder polishing condition, i.e., decrease the force pressing the abrasive to the polished cavity surface. The latter is controlled by the mass of polishing media and the rotation speed of the barrels. The amount of abrasive media should provide reasonable polishing efficiency. The barrel rotation speed should not be too low otherwise the polishing media would drop to the lowest part of the cavity after each rotation period. In our CBP machine, the rotation speed of the main drive determines the centrifugal force acting between the polishing media and the cavity walls (see [15]). As the gear ratio of the main drive to the barrel is fixed (1:2), the main shaft rotation speed is the only variable parameter. The centripetal acceleration, \(a = \omega^2 \cdot r \), and the speed of the cavity surface relative to the polishing media, \(v = \omega \cdot r \) (where \(r \) is the distance from the main shaft to corresponding cavity area), calculated for various main shaft rotation speeds, \(\omega \), are shown in Fig. 4.

To reduce the depth of damage layer the rotation speed of the main shaft was reduced to 70 rpm instead of 100 rpm during CBP#1 and CBP#2. The abrasion rate and the depth of the observed deformed layer are summarized in Table I. The maximal depth of local damage is shown in brackets. The metallographically prepared cross-sections of coupons are shown in [12]. Thus, for CBP#1 the material abrasion rate decreased by a factor of three while the depth of significant deformation in most crucial areas of the cavity decreased by up to 50% as compared to 100 rpm. It is notable, that after CBP#1 followed by CBP#2 as well as after the standalone CBP#2, no visible deformations from the standard 100 rpm recipe were observed.

Our earlier SEM studies showed that the CBP#2 step causes no abrasive embedding into the niobium surface. Therefore, CBP#2 can be considered for a simplified one-step CBP scheme with chemical post-processing. In this case the duration of the polishing as compared to CBP#1 should be increased (\(\sim \) 3 times) to compensate lower removal rate [10].

The modified scheme was tested using the coupon cavity. Newly prepared coupons were treated with a single CBP#2 during 20 h at 100 rpm rotation of the main shaft of CBP machine. 50 \(\mu \)m was removed from equator and 16.5 \(\mu \)m from irises. The microstructure of the coupons was tested by the Vickers method. Indentations were made with different loads ranging from 0.005 to 0.05 kgf (testers Shimadzu HMV-2000 and Zwick Roell HZV30/ZwickLine). The Vickers hardness values of the equator coupon before and after CBP#2 were measured with a laser microscope (Keyence VK-X100). The presented data are the average of five indentation tests at each load with minimal and maximal values obtained during measurements depicted as error bars. It is seen from the plot that at the indentation depth of 15 \(\mu \)m, the hardness of the pol-

Table I

<table>
<thead>
<tr>
<th>Coupon</th>
<th>Damaged layer, (\mu)m</th>
<th>Abrasion rate, (\mu)m/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube</td>
<td>15 (25)</td>
<td>10 (15)</td>
</tr>
<tr>
<td>Equator, Cell</td>
<td>30 (70)</td>
<td>15 (55)</td>
</tr>
</tbody>
</table>

The calculated centripetal acceleration \(a \) (solid lines) and the surface-to-media velocity \(v \) (dashed lines) for different rotation speed of the main shaft.

![Graph showing calculated acceleration and surface velocity](image)

![Graph showing hardness vs indentation depth](image)
TABLE II
SURFACE ROUGHNESS IN \(\mu\text{M}\), MEASURED OVER AREA OF 270 \(\mu\text{M} \times 270 \mu\text{M}\) OF CELL COUPON AFTER BASIC CBP, CBP#2 AND CBP#2 WITH EP

<table>
<thead>
<tr>
<th>Step</th>
<th>(R_p)</th>
<th>(R_s)</th>
<th>(R_z)</th>
<th>(R_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-step CBP</td>
<td>0.74 ± 0.27</td>
<td>1.54 ± 0.79</td>
<td>2.28 ± 0.85</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>CBP#2</td>
<td>1.88 ± 0.41</td>
<td>2.00 ± 0.24</td>
<td>3.87 ± 0.65</td>
<td>0.21 ± 0.01</td>
</tr>
<tr>
<td>CBP#2+EP</td>
<td>0.42 ± 0.08</td>
<td>0.60 ± 0.13</td>
<td>1.02 ± 0.21</td>
<td>0.10 ± 0.01</td>
</tr>
</tbody>
</table>

\(R_p\) – simple average; \(R_z\) – aver. valley depth; \(R_s\) – aver. peak-to-valley distance; \(R_a\) – aver. peak height.

Fig. 6. The surface topography of the cell coupon after CBP#2 (a, b), and after subsequent EP (c, d). (3D laser scanning microscopy): (a) – laser image; (c) – laser DIC image; (b, d) – height profile images. The scale bar is valid for all the images.

X-Ray diffraction (XRD) measurements were made using CuK\(_\alpha\) radiation of a standard x-ray tube on a Seifert three-circle diffractometer, equipped with a one-dimensional CCD detector. The XRD patterns were measured at a fixed incident angle of 5\(^\circ\) with the scattering angle ranging from 2\(\theta\) = 30\(^\circ\) to 120\(^\circ\). The measured XRD patterns (after the background subtraction) of the cell area coupons treated with basic 4-step CBP, CBP#2 and following EP, presented in Fig. 7, coincide well with 34-0370 and 35-07893 PSPDFWIN data files. The (hk\(l\)) indices of Bragg peaks corresponding to bcc Nb are indicated. While XRD peaks after mechanical processing look alike and rather broad, after additional EP they become so narrow that the CuK\(_\alpha\) fine structure of the X-ray source become visible in the diffraction pattern (Fig. 7, insert). These peaks are to be further analyzed to determine whether additional phases were formed upon EP (oxides, etc.). The mean crystallite size determined using the Scherrer equation [16] for the CBP#2 treated coupon was 12.98 nm, while after EP the peak width reaches the resolution limit of the experimental setup. Therefore, only a lower limit of the mean crystallite size of 133.4 nm could be determined, with the corresponding density of dislocations, i.e. the length of dislocation lines per unit volume of the crystal, 5.9 · 10\(^{-17}\) and 5.6 · 10\(^{-19}\) cm\(^{-2}\) [17]. The similarly obtained values for the coupon processed with basic 4-step CBP are just 25.22 nm and 1.57 · 10\(^{-17}\) cm\(^{-2}\) despite the mirror-smooth surface.

Fig. 7. XRD patterns of Nb coupons after 4-step CBP, after CBP#2 and after CBP#2 followed by EP of 18 \(\mu\text{m}\) (from bottom to up). Insert: magnified view of the Bragg peak centered at 2\(\theta\) = 69.76\(^\circ\) of the CBP#2 coupon before and after EP.

In this paper, we performed characterization of niobium samples processed with CBP using a coupon cavity. We updated the results of our recent studies of the basic 4-step CBP recipe. Particularly, with backscattered electron imaging, the embedded alumina particles were precisely visualized at the narrowest area of the cavity, while at equator/cell area coupons mainly pits left by these particles were present. Summing up our findings, we conclude that alumina mesh #600 is an inappropriate polishing medium in the current CBP recipe. For the first time, a large plastically deformed layer produced in a cavity interior surface during CBP was demonstrated using metallographic sample preparation. The effect of the rotation speed of the barrel was demonstrated in practice. A simplified scheme for cavity preparation involving both CBP and EP is proposed which is likely.
to be competitive with the present industrial cavity preparation procedure.

ACKNOWLEDGMENT

The authors would like to thank X. Singer and W. Singer for providing the high quality niobium for the current investigation. We are very grateful to our colleagues A. Navitski, A. Ermakov, J. Schaffran for the enormous input for the startup of the current studies. We express our thanks to KEK colleagues and especially Takayuki Saeki and Shigeki Kato for the fabrication of the coupon cavity.

REFERENCES

