The bootstrap approach to $4d$ superconformal field theories

Madalena Lemos

Workshop on holography, gauge theories and black holes
Southampton University
Mar 26 2018

1711.00016 w/ M. Cornagliotto and P. Liendo
3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi]
3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi]

→ Saturated by 3d Ising model
3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi]

→ Saturated by 3d Ising model
→ 3d Ising lives at “kink”
3d Ising Model

[Poland Simmons-Duffin Kos, Simmons-Duffin, Poland Simmons-Duffin Kos Vichi]

Comparison to Monte Carlo
→ One \mathbb{Z}_2–even, one \mathbb{Z}_2–odd relevant scalar operator
Outline

1. The Superconformal Bootstrap Program
2. Numerical bootstrap
3. Inversion formula
4. Summary and Outlook
Outline

1. The Superconformal Bootstrap Program
2. Numerical bootstrap
3. Inversion formula
4. Summary and Outlook
What is the space of consistent $4d$ SCFTs?
What is the space of consistent 4d SCFTs?

→ Maximally supersymmetric theories: well known list of theories
What is the space of consistent 4d SCFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 2$ theories: large known list of theories
 many lacking a Lagrangian description
What is the space of consistent 4d SCFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 3$ theories: not known to exist until García-Etxebarria and Regalado

→ $\mathcal{N} = 2$ theories: large known list of theories many lacking a Lagrangian description
The Superconformal Bootstrap Program

What is the space of consistent 4d SCFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 3$ theories: not known to exist until García-Etxebarria and Regalado

→ $\mathcal{N} = 2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?
The Superconformal Bootstrap Program

What is the space of consistent 4d SCFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 3$ theories: not known to exist until García-Etxebarria and Regalado

→ $\mathcal{N} = 2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?

→ “Simplest” $\mathcal{N} = 2$ Argyres-Douglas theory?
Conformal field theory defined by
Set of local operators and their correlation functions
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{ O_{\Delta, \ell, \ldots} (x) \} and
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{\mathcal{O}_{\Delta,\ell,...}(x)\} and

Operator Product Expansion
\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} \mathcal{O}_k(0)
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\} and

Operator Product Expansion
\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} \mathcal{O}_k(0)
→ Finite radius of convergence
Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{O_{\Delta, \ell, \ldots}(x)\} and

Operator Product Expansion

\[O_1(x)O_2(0) = \sum_{k_{\text{prim.}}} \lambda_{O_1 O_2 O_k} c(x, \partial_x)O_k(0) \]

→ Finite radius of convergence
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{ \mathcal{O}_{\Delta, \ell,...}(x) \} \text{ and }

Operator Product Expansion
\mathcal{O}_1(x) \mathcal{O}_2(0) = \sum_{k \text{ prim.}} \lambda_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_k} c(x, \partial_x) \mathcal{O}_k(0)

\rightarrow \text{ Finite radius of convergence }

\rightarrow \text{ } n\text{-point function by recursive use of the OPE until } \langle 1 \rangle = 1
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\} and \{\lambda_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k}\}

Operator Product Expansion
\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k\text{prim.}} \lambda_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_k} c(x, \partial_x)\mathcal{O}_k(0)

→ Finite radius of convergence

→ \(n\)-point function by recursive use of the OPE until \(\langle 1 \rangle = 1\)
Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{\mathcal{O}_{\Delta,\ell,\ldots}(x)\} \text{ and } \{\lambda_{\mathcal{O}_i\mathcal{O}_j\mathcal{O}_k}\}

Operator Product Expansion
\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k \text{prim.}} \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x, \partial x)\mathcal{O}_k(0)
→ Finite radius of convergence
→ n-point function by recursive use of the OPE until
\langle 1 \rangle = 1

CFT data strongly constrained

- Unitarity
- Associativity of the operator product algebra
Conformal Bootstrap

Crossing Symmetry

\[\langle (O_1(x_1) \, O_2(x_2)) \, O_3(x_3) \, O_4(x_4) \rangle = \]

\[\sum_{\Delta, \ell} O_{\Delta, \ell} \]

\[1 \rightarrow \bullet \rightarrow 3 \rightarrow 4 \]

\[2 \rightarrow \bullet \rightarrow \]

\[O_{\Delta, \ell} \]

where \(\Delta_{O_i} = \Delta_{O}, u = x_{12} x_{23} x_{24} \)

\[v = (1 - \bar{z}) (1 - \bar{z}) \]
Crossing Symmetry

\[\langle \mathcal{O}_1(x_1)(\mathcal{O}_2(x_2) \mathcal{O}_3(x_3))\mathcal{O}_4(x_4) \rangle = \sum_{\mathcal{O}_{\Delta, \ell}} \mathcal{O}_{\Delta, \ell} \]

\[= \sum_{\tilde{\mathcal{O}}_{\Delta, \ell}} \tilde{\mathcal{O}}_{\Delta, \ell} \]
Crossing Symmetry

\[
\langle (\mathcal{O}_1(x_1) \mathcal{O}_2(x_2)) \mathcal{O}_3(x_3) \mathcal{O}_4(x_4) \rangle =
\]

\[
\sum_{\Delta, \ell} \mathcal{O}_{\Delta, \ell} \cdot \mathcal{O}_{\Delta, \ell} = \sum_{\tilde{\Delta}, \ell} \tilde{\mathcal{O}}_{\Delta, \ell}
\]

\[
\frac{1}{x_{12}^{2\Delta} x_{34}^{2\Delta}} \sum_{\Delta, \ell} \lambda_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_\Delta, \ell} \lambda_{\mathcal{O}_3 \mathcal{O}_4 \mathcal{O}_\Delta, \ell} g_{\Delta, \ell}(z, \bar{z}) =
\]

where \(\Delta_{\mathcal{O}_i} = \Delta_{\mathcal{O}} \), \(u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = z \bar{z} \), \(v = \frac{x_{23}^2 x_{14}^2}{x_{13}^2 x_{24}^2} = (1 - z)(1 - \bar{z}) \)
Conformal Bootstrap

Crossing Symmetry

\[\langle \mathcal{O}_1(x_1)(\mathcal{O}_2(x_2) \mathcal{O}_3(x_3))\mathcal{O}_4(x_4) \rangle = \]

\[
\sum_{\Delta, \ell} \frac{1}{x_{12}^{2\Delta} x_{34}^{2\Delta}} \sum_{\Delta, \ell} \lambda_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4} \lambda_{\mathcal{O}_3 \mathcal{O}_4} g_{\Delta, \ell}(z, \bar{z}) =
\]

\[
\sum_{\tilde{\Delta}, \ell} \frac{1}{x_{14}^{2\tilde{\Delta}} x_{23}^{2\tilde{\Delta}}} \sum_{\tilde{\Delta}, \ell} \lambda_{\mathcal{O}_1 \mathcal{O}_4 \tilde{\mathcal{O}}_3} \lambda_{\mathcal{O}_2 \mathcal{O}_3 \tilde{\mathcal{O}}_4} g_{\tilde{\Delta}, \ell}(1 - z, 1 - \bar{z})
\]

where \(\Delta_{\mathcal{O}_i} = \Delta_{\mathcal{O}} \), \(u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = z\bar{z} \), \(v = \frac{x_{23}^2 x_{14}^2}{x_{13}^2 x_{24}^2} = (1 - z)(1 - \bar{z}) \)
→ Solve crossing equations for all four-point functions
→ Solve crossing equations for all four-point functions
→ Very hard! (beyond special cases in 2d CFTs)
→ Solve crossing equations for \textit{all} four-point functions

→ Very hard! (beyond special cases in 2\textit{d} CFTs)

\textbf{The Superconformal Bootstrap}

- Various conformal families related by action of supercharges
→ Solve crossing equations for all four-point functions
→ Very hard! (beyond special cases in 2d CFTs)

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data
→ Solve crossing equations for *all* four-point functions
→ Very hard! (beyond special cases in 2d CFTs)

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
A solvable subsector

Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]
Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

 $6d \mathcal{N} = (2, 0)$ and $2d \mathcal{N} = (0, 4)$ [Beem Rastelli van Rees]
Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

$6d \mathcal{N} = (2, 0)$ and $2d \mathcal{N} = (0, 4)$ [Beem Rastelli van Rees]

$4d \mathcal{N} \geq 2$ SCFTs \rightarrow 2d chiral algebra

▶ Protected subsector of $4d$ SCFT isomorphic to $2d$ chiral algebra
Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

 $6d \mathcal{N} = (2, 0)$ and $2d \mathcal{N} = (0, 4)$ [Beem Rastelli van Rees]

$4d \mathcal{N} \geq 2$ SCFTs \rightarrow $2d$ chiral algebra

- Protected subsector of $4d$ SCFT isomorphic to $2d$ chiral algebra
- Exact results for protected operators
Landscape of $\mathcal{N} \geq 2$ SCFTs

- Stress tensor supermultiplet
Landscape of $\mathcal{N} \geq 2$ SCFTs

- Stress tensor supermultiplet
 - Assumptions: Unitary, interacting SCFT
Landscape of $\mathcal{N} \geq 2$ SCFTs

- Stress tensor supermultiplet
 - Assumptions: Unitary, interacting SCFT

$\mathcal{N} = 4$ SCFTs
$c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
Landscape of $\mathcal{N} \geq 2$ SCFTs

- Stress tensor supermultiplet
 \Rightarrow Assumptions: Unitary, interacting SCFT

$\mathcal{N} = 4$ SCFTs

$c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]

\Rightarrow Saturated by $\mathcal{N} = 4$ SYM with gauge group $SU(2)$
Landscape of $\mathcal{N} \geq 2$ SCFTs

- Stress tensor supermultiplet
 - Assumptions: Unitary, interacting SCFT

$\mathcal{N} = 4$ SCFTs
$c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
\rightarrow Saturated by $\mathcal{N} = 4$ SYM with gauge group $SU(2)$

$\mathcal{N} = 3$ SCFTs
$c = a > \frac{13}{24}$ [Cornagliotto ML Schomerus]
Landscape of $\mathcal{N} \geq 2$ SCFTs

- Stress tensor supermultiplet
 - Assumptions: Unitary, interacting SCFT

$\mathcal{N} = 4$ SCFTs
$c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
→ Saturated by $\mathcal{N} = 4$ SYM with gauge group $SU(2)$

$\mathcal{N} = 3$ SCFTs
$c = a > \frac{13}{24}$ [Cornagliotto ML Schomerus]

$\mathcal{N} = 2$ SCFTs
$c \geq \frac{11}{30}$ [Liendo Ramirez Seo]
Landscape of $\mathcal{N} \geq 2$ SCFTs

- Stress tensor supermultiplet
 - Assumptions: Unitary, interacting SCFT

$\mathcal{N} = 4$ SCFTs
$c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
→ Saturated by $\mathcal{N} = 4$ SYM with gauge group $SU(2)$

$\mathcal{N} = 3$ SCFTs
$c = a > \frac{13}{24}$ [Cornagliotto ML Schomerus]

$\mathcal{N} = 2$ SCFTs
$c \geq \frac{11}{30}$ [Liendo Ramirez Seo]
→ Saturated by the (A_1, A_2) Argyres-Douglas theory
The \((A_1, A_2)\) Argyres-Douglas theory

Argyres-Douglas theories

→ Originally obtained on the Coulomb branch of an \(\mathcal{N} = 2\) susy gauge theory with gauge groups \(SU(3)\)
The \((A_1, A_2)\) Argyres-Douglas theory

Argyres-Douglas theories

→ Originally obtained on the Coulomb branch of an \(\mathcal{N} = 2\) susy gauge theory with gauge groups \(SU(3)\)

→ Strongly coupled isolated SCFT – no marginal deformations
The \((A_1, A_2)\) Argyres-Douglas theory

Argyres-Douglas theories

→ Originally obtained on the Coulomb branch of an \(\mathcal{N} = 2\) susy gauge theory with gauge groups \(SU(3)\)
→ Strongly coupled isolated SCFT – no marginal deformations
→ \(a = \frac{43}{120}\) \(c = \frac{11}{30}\)
The \((A_1, A_2)\) Argyres-Douglas theory

Argyres-Douglas theories

→ Originally obtained on the Coulomb branch of an \(\mathcal{N} = 2\) susy gauge theory with gauge groups \(SU(3)\)

→ Strongly coupled isolated SCFT – no marginal deformations

→ \(a = \frac{43}{120}, \quad c = \frac{11}{30}\)

→ Coulomb branch: parametrized by \(\mathcal{N} = 2\) chiral operator

\[\Delta_\phi = \frac{6}{5} \]
The \((A_1, A_2)\) Argyres-Douglas theory

Argyres-Douglas theories

→ Originally obtained on the Coulomb branch of an \(\mathcal{N} = 2\) susy gauge theory with gauge groups \(SU(3)\)

→ Strongly coupled isolated SCFT – no marginal deformations

→ \(a = \frac{43}{120}\) \(c = \frac{11}{30}\)

→ Coulomb branch: parametrized by \(\mathcal{N} = 2\) chiral operator

\[\Delta_\phi = \frac{6}{5}\]

→ Chiral algebra = Lee-Yang minimal model
Beyond the protected subsector

Our tools
Beyond the protected subsector

Our tools
- Numerical bootstrap
 [Rattazzi Rychkov Tonni Vichi]
Our tools

- Numerical bootstrap
 [Rattazzi Rychkov Tonni Vichi]

- Lightcone bootstrap
 [Fitzpatrick Kaplan Poland Simmons-Duffin, Komargodski Zhiboedov]
Beyond the protected subsector

Our tools

- Numerical bootstrap
 [Rattazzi Rychkov Tonni Vichi]
- Lightcone bootstrap
 [Fitzpatrick Kaplan Poland Simmons-Duffin, Komargodski Zhiboedov]
 \[\leftrightarrow \text{Lorentizan inversion formula of } [\text{Caron-Huot}]\]
Outline

1 The Superconformal Bootstrap Program

2 Numerical bootstrap

3 Inversion formula

4 Summary and Outlook
Numerical bootstrap

- Solving crossing equations \Rightarrow constraining space of solutions
 - How large can an OPE coefficient be?

\[
\sum_{\Delta, \ell} \phi_{\Delta, \ell} \phi = \sum_{\tilde{\Delta}, \tilde{\ell}} \tilde{\phi}_{\Delta, \ell} \tilde{\phi} = 1 \quad \text{for states not on the identity operator axis.}
\]
Numerical bootstrap

- Solving crossing equations \Rightarrow constraining space of solutions
 \rightarrow How large can an OPE coefficient be?

Sum rule: identical scalars ϕ

\[
\frac{1}{x_{12}^{2\Delta_\phi} x_{34}^{2\Delta_\phi}} \sum_{\mathcal{O}_{\Delta,\ell}} \lambda^2_{\phi\phi} \mathcal{O}_{\Delta,\ell} g_{\Delta,\ell}(z, \bar{z}) = \\
\frac{1}{x_{14}^{2\Delta_\phi} x_{23}^{2\Delta_\phi}} \sum_{\tilde{\mathcal{O}}_{\Delta,\ell}} \lambda^2_{\phi\phi} \tilde{\mathcal{O}}_{\Delta,\ell} g_{\Delta,\ell}(1 - z, 1 - \bar{z})
\]
Numerical bootstrap

- Solving crossing equations \Rightarrow constraining space of solutions
 \leftrightarrow How large can an OPE coefficient be?

Sum rule: identical scalars ϕ

$$
\frac{1}{x_{12}^{2\Delta_{\phi}} x_{34}^{2\Delta_{\phi}}} \sum_{\mathcal{O}_{\Delta,\ell}} \lambda_{\phi\phi}^2 \mathcal{O}_{\Delta,\ell} g_{\Delta,\ell}(z, \bar{z}) =
$$

$$
\frac{1}{x_{14}^{2\Delta_{\phi}} x_{23}^{2\Delta_{\phi}}} \sum_{\bar{\mathcal{O}}_{\Delta,\ell}} \lambda_{\phi\phi}^2 \bar{\mathcal{O}}_{\Delta,\ell} g_{\Delta,\ell}(1 - z, 1 - \bar{z})
$$

\leftrightarrow Identity operator $\lambda_{\phi\phi} \mathbb{1} = 1$
Numerical bootstrap

- Solving crossing equations \implies constraining space of solutions
 - How large can an OPE coefficient be?

Sum rule: identical scalars ϕ

\[
\frac{1}{x_{12}^{2\Delta} x_{34}^{2\Delta}} \sum_{\Delta, \ell} \lambda_{\phi\phi}^2 \mathcal{O}_{\Delta, \ell} \, g_{\Delta, \ell}(z, \bar{z}) = \\
\frac{1}{x_{14}^{2\Delta} x_{23}^{2\Delta}} \sum_{\bar{\Delta}, \bar{\ell}} \lambda_{\phi\phi}^2 \mathcal{\bar{O}}_{\bar{\Delta}, \bar{\ell}} \, g_{\Delta, \ell}(1 - z, 1 - \bar{z})
\]

- Identity operator $\lambda_{\phi\phi} \mathbb{I} = 1$

\[
\sum_{\mathcal{O} \in \phi \phi \mathcal{O}, \mathcal{O}_{\Delta, \ell} \neq \mathbb{I}} \lambda_{\phi\phi}^2 \mathcal{O} \frac{u^{\Delta_{\phi}} g_{\Delta, \ell}(v, u) - v^{\Delta_{\phi}} g_{\Delta, \ell}(u, v)}{v^{\Delta_{\phi}} - u^{\Delta_{\phi}}} = 1
\]

\[
\frac{\mathcal{O}}{F_{\Delta, \ell}}
\]
Sum rule

\[\sum_{\mathcal{O} \in \phi \phi, \mathcal{O}_{\Delta, \ell} \neq \mathbb{1}} \lambda_{\phi \phi \mathcal{O}}^2 F_{\Delta, \ell} = 1 \]
Numerical bootstrap

Sum rule

\[\lambda_{\phi\phi}^2 \mathcal{O}_{\Delta_*, \ell_*} F_{\Delta_*, \ell_*} + \sum_{\mathcal{O} \in \phi \phi, \mathcal{O}_{\Delta_{\ell}} \neq 1} \lambda_{\phi\phi}^2 \mathcal{O} F_{\Delta, \ell} = 1 \]
Numerical bootstrap

Sum rule

\[\lambda^{2}_{\phi \phi \mathcal{O}_{\Delta_{*}, \ell_{*}}} \psi \cdot F_{\Delta_{*}, \ell_{*}} + \sum_{\mathcal{O} \in \phi \phi, \mathcal{O}_{\Delta_{\ell}} \neq \mathbb{1}, \mathcal{O} \neq \mathcal{O}_{\Delta_{*}, \ell_{*}}} \lambda^{2}_{\phi \phi \mathcal{O}} \psi \cdot F_{\Delta, \ell} = \psi \cdot 1 \]

- Find Functional \(\psi \) such that
Numerical bootstrap

Sum rule

\[\lambda_{\phi \phi}^{2} \psi \cdot F_{\Delta_{\ast}, \ell_{\ast}} + \sum_{\phi \not= \phi} \lambda_{\phi \phi}^{2} \psi \cdot F_{\Delta, \ell} = \psi \cdot 1 \]

- Find Functional \(\psi \) such that
 \[\psi \cdot F_{\Delta_{\ast}, \ell_{\ast}}(u, v) = 1 \]
Numerical bootstrap

Sum rule

\[\lambda_{\phi\phi O_{\Delta^*,\ell^*}}^2 \psi \cdot F_{\Delta^*,\ell^*} + \sum_{O \in \phi \neq O_{\Delta^*,\ell^*}} \lambda_{\phi\phi O}^2 \psi \cdot F_{\Delta,\ell} = \psi \cdot 1 \]

▶ Find Functional \(\psi \) such that

\[\psi \cdot F_{\Delta^*,\ell^*}(u, v) = 1 \]

\[\psi \cdot F_{\Delta,\ell}(u, v) \geq 0 \text{ for all } \{\Delta, \ell\} \text{ in spectrum} \]
Numerical bootstrap

Sum rule

\[\lambda^2_{\phi\phi, O_{\Delta^*,\ell^*}} \psi \cdot F_{\Delta^*,\ell^*} + \sum_{O \in \phi, O_{\Delta,\ell} \neq 1, O \neq O_{\Delta^*,\ell^*}} \lambda^2_{\phi\phi, O} \psi \cdot F_{\Delta,\ell} = \psi \cdot 1 \]

- Find Functional \(\psi \) such that
 - \(\psi \cdot F_{\Delta^*,\ell^*}(u, v) = 1 \)
 - \(\psi \cdot F_{\Delta,\ell}(u, v) \geq 0 \) for all \(\{\Delta, \ell\} \) in spectrum
 - Minimize \(\psi \cdot 1 \)
Numerical bootstrap

Sum rule

\[\lambda_{\phi\phi,\Delta_*,\ell_*}^2 \psi \cdot F_{\Delta_*,\ell_*} + \sum_{\mathcal{O} \in \phi\phi, \mathcal{O}_{\Delta,\ell} \neq 1} \lambda_{\phi\phi,\mathcal{O},\ell}^2 \psi \cdot F_{\Delta,\ell} = \psi \cdot 1 \]

- Find Functional \(\psi \) such that
 - \(\psi \cdot F_{\Delta_*,\ell_*}(u, v) = 1 \)
 - \(\psi \cdot F_{\Delta,\ell}(u, v) \geq 0 \) for all \(\{\Delta, \ell\} \) in spectrum
 - Minimize \(\psi \cdot 1 \)

- \[\lambda_{\phi\phi,\Delta_*,\ell_*}^2 \leq \psi \cdot 1 \]
Numerical bootstrap

Sum rule

\[\lambda^{2}_{\phi\phi} O_{\Delta,\ell} \psi \cdot F_{\Delta,\ell} = \sum_{O \in \phi\phi, \Delta, \ell \neq \phi\phi, \Delta, \ell} \lambda^{2}_{\phi\phi} O \psi \cdot F_{\Delta,\ell} = \psi \cdot 1 \]

- Find Functional \(\psi \) such that
 - \(\psi \cdot F_{\Delta,\ell}(u, v) = 1 \)
 - \(\psi \cdot F_{\Delta,\ell}(u, v) \geq 0 \) for all \(\{\Delta, \ell\} \) in spectrum
 - Minimize \(\psi \cdot 1 \)

- \(\lambda^{2}_{\phi\phi} O_{\Delta,\ell} \leq \psi \cdot 1 \)

- Truncate \(\psi = \sum_{m,n} a_{mn} \partial_{z}^{m} \partial_{\bar{z}}^{n} \bigg|_{z=\bar{z}=\frac{1}{2}} \)
Numerical bootstrap

Sum rule

\[
\lambda^2_{\phi\phi\mathcal{O}_{\Delta^*,\ell^*}} \psi \cdot F_{\Delta^*,\ell^*} + \sum_{\mathcal{O} \in \phi\phi, \mathcal{O}_{\Delta,\ell} \neq \mathcal{1}} \lambda^2_{\phi\phi\mathcal{O}} \psi \cdot F_{\Delta,\ell} = \psi \cdot 1
\]

- **Find Functional** \(\psi \) such that
 - \(\psi \cdot F_{\Delta^*,\ell^*}(u, v) = 1 \)
 - \(\psi \cdot F_{\Delta,\ell}(u, v) \geq 0 \) for all \(\{\Delta, \ell\} \) in spectrum
 - **Minimize** \(\psi \cdot 1 \)

- \(\lambda^2_{\phi\phi\mathcal{O}_{\Delta^*,\ell^*}} \leq \psi \cdot 1 \)

- **Truncate** \(\psi = \sum_{m,n \leq \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n \bigg|_{z=\bar{z}=\frac{1}{2}} \)

 - Increase \(\Lambda \Rightarrow \) bounds get stronger
Numerical bootstrap

Sum rule

\[\lambda_{\phi\phi O_{\Delta^*,\ell^*}}^2 \psi \cdot F_{\Delta^*,\ell^*} + \sum_{O \in \phi\phi, O_{\Delta\ell} \neq 1} \lambda_{\phi\phi O}^2 \psi \cdot F_{\Delta,\ell} = \psi \cdot 1 \]

- Find Functional \(\psi \) such that
 \[\psi \cdot F_{\Delta^*,\ell^*}(u, v) = 1 \]
 \[\psi \cdot F_{\Delta,\ell}(u, v) \geq 0 \text{ for all } \{\Delta, \ell\} \text{ in spectrum} \]
 \[\text{Minimize } \psi \cdot 1 \]

- \[\lambda_{\phi\phi O_{\Delta^*,\ell^*}}^2 \leq \psi \cdot 1 \]

- Truncate \(\psi = \sum_{m,n \leq \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n \big|_{z=\bar{z}=\frac{1}{2}} \)
 \[\text{Increase } \Lambda \Rightarrow \text{bounds get stronger} \]
 \[\text{Always true bounds} \]
The “simplest” Argyres-Douglas theory

Approach it through Coulomb branch

- $\mathcal{N} = 2$ chiral operator ϕ, $Q^I_{\alpha} \phi = 0$
 $\Delta_{\phi} = r$

\[\langle \phi \bar{\phi} \phi \rangle \quad \text{Two channels: } \phi \bar{\phi} \text{ and } \bar{\phi} \phi \]

Conformal blocks \Rightarrow superconformal blocks (only in $\bar{\phi} \phi$)

[Fitzpatrick, Kaplan, Khandker, Li, Poland, Simmons-Duffin]
The “simplest” Argyres-Douglas theory

Approach it through Coulomb branch

- $\mathcal{N} = 2$ chiral operator ϕ \quad $Q^I_\alpha \phi = 0$

 $\Delta_\phi = r$ \quad $r : \quad U(1)_r$ charge
The “simplest” Argyres-Douglas theory

Approach it through Coulomb branch

- $\mathcal{N} = 2$ chiral operator $\phi \quad Q^I_{\alpha}\phi = 0$
 $\Delta_\phi = r \quad r : \quad U(1)_r$ charge

- $\mathcal{N} = 2$ anti-chiral operator $\bar{\phi} \quad \tilde{Q}_I\bar{\alpha}\bar{\phi} = 0$
 $\Delta_\phi = -r$
The “simplest” Argyres-Douglas theory

Approach it through Coulomb branch

- $\mathcal{N} = 2$ chiral operator ϕ \quad $Q^I_{\alpha} \phi = 0$
 \[\Delta_{\phi} = r \quad r : \quad U(1)_r \text{ charge} \]

- $\mathcal{N} = 2$ anti-chiral operator $\bar{\phi}$ \quad $\bar{Q}_I \bar{\phi} = 0$
 \[\Delta_{\phi} = -r \]

\[\Delta_{\phi} = \frac{6}{5} \]
The “simplest” Argyres-Douglas theory

Approach it through Coulomb branch

- \(\mathcal{N} = 2 \) chiral operator \(\phi \)
 \[Q^I_{\alpha} \phi = 0 \]
 \[\Delta_{\phi} = r \quad r : \quad U(1)_r \text{ charge} \]

- \(\mathcal{N} = 2 \) anti-chiral operator \(\bar{\phi} \)
 \[\bar{Q}^{I\dot{\alpha}} \bar{\phi} = 0 \]
 \[\Delta_{\phi} = -r \]

\[\Delta_{\phi} = \frac{6}{5} \]
and \(c = \frac{11}{30} \) \(\langle TT \rangle \sim c \)
The “simplest” Argyres-Douglas theory

Approach it through Coulomb branch

- $\mathcal{N} = 2$ chiral operator $\phi \quad Q^I_{\alpha \bar{\alpha}} \phi = 0$
 \[\Delta_{\phi} = r \quad r : \quad U(1)_r \text{ charge} \]
- $\mathcal{N} = 2$ anti-chiral operator $\bar{\phi} \quad \bar{Q}^I_{\alpha \bar{\alpha}} \bar{\phi} = 0$
 \[\Delta_{\phi} = -r \]
- $\boxed{\Delta_{\phi} = \frac{6}{5}}$ and $c = \frac{11}{30} \quad (\langle TT \rangle \sim c)$
- $\langle \phi \phi \bar{\phi} \bar{\phi} \rangle$
The “simplest” Argyres-Douglas theory

Approach it through Coulomb branch

- $\mathcal{N} = 2$ chiral operator ϕ \quad $Q^I_{\alpha} \phi = 0$
 \[\Delta \phi = r \quad r : \quad U(1)_r \text{ charge} \]

- $\mathcal{N} = 2$ anti-chiral operator $\bar{\phi}$ \quad $\bar{Q}^I_{\dot{\alpha}} \bar{\phi} = 0$
 \[\Delta \phi = -r \]

- \[\Delta \phi = \frac{6}{5} \quad \text{and} \quad c = \frac{11}{30} \quad (\langle TT \rangle \sim c) \]

- $\langle \phi \phi \bar{\phi} \bar{\phi} \rangle$

- Two channels: $\phi \phi$ and $\bar{\phi} \bar{\phi}$
The “simplest” Argyres-Douglas theory

Approach it through Coulomb branch

- $\mathcal{N} = 2$ chiral operator ϕ \quad $Q^I_{\alpha \phi} = 0$
 \[
 \Delta_{\phi} = r \quad r : \quad U(1)_r \text{ charge}
 \]

- $\mathcal{N} = 2$ anti-chiral operator $\bar{\phi}$ \quad $\bar{Q}^I_{\dot{\alpha} \bar{\phi}} = 0$
 \[
 \Delta_{\bar{\phi}} = -r
 \]

- $\Delta_{\phi} = \frac{6}{5}$ and $c = \frac{11}{30}$ \quad ($\langle TT \rangle \sim c$)

- $\langle \phi \phi \bar{\phi} \bar{\phi} \rangle$

- Two channels: $\phi \phi$ and $\bar{\phi} \bar{\phi}$

- Conformal blocks \rightsquigarrow superconformal blocks (only in $\bar{\phi} \bar{\phi}$)

[Fitzpatrick Kaplan Khandker Li Poland Simmons-Duffin]
Minimum allowed central charge

Does $\langle \phi \bar{\phi} \phi \bar{\phi} \rangle$ know about $c \geq \frac{11}{30}$?
Does $\langle \phi \bar{\phi} \phi \bar{\phi} \rangle$ know about $c \geq \frac{11}{30}$?
Bounding OPE coefficients

\[\phi \phi \sim \phi^2 + \ldots \]

\[\Delta = 2\Delta_\phi \]

“\(\phi^2\)” protected dimension \(\Delta = 2\Delta_\phi\), unknown OPE coefficient
Bounding OPE coefficients

\[\phi \phi \sim \phi^2 + \ldots \]

\[\Delta = 2\Delta_{\phi} \]

"\(\phi^2 \)" protected dimension \(\Delta = 2\Delta_{\phi} \), unknown OPE coefficient

\[
\begin{array}{c}
\lambda_{\mathcal{E}_{12/5}}^2 \\
0.32 & 0.33 & 0.34 & 0.35 & 0.36 \\
2.10 & 2.12 & 2.14 & 2.16 & 2.18 & 2.20
\end{array}
\]

excluded
1 The Superconformal Bootstrap Program
2 Numerical bootstrap
3 Inversion formula
4 Summary and Outlook
The lightcone bootstrap

\[\bar{z} \to 1 \Rightarrow \Delta \to 2\Delta \phi + 2n + \ell(\phi \Box n \partial_\mu_1 ... \partial_\mu_\ell \phi) \]

\[\text{\textbackslash{}t-channel dominated by lowest twist } \tau_m \text{ operators} \]

\[\to \text{behavior reproduced by infinite sum over } s\text{-channel spins} \]

\[\Rightarrow \text{Large spin spectrum of CFT} \]
The lightcone bootstrap

\(\bar{z} \to 1 \) at fixed \(z \)

Diagram:
- \(s \)-channel
- \(t \)-channel
- Point \((\frac{1}{2}, \frac{1}{2}) \)
The lightcone bootstrap

\[\bar{z} \rightarrow 1 \text{ at fixed } z \]

\[
\lim_{\bar{z} \rightarrow 1} (1 - \bar{z})^{2\Delta} \sum_{\Delta, \ell} \lambda_{\phi \phi}^{2} O_{\Delta, \ell} \cdot g_{\Delta, \ell}(z, \bar{z})
\]

\((\frac{1}{2}, \frac{1}{2}) \)
The lightcone bootstrap

\[\bar{z} \to 1 \text{ at fixed } z \]

\[
\lim_{\bar{z} \to 1} (1 - \bar{z})^{2\Delta} \sum_{\Delta, \ell} \lambda^2_{\phi\phi} O_{\Delta, \ell} \ g_{\Delta, \ell}(z, \bar{z})
\]

\[
= \left(f(z) + (1 - \bar{z})^{\tau_m} f_{\tau_m, \ell}(z) + \ldots \right)
\]
The lightcone bootstrap

\[\bar{z} \rightarrow 1 \text{ at fixed } z \]

\[\lim_{\bar{z} \rightarrow 1} (1 - \bar{z})^{2\Delta} \phi \sum_{\Delta, \ell} \lambda_{\phi \phi}^{2} O_{\Delta, \ell} g_{\Delta, \ell}(z, \bar{z}) \]

\[= \left(f(z) + (1 - \bar{z})^{\tau m} f_{\tau m, \ell}(z) + \ldots \right) \]
The lightcone bootstrap

\[\bar{z} \to 1 \text{ at fixed } z \]

\[\lim_{\bar{z} \to 1} (1 - \bar{z})^{2\Delta} \sum_{\Delta, \ell} \lambda_{\phi \phi}^{2} O_{\Delta, \ell} \ g_{\Delta, \ell}(z, \bar{z}) \]

\[= \left(f(z) + (1 - \bar{z})^{\tau_{m}} f_{\tau_{m}, \ell}(z) + \ldots \right) \]

\[\tau_{m} = \Delta - \ell \]

\[\rightarrow \ t-\text{channel dominated by lowest twist } \tau_{m} \text{ operators} \]
The lightcone bootstrap

\[\bar{z} \to 1 \text{ at fixed } z \]

\[\lim_{\bar{z} \to 1} (1 - \bar{z})^{2\Delta} \sum_{\Delta, \ell} \lambda_{\phi \phi}^2 O_{\Delta, \ell} \quad \text{with } g_{\Delta, \ell}(z, \bar{z}) \]

\[\log(1 - \bar{z}) \text{ as } \bar{z} \to 1 \]

\[= \left(f(z) + (1 - \bar{z})^{\tau_m} f_{\tau_m, \ell}(z) + \ldots \right) \]

\[\tau_m = \Delta - \ell \]

\[\tau_m = \Delta - \ell \]

\[\to t\text{-channel dominated by lowest twist } \tau_m \text{ operators} \]
The lightcone bootstrap

$\bar{z} \to 1$ at fixed z

$$
\lim_{\bar{z} \to 1} (1 - \bar{z})^{2\Delta} \sum_{\Delta, \ell} \lambda_{\phi\phi}^{2} \mathcal{O}_{\Delta, \ell} \sum_{\ell} g_{\Delta, \ell}(z, \bar{z}) \log(1 - \bar{z}) \text{ as } \bar{z} \to 1
$$

$$
= \left(f(z) + (1 - \bar{z})^{\tau_{m}} f_{\tau_{m}, \ell}(z) + \ldots \right)
$$

\rightarrow $t-$channel dominated by lowest twist τ_{m} operators

\rightarrow behavior reproduced by infinite sum over $s-$channel spins
The lightcone bootstrap

\[\tilde{z} \to 1 \text{ at fixed } z \]

\[\lim_{\tilde{z} \to 1} (1 - \tilde{z})^{2\Delta} \sum_{\Delta, \ell} \lambda_{\phi\phi}^2 \mathcal{O}_{\Delta, \ell} \frac{g_{\Delta, \ell}(z, \tilde{z})}{\log(1 - \tilde{z}) \text{ as } \tilde{z} \to 1} \]

\[= \left(\begin{array}{c}
\frac{1}{1} f(z) + (1 - \tilde{z})^{\tau_m} f_{\tau_m, \ell}(z) + \ldots \end{array} \right) \]

→ \text{\(t\)–channel dominated by lowest twist } \tau_m \text{ operators}

→ \text{behavior reproduced by infinite sum over } \text{\(s\)–channel spins}

⇝ \text{Large spin spectrum of CFT}
The lightcone bootstrap

\[\bar{z} \to 1 \text{ at fixed } z \]

\[\lim_{\bar{z} \to 1} (1 - \bar{z})^{2\Delta} \sum_{\Delta, \ell} \lambda_{\phi \phi}^2 \mathcal{O}_{\Delta, \ell} \frac{g_{\Delta, \ell}(z, \bar{z})}{\log(1 - \bar{z}) \text{ as } \bar{z} \to 1} \]

\[= \left(f(z) + (1 - \bar{z})^{\tau_m} f_{\tau_m, \ell}(z) + \ldots \right) \]

\[\Rightarrow \text{ } t-\text{channel dominated by lowest twist } \tau_m \text{ operators} \]

\[\Rightarrow \text{ } \text{behavior reproduced by infinite sum over } s-\text{channel spins} \]

\[\sim \text{ } \text{Large spin spectrum of CFT} \]

\[\mathbb{1} \Rightarrow \Delta \to 2\Delta + 2n + \ell \quad (\phi \Box^n \partial_{\mu_1} \ldots \partial_{\mu_\ell} \phi) \]
A Lorentizan inversion formula

Large spin perturbation theory

→ Very successful for 3d Ising model

[Alday Zhiboedov, Simmons-Duffin]
A Lorentizan inversion formula

Large spin perturbation theory

→ Very successful for 3d Ising model

 [Alday Zhiboedov, Simmons-Duffin]

→ down to spin two!
A Lorentizan inversion formula

Large spin perturbation theory

→ Very successful for 3d Ising model

[Alday Zhiboedov, Simmons-Duffin]

→ down to spin two!

→ Invert s—channel OPE: Euclidean inversion formula
Large spin perturbation theory

→ Very successful for $3d$ Ising model

[Alday Zhiboedov, Simmons-Duffin]

→ down to spin two!

→ Invert s–channel OPE: Euclidean inversion formula

→ $c(\Delta, \ell)$ with poles where operators are, residues $\sim \lambda_{\Delta, \ell}^2$
A Lorentizan inversion formula

Large spin perturbation theory

→ Very successful for 3d Ising model
 [Alday Zhiboedov, Simmons-Duffin]
→ down to spin two!
→ Invert s—channel OPE: Euclidean inversion formula
→ $c(\Delta, \ell)$ with poles where operators are, residues $\sim \lambda^{2}_{\Delta,\ell}$
→ Need to know full correlation function to get full spectrum
Large spin perturbation theory

→ Very successful for 3d Ising model

[Alday Zhiboedov, Simmons-Duffin]

→ down to spin two!

→ Invert s—channel OPE: Euclidean inversion formula

→ $c(\Delta, \ell)$ with poles where operators are, residues $\sim \lambda^{2}_{\Delta,\ell}$

→ Need to know full correlation function to get full spectrum

→ only makes sense for integer ℓ
A Lorentizan inversion formula

Large spin perturbation theory

→ Very successful for 3d Ising model
 [Alday Zhiboedov, Simmons-Duffin]
→ down to spin two!
→ Invert s–channel OPE: Euclidean inversion formula
→ $c(\Delta, \ell)$ with poles where operators are, residues $\sim \lambda_{\Delta,\ell}^2$
→ Need to know full correlation function to get full spectrum
→ only makes sense for integer ℓ
→ [Caron-Huot] Inversion formula analytic in spin
 for $\ell > 1$
A Lorentizan inversion formula

Large spin perturbation theory

→ Very successful for 3d Ising model

 [Alday Zhiboedov, Simmons-Duffin]

→ down to spin two!

→ Invert s–channel OPE: Euclidean inversion formula

→ $c(\Delta, \ell)$ with poles where operators are, residues $\sim \lambda_{\Delta,\ell}^2$

→ Need to know full correlation function to get full spectrum

→ only makes sense for integer ℓ

→ [Caron-Huot] Inversion formula *analytic* in spin for $\ell > 1$

→ Operators organize in trajectories
A Lorentizan inversion formula

Large spin perturbation theory

→ Very successful for 3d Ising model
 [Alday Zhiboedov, Simmons-Duffin]
 down to spin two!
 Invert s–channel OPE: Euclidean inversion formula
 \(c(\Delta, \ell) \) with poles where operators are, residues \(\sim \lambda^{2}_{\Delta, \ell} \)
 Need to know full correlation function to get full spectrum
 only makes sense for integer \(\ell \)
 [Caron-Huot] Inversion formula analytic in spin
 for \(\ell > 1 \)
 Operators organize in trajectories
 large \(\ell \) dominated by low \(t \)–channel twists
Lorentzian inversion formula: Superconformal case

Invert $\phi \phi \text{ OPE}$
Lorentzian inversion formula: Superconformal case

Invert $\phi \phi \text{ OPE}$

→ Same as bosonic inversion, valid for $\ell > 1$
Lorentzian inversion formula: Superconformal case

Invert \(\phi\phi\) OPE

→ Same as bosonic inversion, valid for \(\ell > 1\)
→ Feed in \(\bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet} + \ldots\)
Lorentzian inversion formula: Superconformal case

Invert \(\phi \phi \) OPE

\[\rightarrow \text{Same as bosonic inversion, valid for } \ell > 1 \]
\[\rightarrow \text{Feed in } \bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet } + \ldots \]

Invert \(\bar{\phi} \phi \) OPE

\[\rightarrow \text{Supersymmetric inversion: valid for } \ell \geq 0 \]
Lorentzian inversion formula: Superconformal case

Invert $\phi\phi$ OPE

→ Same as bosonic inversion, valid for $\ell > 1$
→ Feed in $\bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet} + \ldots$

Invert $\bar{\phi}\phi$ OPE

→ Supersymmetric inversion: valid for $\ell \geq 0$
→ Feed in $\bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet} + \ldots$
→ and $\phi\phi \sim \phi^2 + \ldots$
Lorentzian inversion formula: Superconformal case

Invert $\phi \phi$ OPE

→ Same as bosonic inversion, valid for $\ell > 1$
→ Feed in $\bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet} + \ldots$

Invert $\bar{\phi} \phi$ OPE

→ Supersymmetric inversion: valid for $\ell \geq 0$
→ Feed in $\bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet} + \ldots$
→ and $\phi \phi \sim \phi^2 + \ldots$

Combine the two?
A Lorentizan inversion formula

Inverting the \(\phi\phi\) OPE

→ Same as bosonic inversion, valid for \(\ell > 1\)
→ Only input: \(\bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet}\)
A Lorentizan inversion formula

Inverting the \(\phi \phi \) OPE

\[\phi \phi \sim \phi^2 + \lambda^2 \frac{C_\ell}{\Delta = 2\Delta_\phi} + \lambda^2 \frac{C_{\ell>0}}{\Delta = 2\Delta_\phi + \ell} + \ldots \]

→ Same as bosonic inversion, valid for \(\ell > 1 \)
→ Only input: \(\bar{\phi} \phi \sim 1 \) + Stress tensor multiplet
A Lorentizan inversion formula

Inverting the $\phi \phi$ OPE

→ Same as bosonic inversion, valid for $\ell > 1$
→ Only input: $\bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet}$

$$\phi \phi \sim \phi^2 + \lambda^2_{C_{\ell}} + C_{\ell>0} + \ldots$$

$\Delta = 2\Delta_\phi$
$\Delta = 2\Delta_\phi + \ell$

![Graphs showing the behavior of different terms with respect to ℓ and $\lambda_{C_{\ell}}$](image-url)
1 The Superconformal Bootstrap Program
2 Numerical bootstrap
3 Inversion formula
4 Summary and Outlook
Constraints on the “simplest” Argyres-Douglas theory
Summary and Outlook

Constraints on the “simplest” Argyres-Douglas theory

→ Hybrid numeric-analytical approach?
Summary and Outlook

Constraints on the “simplest” Argyres-Douglas theory

→ Hybrid numeric-analytical approach?

Zooming in to other strongly coupled $\mathcal{N} = 2$ SCFTs

→ how should we approach them?
Constraining the space of $4d \mathcal{N} = 2$ SCFTs

$SU(2)$ flavor symmetry

- stress tensor and flavor current supermultiplets
Constraining the space of 4d $\mathcal{N} = 2$ SCFTs

SU(2) flavor symmetry

- stress tensor and flavor current supermultiplets

![Graph showing analytically ruled out regions](image)

[Beem ML Liendo Peelaers Rastelli van Rees, ML Liendo]
Constraining the space of $4d \mathcal{N} = 2$ SCFTs

SU(2) flavor symmetry
(similar for SU(3), SO(8), E_6, E_7, E_8, G_2, F_4)

- stress tensor and flavor current supermultiplets

[Beem ML Liendo Peelaers Rastelli van Rees, ML Liendo]
Summary and Outlook

Constraints on the “simplest” Argyres-Douglas theory

→ Hybrid numeric-analytical approach?

Zooming in to other strongly coupled $\mathcal{N} = 2$ SCFTs

(at corners of $SU(2)$, $SU(3)$, E_6, E_7, E_8 exclusion curves)
Summary and Outlook

Constraints on the “simplest” Argyres-Douglas theory

→ Hybrid numeric-analytical approach?

Zooming in to other strongly coupled $\mathcal{N} = 2$ SCFTs

(at corners of $SU(2)$, $SU(3)$, E_6, E_7, E_8 exclusion curves)

→ Mixed system:

stress tensor - flavor current supermultiplet
Summary and Outlook

Constraints on the “simplest” Argyres-Douglas theory

→ Hybrid numeric-analytical approach?

Zooming in to other strongly coupled $\mathcal{N} = 2$ SCFTs

(at corners of $SU(2)$, $SU(3)$, E_6, E_7, E_8 exclusion curves)

→ Mixed system:
 stress tensor - flavor current supermultiplet

→ Required superblocks not known!
Constraints on the “simplest” Argyres-Douglas theory

→ Hybrid numeric-analytical approach?

Zooming in to other strongly coupled $\mathcal{N} = 2$ SCFTs
(at corners of $SU(2)$, $SU(3)$, E_6, E_7, E_8 exclusion curves)

→ Mixed system:
 stress tensor - flavor current supermultiplet

→ Required superblocks not known!

→ Stronger numerical constraints on the space of theories?
 → Is $c_{4d}/k_{4d} \geq \ldots$?
Summary and Outlook

Constraints on the “simplest” Argyres-Douglas theory

→ Hybrid numeric-analytical approach?

Zooming in to other strongly coupled $\mathcal{N} = 2$ SCFTs
(at corners of $SU(2)$, $SU(3)$, E_6, E_7, E_8 exclusion curves)

→ Mixed system:
 stress tensor - flavor current supermultiplet

→ Required superblocks not known!

→ Stronger numerical constraints on the space of theories?
 ↔ Is $c_{4d}/k_{4d} \geq ...$?

→ What about G_2 and F_4?
Thank you!
5 A solvable subsector

6 $4d \mathcal{N} = 3$ SCFTs

7 Lorentizan inversion formula

8 Constraining the space of $\mathcal{N} = 2$ SCFTs
Chiral algebra

Organize operators in representations of superconformal algebra

\(\{ O_{\Delta,(j_1,j_2)}, \} \)
Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, R^\mathbb{R}, r^\mathbb{R}, f \} \]
Chiral algebra

Organize operators in representations of superconformal algebra

\{ O_{\Delta, (j_1, j_2)}, R, r, f \}

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4 \),
Chiral algebra

Organize operators in representations of superconformal algebra
\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, R _{SU(2)_R \ U(1)_r}, r, f \} \]

Claim

\[\rightarrow \text{ Pick a plane } \mathbb{R}^2 \in \mathbb{R}^4, \ (z, \bar{z}) \in \mathbb{R}^2 \]
Chiral algebra

Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, R, r, f \} \]

Claim

\[\rightarrow \text{ Pick a plane } \mathbb{R}^2 \in \mathbb{R}^4, \ (z, \bar{z}) \in \mathbb{R}^2 \]

\[\langle \mathcal{O}_1^{l_1}(z_1, \bar{z}_1) \ldots \mathcal{O}_n^{l_n}(z_n, \bar{z}_n) \rangle \]
Chiral algebra

Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, R, r, f \} \]

Claim

\[\rightarrow \text{ Pick a plane } \mathbb{R}^2 \in \mathbb{R}^4, \ (z, \bar{z}) \in \mathbb{R}^2 \]
\[\rightarrow \text{ Restrict to operators with } \Delta = 2R + j_1 + j_2 \]

\[\langle \mathcal{O}_{1}^{l_1}(z_1, \bar{z}_1) \ldots \mathcal{O}_{n}^{l_n}(z_n, \bar{z}_n) \rangle \]
Chiral algebra

Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, \underbrace{R}_{SU(2)_R}, \underbrace{r}_{U(1)_R}, f \} \]

Claim

\[\rightarrow \text{ Pick a plane } \mathbb{R}^2 \in \mathbb{R}^4, \ (z, \bar{z}) \in \mathbb{R}^2 \]
\[\rightarrow \text{ Restrict to operators with } \Delta = 2R + j_1 + j_2 \]

\[u_{l_1}(\bar{z}_1) \ldots u_{l_n}(\bar{z}_n) \langle \mathcal{O}_{1}^{l_1}(z_1, \bar{z}_1) \ldots \mathcal{O}_{n}^{l_n}(z_n, \bar{z}_n) \rangle \]
Chiral algebra

Organize operators in representations of superconformal algebra
\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, \underbrace{R}_{SU(2)_R}, \underbrace{r}_{U(1)_{\Delta}}, f \} \]

Claim

\[\rightarrow \text{ Pick a plane } \mathbb{R}^2 \in \mathbb{R}^4, \ (z, \bar{z}) \in \mathbb{R}^2 \]
\[\rightarrow \text{ Restrict to operators with } \Delta = 2R + j_1 + j_2 \]

\[u_{l_1}(\bar{z}_1) \ldots u_{l_n}(\bar{z}_n) \langle \mathcal{O}_{1}^{l_1}(z_1, \bar{z}_1) \ldots \mathcal{O}_{n}^{l_n}(z_n, \bar{z}_n) \rangle = f(z_i) \]

\[\rightarrow \text{ Meromorphic!} \]
Why?

- Subsector = Cohomology of nilpotent Q
Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + \mathcal{S}$
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent \(Q \sim Q + S \)
- Cohomology at the origin \(\Rightarrow \) non-empty classes
Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- Cohomology at the origin \Rightarrow non-empty classes
 \[\Delta = 2R + j_1 + j_2 \]
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + S$
- Cohomology at the origin \Rightarrow non-empty classes
- $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathcal{Q} \sim \mathcal{Q} + \mathcal{S}$
- Cohomology at the origin \Rightarrow non-empty classes
 \[\Delta = 2R + j_1 + j_2 \]
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
 \[\text{commutes with } \mathcal{Q} \]
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- Cohomology at the origin \Rightarrow non-empty classes
 \[\Delta = 2R + j_1 + j_2 \]
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
 - commutes with \mathcal{Q}
 - does not

$\mathfrak{su}(2) \mathbb{R}$ is \mathbb{Q} exact \Rightarrow anti-holomorphic dependence drops out
Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + S$
- Cohomology at the origin \Rightarrow non-empty classes
- $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
 - commutes with \mathbb{Q}
 - does not
- twisted translations $u_I(\bar{z})$
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent \(Q \sim Q + S \)

 → Cohomology at the origin ⇒ non-empty classes

 \[\Delta = 2R + j_1 + j_2 \]

- On plane \(\mathfrak{sl}_2 \times \mathfrak{sl}_2 \)

 commutes with \(Q \)

 does not

 → twisted translations \(u_I(\bar{z}) \)

 → diagonal subalgebra \(\mathfrak{sl}_2 \times \mathfrak{su}(2)_R \) is \(Q \) exact
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $Q \sim Q + S$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
 commutes with Q
 does not
- Twisted translations $u_1(\bar{z})$
- Diagonal subalgebra $\mathfrak{sl}_2 \times \mathfrak{su}(2)_R$ is Q exact
- Anti-holomorphic dependence drops out
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[
Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix}
\]

\[
u_I = (1, \bar{z})
\]

\[
q(z, \bar{z}) = u_I Q'
\]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]

\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z}\tilde{Q}^*(z, \bar{z}) \]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[
Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix}
\]

\[
u_I = (1, \bar{z})
\]

\[
q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z})
\]

\[
\tilde{q}(z, \bar{z}) = u_I \tilde{Q}'
\]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]

\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]

\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]

\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]

\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]

\[\to q(z, \bar{z})\tilde{q}(0) \sim \]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]
\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]

\[\rightarrow q(z, \bar{z}) \tilde{q}(0) \sim \bar{z} \tilde{Q}^*(z, \bar{z}) \tilde{Q}(0) \sim \]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]
\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]

\[\rightarrow q(z, \bar{z})\tilde{q}(0) \sim \bar{z} \tilde{Q}^*(z, \bar{z})\tilde{Q}(0) \sim \frac{\bar{z}}{z\bar{z}} \]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]
\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]

\[q(z, \bar{z}) \tilde{q}(0) \sim \bar{z} \tilde{Q}^*(z, \bar{z}) \tilde{Q}(0) \sim \frac{\bar{z}}{z \bar{z}} = \frac{1}{z} \]
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu}$
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \leadsto$ superdescendant
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
→ Stress tensor supermultiplet
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu}$ \leadsto superdescendant
→ Stress tensor supermultiplet

\[
T(z)T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,
\]
4d $\mathcal{N} \geq 2$ SCFT \rightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant

\rightarrow Stress tensor supermultiplet \Rightarrow 2d stress tensor

\[
T(z) T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,
\]
Which operators are in the cohomology?

- Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
- Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

$$T(z) T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,$$

\hookrightarrow Global \mathfrak{sl}_2 enhances to Virasoro
4d $\mathcal{N} \geq 2$ SCFT \longrightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Stress tensor $T_{\mu\nu}$ \rightsquigarrow superdescendant

\rightarrow Stress tensor supermultiplet \Rightarrow 2d stress tensor

$$T(z) T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,$$

\leftarrow Global \mathfrak{sl}_2 enhances to Virasoro

\leftarrow $c_{2d} = -12c_{4d}$
4d $\mathcal{N} \geq 2$ SCFT \longrightarrow chiral algebra

Which operators are in the cohomology?

→ Theory with flavor symmetry
4d $\mathcal{N} \geq 2$ SCFT \rightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Theory with flavor symmetry
\rightarrow Multiplet containing flavor current
4d $\mathcal{N} \geq 2$ SCFT \rightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Theory with flavor symmetry
\rightarrow Multiplet containing flavor current
\leftarrow Affine Kac Moody current algebra

\[J^a(z)J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + if^{abc} \frac{J^c(0)}{z} + \ldots , \]
Which operators are in the cohomology?

→ Theory with flavor symmetry
→ Multiplet containing flavor current
← Affine Kac Moody current algebra

\[J^a(z)J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + if^{abc}\frac{J^c(0)}{z} + \ldots, \]

→ \[k_{2d} = -\frac{k_{4d}}{2} \]
Which operators are in the cohomology?

→ Theory with flavor symmetry
→ Multiplet containing flavor current
← Affine Kac Moody current algebra

\[J^a(z) J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + i\epsilon^{abc} \frac{J^c(0)}{z} + \ldots, \]

← \[k_{2d} = -\frac{k_{4d}}{2} \]
→ \[\ldots \]
5 A solvable subsector

6 4d $\mathcal{N} = 3$ SCFTs

7 Lorentizan inversion formula

8 Constraining the space of $\mathcal{N} = 2$ SCFTs
$\mathcal{N} = 3$ Chiral algebra

- $4d \mathcal{N} \geq 3$: some of the extra supercharges commute with Q
$\mathcal{N} = 3$ Chiral algebra

- $4d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
 \[\rightarrow 4d \mathcal{N} = 4 \Rightarrow 2d \text{ “small” } \mathcal{N} = 4 \text{ chiral algebra}\]
$\mathcal{N} = 3$ Chiral algebra

- $4d \, \mathcal{N} \geq 3$: some of the extra supercharges commute with \mathbb{Q}
 - $4d \, \mathcal{N} = 4 \Rightarrow 2d$ “small” $\mathcal{N} = 4$ chiral algebra
 - $4d \, \mathcal{N} = 3 \Rightarrow 2d \, \mathcal{N} = 2$ chiral algebra [Nishinaka, Tachikawa]
\[\mathcal{N} = 3 \] Chiral algebra

- 4d \(\mathcal{N} \geq 3 \): some of the extra supercharges commute with \(Q \)
 - \(4d \mathcal{N} = 4 \) \(\Rightarrow \) 2d “small” \(\mathcal{N} = 4 \) chiral algebra
 - \(4d \mathcal{N} = 3 \) \(\Rightarrow \) 2d \(\mathcal{N} = 2 \) chiral algebra [Nishinaka, Tachikawa]
- 2d stress tensor promoted to supermultiplet

![Diagram]

- \(J(z) \)
- \(Q \)
- \(D(z) \)
- \(T(z) \)
$\mathcal{N} = 3$ Chiral algebra

- $4d \mathcal{N} \geq 3$: some of the extra supercharges commute with Q
 - $4d \mathcal{N} = 4 \Rightarrow 2d$ “small” $\mathcal{N} = 4$ chiral algebra
 - $4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2$ chiral algebra [Nishinaka, Tachikawa]

- $2d$ stress tensor promoted to supermultiplet

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}
\(\mathcal{N} = 3 \) Chiral algebra

- 4d \(\mathcal{N} \geq 3 \): some of the extra supercharges commute with \(Q \)
 - \(4d \mathcal{N} = 4 \Rightarrow 2d \) “small” \(\mathcal{N} = 4 \) chiral algebra
 - \(4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2 \) chiral algebra [Nishinaka, Tachikawa]

- 2d stress tensor promoted to supermultiplet

2d \(\mathcal{N} = 2 \) Stress tensor \(\mathcal{J} \)

- Present in any local \(\mathcal{N} = 3 \) SCFT
\(\mathcal{N} = 3 \) Chiral algebra

- 4d \(\mathcal{N} \geq 3 \): some of the extra supercharges commute with \(Q \)
 - 4d \(\mathcal{N} = 4 \) \(\Rightarrow \) 2d “small” \(\mathcal{N} = 4 \) chiral algebra
 - 4d \(\mathcal{N} = 3 \) \(\Rightarrow \) 2d \(\mathcal{N} = 2 \) chiral algebra [Nishinaka, Tachikawa]

- 2d stress tensor promoted to supermultiplet

2d \(\mathcal{N} = 2 \) Stress tensor \(J \)

- Present in any local \(\mathcal{N} = 3 \) SCFT
- A trivial statement in 2d:
 \(\langle J J J J \rangle \) is fixed in terms of \(c_{2d} \)
2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}
Space of $\mathcal{N} = 3$ SCFTs

$2d \, \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- $2d$ Superblock decomposition:

\[
\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \mathcal{O}_{2d}
\]
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \mathcal{O}_{2d}$$

$\rightarrow \lambda_{\mathcal{O}_{2d}}^2$
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

 $$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \rightarrow \mathcal{O}_{2d}$$

 $$\rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2$$

assumptions: interacting theory, unique stress tensor
Space of $\mathcal{N} = 3$ SCFTs

$2d \ \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \mathcal{O}_{2d} \rightarrow \lambda_{\mathcal{O}_{4d}}^2 \geq 0$$

4d unitarity

assumptions: interacting theory, unique stress tensor
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \rightarrow\lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2 \geq 0 \Rightarrow \text{New unitarity bound}$$

assumptions: interacting theory, unique stress tensor
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \mathcal{O}_{2d}$$

$$\rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2 \quad \geq 0 \quad \Rightarrow \text{New unitarity bound}$$

4d unitarity

assumptions: interacting theory, unique stress tensor

$$c_{4d} \geq \frac{13}{24}$$

[Cornagliotto, ML, Schomerus]
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

\[c_{4d} \geq \frac{13}{24} \quad [\text{Cornagliotto, ML, Schomerus}] \]

\mapsto Not saturated by any known SCFT
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

\[
c_{4d} \geq \frac{13}{24}
\]
[Cornagliotto, ML, Schomerus]

\rightarrow Not saturated by any known SCFT

smallest interacting known theory: $c_{4d} = \frac{15}{12}$
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$C_{4d} \geq \frac{13}{24}$ \[\text{[Cornagliootto, ML, Schomerus]}\]

\rightarrow Not saturated by any known SCFT

smallest interacting known theory: $c_{4d} = \frac{15}{12}$

\rightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs \[\text{[Beem, Rastelli, van Rees]} \ [\text{Liendo, Ramirez, Seo}]\]
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

\[
c_{4d} \geq \frac{13}{24} \quad \text{[Cornagliotto, ML, Schomerus]}
\]

\hookrightarrow Not saturated by any known SCFT
smallest interacting known theory: $c_{4d} = \frac{15}{12}$

\hookrightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in $\mathcal{J} \mathcal{J}$
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\begin{array}{c}
c_{4d} \geq \frac{13}{24} \\
\text{[Cornagliotto, ML, Schomerus]}
\end{array}$

\leftarrow Not saturated by any known SCFT
smallest interacting known theory: $c_{4d} = \frac{15}{12}$

\leftarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in $\mathcal{J} \mathcal{J}$

\rightarrow Inconsistent with an *interacting* 4d SCFT
2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$c_{4d} > \frac{13}{24}$ \[\text{[Cornaglione, ML, Schomerus]}\]

\leftrightarrow Not saturated by any known SCFT

smallest interacting known theory: $c_{4d} = \frac{15}{12}$

\leftrightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs \[\text{[Beem, Rastelli, van Rees]} \text{[Liendio, Ramirez, Seo]}\]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in $\mathcal{J} \mathcal{J}$

\rightarrow Inconsistent with an interacting 4d SCFT
5 A solvable subsector

6 4d $\mathcal{N} = 3$ SCFTs

7 Lorentizan inversion formula

8 Constraining the space of $\mathcal{N} = 2$ SCFTs
Inverting the $\phi \bar{\phi}$ OPE

\rightarrow Supersymmetric inversion: valid for $\ell \geq 0$

\rightarrow Only input: $\bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet}$
A Lorentzian inversion formula

Inverting the $\phi \bar{\phi}$ OPE

- Supersymmetric inversion: valid for $\ell \geq 0$
- Only input: $\bar{\phi} \phi \sim 1 + $ Stress tensor multiplet

$$\phi \bar{\phi} \sim \left[\phi \bar{\phi} \right]_{\Delta \to 2\Delta + \ell, \ell \to \infty} + \cdots$$
5 A solvable subsector

6 $4d \mathcal{N} = 3$ SCFTs

7 Lorentizan inversion formula

8 Constraining the space of $\mathcal{N} = 2$ SCFTs
Space of $\mathcal{N} = 2$ SCFTs

$4d$ $\mathcal{N} = 2$ SCFT with flavor symmetry

\rightarrow Stress tensor multiplet
Space of $\mathcal{N} = 2$ SCFTs

$4d \, \mathcal{N} = 2$ SCFT with flavor symmetry

→ Stress tensor multiplet $\Rightarrow T(z)$
Space of $\mathcal{N} = 2$ SCFTs

$4d \mathcal{N} = 2$ SCFT with flavor symmetry

\rightarrow Stress tensor multiplet $\Rightarrow T(z)$
\rightarrow Flavor symmetry current multiplet
Space of $\mathcal{N} = 2$ SCFTs

4d $\mathcal{N} = 2$ SCFT with flavor symmetry

→ Stress tensor multiplet $\Rightarrow T(z)$
→ Flavor symmetry current multiplet $\Rightarrow J^a(z)$
Space of $\mathcal{N} = 2$ SCFTs

4d $\mathcal{N} = 2$ SCFT with flavor symmetry

\rightarrow Stress tensor multiplet $\Rightarrow T(z)$

\rightarrow Flavor symmetry current multiplet $\Rightarrow J^a(z)$

\[
T(z)T(0) \sim -12\frac{c_{4d}/2}{z^4} + 2\frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,
\]
Space of $\mathcal{N} = 2$ SCFTs

4d $\mathcal{N} = 2$ SCFT with flavor symmetry

\rightarrow Stress tensor multiplet $\Rightarrow T(z)$

\rightarrow Flavor symmetry current multiplet $\Rightarrow J^a(z)$

$$T(z)T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,$$

$$J^a(z)J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + i f^{abc} \frac{J_c(0)}{z} + \ldots,$$
Space of $\mathcal{N} = 2$ SCFTs

4d $\mathcal{N} = 2$ SCFT with flavor symmetry

\rightarrow Stress tensor multiplet $\Rightarrow T(z)$
\rightarrow Flavor symmetry current multiplet $\Rightarrow J^a(z)$

$$T(z)T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,$$

$$J^a(z)J^b(0) \sim - \frac{k_{4d}/2\delta^{ab}}{z^2} + if^{abc} \frac{J^c(0)}{z} + \ldots ,$$

n Fix in terms of c_{4d} and k_{4d}:

$$\langle TTTT \rangle, \quad \langle J^a J^b J^c J^d \rangle, \quad \langle TTJ^a J^b \rangle$$
Constraining the space of $4d \mathcal{N} = 2$ SCFTs

E_6 flavor symmetry

![Graph showing the ruled out and numerically ruled out regions for different e values.

$[\text{Beem, ML, Liendo, Peelaers, Rastelli, van Rees}]$ $[\text{ML, Liendo}]$

$[\text{Beem, ML, Liendo, Rastelli, van Rees}]$