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ABSTRACT  

We discuss the design of grating-based monochromators for coherent ultrafast pulses in the extreme-ultraviolet. The 
main application of such instruments is the monochromatization of ultrafast high-order laser harmonics and free-
electron-laser pulses. We present the conditions to be fulfilled by a grating monochromator that doesn’t increase the 
pulse duration significantly longer than the Fourier limit. A full correction of the pulse-front tilt requires the use of two 
gratings in a time-delay compensating configuration. The grating-monochromator configuration is applied to the design  
of the monochromatic beamline for FLASH2 at DESY. The monochromator has to be tunable in the 50-1000 eV energy 
range with a resolving power higher than 1000 and an instrumental response shorter than 100 fs in the whole energy 
range. Given the actual parameters of the FLASH2 radiation and the restrictions in the positioning of the optical 
elements, the tilt of the pulse-front given by a single grating would give an unacceptable temporal stretching of the pulse. 
This has to be corrected by a second grating in the compensated configuration. The residual distortion of the pulse-front 
after the second grating is well below 10 fs. 
 
Keywords: time-delay-compensated monochromator, diffraction, variable-line-spaced grating, free-electron laser 
 

1. INTRODUCTION  
Free-electron laser (FEL) sources provide spatially coherent extreme-ultraviolet (XUV) and X-ray radiation with 
characteristics similar to the light from optical lasers, ultrashort time duration and an increase of 6-8 orders of magnitude 
on the peak brilliance with respect to 3rd-generation synchrotrons. There are several operating FEL facilities already open 
to users’ experiments: FLASH in Germany (flash.desy.de), SACLA-XFEL in Japan (xfel.riken.jp), LCLS in the United 
States (lcls.slac.stanford.edu), FERMI in Italy (https://www.elettra.trieste.it/lightsources/fermi.html) [1-5]. Other FEL 
facilities are currently under development, such as the European XFEL in Germany, MAX IV in Sweden, SwissFEL in 
Switzerland or POLFEL in Poland (see https://www.fels-of-europe.eu). 
The handling of ultrashort and ultra-intense FEL radiation is quite demanding for the optical technologies that are 
required to guarantee the preservation of the pulse properties [6]. In particular, due to the intrinsic multi-harmonics 
generation process, one of the most demanded beamline feature is the possibility to monochromatize the FEL beam even 
beyond the intrinsic FEL resolution, similarly with what is normally realized with synchrotron emission. Grating 
monochromators are already used in FEL beamlines, both at FLASH [7, 8] and LCLS [9, 10]. They give both tunability 
in a broad spectral range and high spectral selectivity. 
The use of gratings to realize XUV monochromators for ultrafast pulses with time response on the femtosecond time 
scale is well established [11]. Both the single- [12] and the double-grating design [13] have been adopted. In the first 
case, a residual pulse-front tilt due to the diffraction has to be accepted at the output of the monochromator, that can be 
minimized by choosing a suitable geometry to obtain temporal responses in the range of few tens of femtoseconds in the 
XUV, as demonstrated in beamlines using high-order laser harmonics (HHs) [14-17]. In the second case, the design 
consists of a pair of gratings to compensate for the pulse-front tilt introduced by the diffraction: the first grating is 
demanded to perform the spectral selection on an intermediate slit while the second grating corrects for the pulse-front 
tilt. Double-grating instruments have been demonstrated to be very effective for HHs, with time resolution below 10 fs 
[18-22]. They have also been proposed as IR-XUV beam separators for HHs [23] and as compressors for attosecond 
pulses [24, 25]. Recently, double-grating configurations have been demonstrated to be effective for pulse compression to 
realize chirped-pulse amplification for FEL pulses in the XUV [26, 27]. 
In this paper, we present the design of a dedicated time-delay compensating monochromator beamline for the FLASH2 
undulator line at DESY [28]. The monochromator is designed to be tunable in the 50-1000 eV energy range with a 
resolving power higher than 1000 and an instrumental response shorter than 100 fs in the whole energy range. Given the 
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actual parameters of the FLASH2 radiation (in particular its divergence) and the restrictions in the positioning of the 
optical elements (the minimum distance from the source), the pulse-front tilt given by a single grating would introduce 
an unacceptable temporal stretching of the pulse at the output of the monochromator in the picosecond time scale, as will 
be shown below. This is detrimental for temporal resolution and peak power of the monochromatized pulses. Therefore, 
the tilt has to be corrected by a second grating in the compensated configuration. The optical design originates from the 
variable-line-spaced (VLS) grating monochromator, that uses a plane grating with VLS grooves illuminated in 
converging light. A second grating is added to compensate for the tilt of the pulse-front. The residual distortion of the 
pulse-front after the second grating, i.e. the instrumental response of the monochromator, is well below 10 fs, as shown 
by the ray-tracing simulations. 
The advantages of the present design are the following: 1) it minimizes the number of optical elements, since just one 
grating is added with respect to a standard VLS monochromator beamline; 2) it requires simple mechanical movements,  
of operation; 3) it fits within the design requirements for the FLASH2 experimental hall. 

2. SINGLE-GRATING MONOCHROMATORS FOR ULTRASHORT PULSES 
Single-grating monochromators for ultrafast pulses perform the spectral selection in the simplest configuration, using a 
grating as the dispersive element and tolerating a residual pulse-front tilt at the output. We will analyze here the 
conditions to have the minimum pulse-front tilt. 
The grating geometry normally adopted for synchrotron and FEL radiation is the classical diffraction geometry, that is 
shown in Figure 1. The grating equation is sin α − sin β = mλσ, where α is the incidence angle, β is the diffraction angle, 
σ is the groove density and m is the diffraction order. The angles are both taken with positive signs. 

diffracted
α

incident

β

grating 

 
Figure 1. Reflective grating in the classical diffraction geometry. 

A grating introduces a tilt of the pulse-front because of diffraction, since each ray that is diffracted by two adjacent 
grooves is delayed by mλ, where λ is the wavelength. The total tilt of the pulse-front, i.e., the difference in the optical 
paths of the diffracted beam from the source to the image, is |m|λΝ, where N is the number of the illuminated grooves. 
For example, a 200 gr/mm grating illuminated by radiation at 20 nm over a surface of 10 mm gives a tilt of 40 μm, i.e. 
130 fs. Therefore the pulse-front tilt depends on the number of grooves involved in the diffraction process. 
Once the required resolution R = λ/Δλ at the output of the monochromator has been defined, the Rayleigh criterion 
states that the minimum number of grooves Nmin that have to be involved in the diffraction to support such a resolution is 
|m|Nmin= λ/Δλ. The corresponding half-width variation of the optical paths at the grating output is 
ΔOPmin ≅ ½ |m|λNmin = ½ λ2/Δλ. It follows that the diffraction from a grating gives a lower limit for the pulse-front tilt  
ΔτG,min given by  

λ
λτ
Δ

≅Δ
25.0

min, cG        (1) 

where Δλ is the half-height spectral width and c the speed of light in vacuum. This value is close to the Fourier limit, that 
states the minimum pulse duration for a given bandwidth is  

λ
λτ
Δ

≅Δ
244.0

c
        (2) 

for a Gaussian pulse, where Δτ is the half-height pulse duration. 
Therefore the single-grating design can be adopted for the monochromatization of ultrashort pulses without altering in a 
significant way the pulse duration beyond the Fourier limit, provided that the number of illuminated grooves times the 
diffracted order is equal to the actual resolution. 
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In the following, we discuss the design of an ultrafast monochromator with negligible front-tilt. For simplicity, we 
consider the plane-grating configuration shown in Figure 2. The wavelength scanning is performed by rotating the 
grating around the axis tangent to its vertex and parallel to the grooves by the angle 

⎥
⎦

⎤
⎢
⎣

⎡
+=

)2cos(2
arcsin

2 K
mK λσα       (3) 

where K is the subtended angle: K = α + β. 
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Figure 2. Plane-grating monochromator. 

The resolution at the output of the monochromator depends on the spectral dispersion and on the width of the slits. Let us 
suppose that the width of the exit slit, WOUT, is equal to the width of the input slit, WIN, as imaged at the output. This is 
the minimum width that has to be kept to guarantee the complete transmission of the diffracted beam. A larger width 
would give a poorer resolution, a smaller width would give a higher resolution although with losses in the photon flux. It 
results WOUT  = WIN cosα/cosβ q/p, where cosα/cosβ is the grating anamorphism and q/p is the geometric magnification 
(q and p are the input and output arms of M1 and M2, respectively). The same considerations can be applied to concave-
grating monochromators, as the spherical-grating monochromator (SGM) or the toroidal-grating monochromator (TGM), 
where p and q are the grating entrance and exit arms. The resulting output bandwidth is  

pm
W

qm
W INOUT σ

α
σ
βλ coscos

==Δ .      (4) 

The number of illuminated grooves is N = Dpσ/cosα, where D is the beam full divergence at the input. The condition 
λ/Δλ = |m|N to have the minimum pulse-front tilt is expressed by  

λ=INWD .       (5) 
The higher the divergence, the higher the pulse-front tilt given by the grating.  
The condition stated in Equation 5 is very close to the relation for a diffraction-limited source: θw = (4/π)λ for a 
Gaussian beam (θ and w measured at full width). It can be concluded that the minimum pulse front-tilt that is given by a 
single-grating monochromator is reached when the source is diffraction-limited and the instrument is designed to give 
the required resolution at an exit slit that is as wide as the projection of the input source after the diffraction. If these 
conditions are verified, the monochromator is defined to be pulse-preserving, since the pulse-front tilt is comparable to 
the Fourier limit calculated for that output bandwidth. 
As a test case, we present the design of a monochromator for the 20-40 eV region with a target energy bandwidth of 50 
meV at 30 eV. This is a typical requirement for HHs. The input beam is supposed to be Gaussian with WIN = 100 um and 
a half-width divergence D = 2λ(π WIN)−1. The groove density is σ = 600 gr/mm. The grating is operated at the first 
external order, i.e., β > α, and the subtended angle is K = 152°. The entrance arm is calculated from Equation 4 as 
p = 700 mm to give the required resolution at 30 eV. The exit arm does not influence the resolution, as soon as the width 
of the exit slit is chosen according to WOUT  = WIN cosα/cosβ q/p. Let us assume an exit arm equal to the entrance arm. 
The resulting performances are shown in Figure 3. The pulse-front tilt is slightly higher than the Fourier limit. It is 
decreasing when the energy is increasing, since both beam divergence and wavelength are decreasing. It can be 
concluded that for a single-grating monochromator the pulse-front tilt given by the diffraction is not negligible, although 
it may be close to the Fourier limit for diffraction-limited sources, provided that the geometrical conditions above 
discussed are verified. 
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3. DESIGN OF A MONOCHROMATIC BEAMLINE FOR FLASH2 
The main requirements for the monochromatic beamline for FLASH2 are listed in the following: 

• Spectral range 60-310 eV (4-20 nm), FLASH2 fundamental emission. 
• Spectral range 250-620 eV (2-5 nm), FLASH2 harmonics. 
• Spectral resolution higher than 1000 over the full spectral range. 
• Time response shorter than 100 fs. 

Furthermore there are some additional boundary conditions on the design: 
• The beamline should give minimum lateral displacement with respect to the original propagation axis of the 

beam at the input, to be accommodated between two adjacent beamlines that have been already designed. 
• The beamline should give minimum vertical displacement to reduce the change of the beam height. 

Furthermore, the output beam has to be parallel to the floor. 
• The first optical element of the beamline, i.e. the first deviating mirror, is placed ≈70 m from the source. 

When designing a beamline for new-generation FEL sources, there are also some major issues related to the source itself 
that also drive the design:  

• Due to the high angular and lateral stability of the source, the monochromator works without an entrance slit, 
i.e., the FEL itself acts as the source point for the monochromator. 

• Due to high photon flux, horizontal and vertical foci have to be kept separated to reduce the radiation density on 
the slit blades. 

The FEL source is assumed to have a size of 200 um (standard deviation). The source divergence is taken to be 75 urad 
(standard deviation) at 40 nm and scales as λ3/4. 
 

3.1. SINGLE-GRATING MONOCHROMATOR 

Let us study the performance of a VLS grating monochromator with a single grating. The optical layout is shown in 
Figure 6. The FEL beam is focused by the plane-elliptical mirror M1 toward the plane VLS grating G1. The latter is 
illuminated in converging light and diffracts the radiation toward the slit, where the beam is monochromatized. The 
radiation coming out from G2 is finally focused to the sample area by two plane-elliptical mirrors in the Kirkpatrick-
Baez configuration, M3 and M4. The additional plane mirror M2 is used in combination with mirror M3 to correct the 
vertical deviation of the beam and have an output beam that is parallel to the floor.  
 

Table 2.  Parameters of the VLS plane-grating monochromator for FLASH2, single-grating design. 

Source-to-M1 distance 70.0 m 

M1-to-G1 distance 1.0 m 

G1-to-slit distance 5.0 m 

Grating subtended angle 172°, external order 

GRATING G1  

Spectral range 280-620 eV 

Groove density 600 gr/mm 

GRATING G2  

Spectral range 120-310 eV 

Groove density 300 gr/mm 

GRATING G3  

Spectral range 120-60 eV 

Groove density 100 gr/mm 
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The parameters are resumed in Table 2. The mirror-to-grating and grating-to-slit distances have been chosen to give the 
required resolution on a slit that is ≈100-um wide. The full spectral range is covered by three gratings that are operated in 
the external order. The optical performances are resumed in Figure 7. The half-width pulse-front tilt is within the 
requirements for energies higher than 80 eV. At low energies, the half-width tilt can be as high as 250 fs. The pulse-front 
tilt is anyway well above the Fourier limit for the required resolution. 
Given the FLASH2 parameters and energy range, the single-grating monochromator gives a temporal stretching that is 
within the requirements only for high photon energies and anyway much longer than the Fourier limit. In the following, 
the double-grating configuration will be presented. 

 
3.2 DOUBLE-GRATING MONOCHROMATOR 

In the following, the double-grating configuration will be applied to the design of the FLASH2 monochromatic 
beamline. A time-delay compensating grating monochromator has to adopt two gratings in compensated configuration, 
i.e., the second grating has to compensate for the pulse-front tilt given by the first grating, to guarantee the ultrafast 
response. The first grating is demanded to perform the spectral selection at the intermediate slit plane, while the second 
grating has to compensate for the pulse-front tilt introduced by the first grating.  
The design originates from the VLS grating monochromator. The first section performs the spectral selection, while the 
second section has an identical VLS plane grating illuminated by the diverging light coming out from the slit and 
mounted in a compensated geometry. In principle, only three optical elements are required to realize a double-grating 
monochromator, namely the concave mirror and two VLS plane gratings, that are separated by an intermediate slit that 
carries out the beam monochromatization.  
The beamline layout is shown in Figure 8. The FEL beam is focused by the plane-elliptical mirror M1 toward the plane 
VLS grating G1. The latter is illuminated in converging light and diffracts the radiation toward the intermediate slit, 
where the beam is monochromatized. The grating G2 has the same groove-space-variation parameters as G1 and realizes 
the time-delay compensating configuration. The diverging radiation coming out from G2 is finally focused to the sample 
area by two plane-elliptical mirrors in the Kirkpatrick-Baez configuration. Again, the additional plane mirror M2 is used 
in combination with mirror M3 to correct the vertical deviation of the beam and have an output beam that is parallel to 
the floor. The beamline consists of four mirrors and two gratings. Only one optical elements, namely the grating, is 
added to obtain the ultrafast response.  
The optical parameters are resumed in Table 3. Two set of gratings are used: the first set is operated in the 2-7 nm (620-
180 eV) region, where the FEL is used in the fundamental emission (above 4 nm) and at higher harmonics (below 4 nm); 
the second set is operated in the 5-20 nm (180-62 eV) region, covering the FEL fundamental. 
 

Table 3.  Parameters of the VLS plane-grating monochromator for FLASH2, double-grating design. 

Source-to-M1 distance 70.0 m 

M1-to-G1 distance 6.0 m 

G1-to-slit distance 6.0 m 

Slit-to-G2 distance 6.0 m 

Grating subtended angle 174° 

GRATING SET#1  

Spectral range 180-620 eV 

Groove density 600 gr/mm 

GRATING SET#2  

Spectral range 60-180 eV 

Groove density 150 gr/mm 
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optical elements, since just one grating is added with respect to a standard VLS monochromator beamline. Furthermore, 
it is quite simple from the opto-mechanic point-of-view: only two rotations are required to perform the spectral scan. The 
temporal resolution of the beamline is increased with respect to a single-grating monochromator down to few tens of 
femtoseconds, mainly limited by the group delay introduced by the monochromator at energies higher than 70 eV and by 
the Fourier limit at the energies lower.  
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