RAPID COMMUNICATIONS

Reevaluation of the Gottfried sum

(New Muon Collaboration)

1 Bielefeld University, Universitätsstrasse 25, D-33501, Bielefeld, Germany
2 CERN, CH-1211, Geneva 23, Switzerland
3 Freiburg University, Hermann-Herfer-Strasse 3, D-79104 Freiburg, Germany
4 Max-Planck Institut für Kernphysik, Postf. 103980, D-69020, Heidelberg, Germany
5 Heidelberg University, D-69120, Heidelberg, Germany
6 Mainz University, D-55099, Mainz, Germany
7 Mons University, Mons, Hainaut, Belgium
8 Neuchâtel University, Neuchâtel, Switzerland
9 NIKHEF-K, P.O. Box 41882, NL-1009DB, Amsterdam, The Netherlands
10 DAPNIA/SPP, CEN-Saclay, F-91911 Gif-sur-Yvette, France
11 University of California, Santa Cruz, California, 95064
12 Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
13 Torino University, Via Pietro Giuria 1, 10125, Torino, Italy and Istituto Nazionale di Fisica Nucleare, Torino, Italy
14 Uppsala University, S-75121, Uppsala, Sweden
15 Soltan Institute for Nuclear Studies, Warsaw, Poland
16 Warsaw University, Warsaw, Poland

(Received 28 July 1993; revised manuscript received 1 March 1994)
We present a new determination of the nonsinglet structure function $F_2^q - F_2^g$ at $Q^2 = 4 \text{ GeV}^2$ using recently measured values of F_2^q and F_2^q/F_2^g. A new evaluation of the Gottfried sum is given, which remains below the simple quark-parton model value of $\frac{1}{3}$.

PACS number(s): 13.60.Hb, 11.55.Hx

In 1991 the New Muon Collaboration (NMC) published an evaluation of the Gottfried sum $S_G = \int (F_2^q - F_2^g) dx/\alpha$ which showed that the simple quark model expectation of 1/3 was not reached [1]. In that analysis the nonsinglet structure function was obtained as

$$F_2^q - F_2^g = 2F_2^d(1 - F_2^d/F_2^q)/(1 + F_2^d/F_2^q).$$ \hspace{1cm} (1)

The ratio F_2^d/F_2^q, defined as $2F_2^d/F_2^q - 1$, was taken from the precise NMC measurements of the ratio F_2^d/F_2^q at 90 and 280 GeV, and the deuteron structure function in Eq. (1) was taken from a global fit to the results of earlier experiments.

Recently the NMC has published [2] its own values of F_2^q and F_2^d. These are the first accurate measurements at low x; in this region the results for F_2^q differ significantly from the parametrization used in Ref. [1]. A new parametrization of F_2^d using the NMC, SLAC, and BCDMS data was included in Ref. [2].

We report here a reevaluation of $F_2^q - F_2^g$ and S_G, using the new F_2^d parametrization and newly determined values of the ratio F_2^d/F_2^q. The latter were determined from the data set reported in Ref. [3], but with the radiative corrections applied using the new F_2^d parametrization, and following the method of Akhundov et al. [4]. In addition, a more precise calibration for the scattered muon momentum was applied to the 90 GeV data. The data set of Ref. [3] is slightly more extensive than that used in Ref. [1].

At small values of x the changes in $F_2^q - F_2^g$ reported here, relative to the values in Ref. [1], are due to the changed values of F_2^q which have increased by up to 18% at $x = 0.007$ (compared to a systematic error of 7% given in Ref. [1]). It may be noted that most previous structure function parametrizations underestimated F_2^q for $x < 0.07$ [2].

The value of F_2^d affects the result for the nonsinglet structure function both through the factor in Eq. (1), and via its influence on the ratio F_2^d/F_2^q through the radiative corrections. This is because the term $(1 - F_2^d/F_2^q)$ in Eq. (1) is close to zero at low x. At large values of x the changes in $F_2^q - F_2^g$ are caused by the new momentum calibration.

The method of determining $F_2^q - F_2^g$ used here and in Ref. [1] gives more accurate results than can be obtained from the values of F_2^q and F_2^d given in Ref. [2]. This is because it takes advantage of the NMC experiment’s ability to make precise measurements of cross-section ratios [3], in which more data, covering a larger Q^2 range, can be used. This leads to smaller systematic and statistical errors on S_G.

The results presented here are evaluated at $Q^2 = 4 \text{ GeV}^2$; this value of Q^2 was chosen as it is covered by the F_2^q/F_2^g data over the range $0.004 < x < 0.5$. The values of F_2^d/F_2^q were obtained from fits to the data, linear in $\ln(Q^2)$, at each interval of x, as in Ref. [1]. These were then used, together with the values of F_2^d taken directly from the parametrization [2], to evaluate $F_2^q - F_2^g$ according to Eq. (1). No corrections were applied for target mass, higher twist, or nuclear effects, as discussed in Ref. [1].

The results for $F_2^q - F_2^g$ are given in Table I and in Fig. 1, where they are compared to those published in Ref. [1]. Table I also gives the values of F_2^q/F_2^g and F_2^d used in the present evaluation. The causes of the differences between the $F_2^q - F_2^g$ values presented here and those of Ref. [1] have been discussed above. The value of the Gottfried sum at $Q^2 = 4 \text{ GeV}^2$ over the interval $0.004 < x < 0.8$ is found to be

$$S_G(0.004 - 0.8) = 0.221 \pm 0.008 \text{(stat)} \pm 0.019 \text{(syst)}.$$

The systematic error has been reevaluated. For the radiative corrections we have now followed the prescription given in Ref. [3] which leads to an uncertainty of 0.011. In combining this with the uncertainty (systematic and statistical) in F_2^d the correlation between them was taken fully into account. The

<table>
<thead>
<tr>
<th>x_{min} — x_{max}</th>
<th>F_2^q</th>
<th>F_2^q/F_2^g</th>
<th>$F_2^q - F_2^g$</th>
<th>S_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004 — 0.010</td>
<td>0.413 ± 0.020</td>
<td>0.976 ± 0.017</td>
<td>0.010 ± 0.007</td>
<td>0.221 ± 0.008</td>
</tr>
<tr>
<td>0.010 — 0.020</td>
<td>0.394 ± 0.016</td>
<td>0.963 ± 0.011</td>
<td>0.015 ± 0.004</td>
<td>0.213 ± 0.005</td>
</tr>
<tr>
<td>0.020 — 0.040</td>
<td>0.378 ± 0.013</td>
<td>0.927 ± 0.007</td>
<td>0.029 ± 0.003</td>
<td>0.203 ± 0.004</td>
</tr>
<tr>
<td>0.040 — 0.060</td>
<td>0.365 ± 0.012</td>
<td>0.919 ± 0.007</td>
<td>0.031 ± 0.003</td>
<td>0.183 ± 0.004</td>
</tr>
<tr>
<td>0.060 — 0.100</td>
<td>0.350 ± 0.012</td>
<td>0.881 ± 0.006</td>
<td>0.044 ± 0.002</td>
<td>0.171 ± 0.003</td>
</tr>
<tr>
<td>0.100 — 0.150</td>
<td>0.331 ± 0.011</td>
<td>0.836 ± 0.007</td>
<td>0.059 ± 0.003</td>
<td>0.149 ± 0.003</td>
</tr>
<tr>
<td>0.150 — 0.200</td>
<td>0.310 ± 0.010</td>
<td>0.812 ± 0.009</td>
<td>0.064 ± 0.003</td>
<td>0.125 ± 0.003</td>
</tr>
<tr>
<td>0.200 — 0.300</td>
<td>0.274 ± 0.008</td>
<td>0.740 ± 0.008</td>
<td>0.082 ± 0.003</td>
<td>0.107 ± 0.003</td>
</tr>
<tr>
<td>0.300 — 0.400</td>
<td>0.214 ± 0.006</td>
<td>0.637 ± 0.012</td>
<td>0.095 ± 0.004</td>
<td>0.074 ± 0.003</td>
</tr>
<tr>
<td>0.400 — 0.500</td>
<td>0.152 ± 0.005</td>
<td>0.497 ± 0.019</td>
<td>0.102 ± 0.005</td>
<td>0.047 ± 0.002</td>
</tr>
<tr>
<td>0.500 — 0.600</td>
<td>0.101 ± 0.002</td>
<td>0.502 ± 0.038</td>
<td>0.067 ± 0.007</td>
<td>0.025 ± 0.002</td>
</tr>
<tr>
<td>0.600 — 0.800</td>
<td>0.048 ± 0.001</td>
<td>0.382 ± 0.058</td>
<td>0.043 ± 0.006</td>
<td>0.012 ± 0.002</td>
</tr>
</tbody>
</table>
FIG. 1. The difference $F_G - \tilde{F}_G$ (full symbols and scale to the right) and $\int dx \frac{F_G - \tilde{F}_G}{x}$ (open symbols and scale to the left) at $Q^2 = 4 \text{ GeV}^2$, as a function of x from the present reevaluation (circles) and from Ref. [1] (triangles). The extrapolated result S_G from the present work and the prediction of the simple quark-parton model (QPM) are also shown.

uncertainty from the momentum calibration is reduced compared to that given in Table 2 of Ref. [1], while the other contributions are unchanged.

To evaluate the contributions to S_G from the unmeasured regions at high and low x, extrapolations of $F^e - \tilde{F}^e$ to $x = 1$ and $x = 0$ were made using the same procedures as described in Ref. [1]. The contribution from the region $x > 0.8$ is 0.001 ± 0.001. For the region $x < 0.004$, the expression ax^b, appropriate for a Regge-like behavior, was again fitted to the data in the range $0.004 < x < 0.15$ and extrapolated to $x = 0$. The fit yields the values $a = 0.20 \pm 0.03$ and $b = 0.59 \pm 0.06$ and a contribution to S_G of 0.013 ± 0.005 (stat) for $x < 0.004$. The quality of the fit is as good as that in Ref. [1] and the result is insensitive to the upper limit of the fitted range (up to $x = 0.40$).

Summing the contributions from the measured and unmeasured regions we obtain for the Gottfried sum

$$S_G = 0.235 \pm 0.026.$$

The error is the result of combining the statistical and systematic errors in quadrature, and including the effect of the (correlated) systematic uncertainties on the extrapolations of $F^e - \tilde{F}^e$ to $x = 1$ and $x = 0$. This new value of S_G agrees well with that in Ref. [1]. However, the total error given here is larger than that quoted in Ref. [1] due to the more extensive examination of the systematic uncertainties. Nevertheless, the result for S_G is significantly below the simple quark-parton model value of $1/3$, so that the conclusions of Ref. [1] are unchanged.

The evaluation of the Gottfried sum at higher Q^2 requires large extrapolations of the measured values of F^e/F^p at low x, which rapidly reduces the accuracy of $F^e - \tilde{F}^e$. For this reason a precise determination of the Gottfried sum from the NMC data is restricted to Q^2 around 4 GeV2.

Bielefeld University, Freiburg University, Max Planck Institut Heidelberg, Heidelberg University, and Mainz University were supported by Bundesministerium für Forschung und Technologie. NIKHEF-K was supported in part by FOM, Vrije Universiteit Amsterdam and NWO. Soltan Institute for Nuclear Studies and Warsaw University were supported by KBN Grant No. 2 0958 9101. The work of D.S. was supported by the NSF and DOE.