First Measurement of the Tensor Structure Function b_1 of the Deuteron.

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Y. Miyachi, Nationaal Instituut voor Kernfysica en Hoge-Energiefysica (NIKHEF), 1009 DB Amsterdam, The Netherlands

Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

First Measurement of the Tensor Structure Function b_1 of the Deuteron.

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Y. Miyachi, Nationaal Instituut voor Kernfysica en Hoge-Energiefysica (NIKHEF), 1009 DB Amsterdam, The Netherlands

Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

First Measurement of the Tensor Structure Function b_1 of the Deuteron.

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Y. Miyachi, Nationaal Instituut voor Kernfysica en Hoge-Energiefysica (NIKHEF), 1009 DB Amsterdam, The Netherlands

Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

First Measurement of the Tensor Structure Function b_1 of the Deuteron.

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Y. Miyachi, Nationaal Instituut voor Kernfysica en Hoge-Energiefysica (NIKHEF), 1009 DB Amsterdam, The Netherlands

Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

First Measurement of the Tensor Structure Function b_1 of the Deuteron.
Inclusive deep-inelastic scattering (DIS) of charged leptons from the deuteron, a spin-1 object, is described by eight structure functions, twice as many as required to describe DIS from a spin-1/2 nucleon. The three leading-twist structure functions relevant to this discussion can be written within the Quark-Parton Model as:

\[
\begin{align*}
F_1 & = \frac{1}{2} \sum_q e_q^2 \left[q_1^+ + q_1^- \right] \\
\sum_q e_q^2 & \left(q_1^+ - q_1^- \right) \\
b_1 & = \frac{1}{2} \sum_q e_q^2 \left[2q_1^0 - (q_1^+ + q_1^-) \right],
\end{align*}
\]

where \(q_1^m \) is the number density of quarks with spin up (down) along the z axis in a hadron (nucleus) with helicity \(m \) moving with infinite momentum along the z axis. Reflection symmetry implies that \(q_1^m = q_1^{-m} \). The sums run over quark and antiquark flavors \(q \) with a charge \(e_q \) in units of the elementary charge \(e \). Both structure functions and quark number densities depend on the Bjørken variable \(x \) which can be interpreted as the fraction of the nucleon momentum carried by the struck quark in the infinite-momentum frame, and \(-Q^2\), the square of the four-momentum transfer by the virtual photon.

The polarization-averaged structure function \(F_1 \) describes the quark distributions averaged over the target spin states. The polarization-dependent structure function \(g_1 \) describes the imbalance in the distribution of quarks with the same \(q_1^m \) or opposite \(q_1^{-m} \) helicity with respect to that of the parent hadron. It can be measured only when both beam and target are polarized. The tensor structure function \(b_1 \) does not exist for spin-1/2 targets and vanishes in the absence of nuclear effects, i.e. if the deuteron simply consists of a proton and neutron in a relative \(S \)-state. It describes the difference in the quark distributions between the helicity-0, \(q^0 = (q_1^0 + q_1^{-0}) = 2q_1^0 \), and the averaged non-zero helicity, \(q^1 = (q_1^+ + q_1^-) = (q_1^0 + q_1^{-1}) \), states of the deuteron. Because \(b_1 \) depends only on the spin averaged quark distributions, its measurement does not require a polarized beam. Since the magnitude of \(b_1^d \) was expected to be small, it was usually ignored in the extraction of \(g_1^d \) and, as a consequence, of the neutron structure function \(g_1^n \) derived from deuteron and proton data. This is in general not \(a \) priori justified. This paper reports the first measurement of \(b_1^d \), performed by the HERMES collaboration using a data set taken with a positron beam and a tensor-polarized deuteron target, and an integrated luminosity of 42 pb\(^{-1}\).

The HERMES experiment was designed to investigate the internal spin structure of nucleons and nuclei by deep-inelastic scattering of polarized positrons and electrons by polarized gaseous targets (e.g. hydrogen, deuterium and helium-3) internal to the HERA-e storage ring. The positrons (electrons) circulating in the ring become transversely polarized by the emission of spin-flip synchrotron radiation. A longitudinal beam polarization is generated at HERMES by the use of a pair of spin rotators before and after the experiment. Beam polarization is employed for the simultaneous \(g_1^d \) measurement and for studies on beam related systematic effects on \(b_1^d \).

A feature of HERMES unique among polarized DIS experiments is its atomic-gas target that is not diluted by non-polarizable material. The target cell is an open-ended elliptical aluminum tube internal to the beam line (40 cm long, 75 \(\mu \)m in wall thickness), which is used to confine the polarized gas along the beam. A magnetic field surrounding the target and aligned with the beam provides the quantization axis for the nuclear spin. A sample of gas was continuously drawn from the cell and analyzed to determine the atomic and molecular abundances and the nuclear polarization of the atoms. An atomic beam source (ABS) generates a deuterium atomic beam and selects the two hyperfine states with the desired nuclear polarization to be injected into the cell. This system allows the selection of substates with pure tensor polarization \(P_{zz} = (n^+ + n^- - 2n^0)/(n^+ + n^- + n^0) \) and at the same time vanishing vector polarization \(P_z = (n^+ - n^-)/(n^+ + n^- + n^0) \), a combination which is not possible for solid-state polarized targets. Here \(n^+ \), \(n^- \), \(n^0 \) are the atomic populations with positive, negative and
zero spin projection on the beam direction, respectively. Every 90 seconds the polarization of the injected gas is changed; for the b^d measurement the four injection modes listed in Table I were continuously cycled. Note that the vector$^+$ and vector$^-$ modes are also employed for the g^d_1 measurement.

The Hermes detector [4] is a forward spectrometer with a dipole magnet providing a field integral of 1.3 Tm. A horizontal iron plate shields the HERA beam lines from this field, thus dividing the spectrometer into two identical halves with ± 170 mrad horizontal and ± 40 to ± 140 mrad vertical acceptance for the polar scattering angle. Tracking is based on 36 drift chamber planes in each detector-half. Positron identification is accomplished using a likelihood method based on signals of four subsystems: a ring-imaging Čerenkov detector, a lead-glass calorimeter, a transition-radiation detector, and a preshower hodoscope. For positrons in the momentum range of 2.5 GeV/c to 27 GeV/c, the identification efficiency exceeds 98% and the hadron contamination is less than 0.5%. The average polar angle resolution is 0.6 mrad and the average momentum resolution is 2%.

For a target state characterized by P_τ and P_{zz}, the DIS yield measured by the experiment is proportional to the double differential cross section of polarized DIS

$$\frac{d^2\sigma}{dxdQ^2} \approx \frac{d^2\sigma}{dxdQ^2} \left[1 - P_zP_B D A_1^d + \frac{1}{2} P_{zz} A_2^d \right].$$ (1)

Here, σ is the unpolarized cross section, A_1^d is the vector and A_2^d the tensor asymmetry of the virtual-photon deuteron cross section, P_B is the beam polarization and D is the fraction of the beam polarization transferred to the virtual photon. In Eq. (1) and in the following Eq. (3), the fractional correction ($\lesssim 0.01$) arising from the interference between longitudinal and transverse photo-absorption amplitudes, which leads to the structure function g_2 [2], is neglected. Four independent polarized yields were measured (see Table II for the values of the achieved polarizations): σ^{zz} and $\sigma^{\mp\mp}$ when the target spin is parallel and anti-parallel to that of the beam, respectively, $\sigma^{0\mp}$ when the target has a mixture of helicity-1 states, and σ^0 when the target is in the helicity-0 state. The tensor asymmetry is extracted as

$$A_{zz}^d = \frac{2\sigma^1 - 2\sigma^0}{3\sigma_U P_{zz}},$$ (2)

where $\sigma^1 = (\sigma^{zz} + \sigma^{\mp\mp} + \sigma^{0\mp})/3$ is the average over the helicity-1 states, $\sigma_U = (2\sigma^1 + \sigma^0)/3$ is the polarization-averaged yield and $P_{zz}^U = (P_{zz}^{ee} + P_{zz}^{\mp\mp} + P_{zz}^{0\mp} - 3P_{zz}^0)/9$ is the effective tensor polarization. In Eq. (2) the vector component due to A_1^d nearly cancels out: a residual vector polarization not more than 0.02 is achieved both for the σ^0, $\sigma^{0\mp}$ and the averaged $(\sigma^{zz} + \sigma^{\mp\mp})/2$ measurements, (see Table I). Note that any contribution from residual vector polarization of the target is reduced to a negligible level by grouping together two sets of data with approximately the same statistics and opposite beam helicities.

The polarization-dependent structure function g_1^d can be extracted from the vector asymmetry A_1^d as

$$\frac{g_1^d}{F_1^d} \approx A_1^d \approx \frac{c_{zz} (\sigma^{zz} - \sigma^{\mp\mp})}{|P_zP_B| D (\sigma^{zz} + \sigma^{\mp\mp})},$$ (3)

where $c_{zz} = (\sigma^{zz} + \sigma^{\mp\mp})/2\sigma_U = 1 + (P_{zz}^{ee} + P_{zz}^{\mp\mp})A_{zz}^d$. (4)

In all previous determinations of g_1^d the contribution of the tensor asymmetry A_{zz}^d was neglected, i.e. c_{zz} was assumed to be equal to 1, in spite of the fact that the vector polarization of the target could only be generated together with a non-zero tensor polarization. The present measurement quantifies the effect of A_{zz}^d on the existing g_1^d data.

For the determination of A_{zz}^d, about 3.2 million inclusive events obtained with a tensor-polarized deuteron target are selected, by requiring as in the HERMES g_1^d analysis [5] a scattered positron with 0.1 GeV $< Q^2 < 20$ GeV2 and an invariant mass of the virtual-photon nucleon system $W > 1.8$ GeV. The kinematic range covered by the selected data is $0.002 < x < 0.85$ and $0.1 < y < 0.91$, where y is the fraction of the beam energy carried by the virtual photon in the target rest frame. The asymmetry A_{zz}^d is calculated according to Eq. (2). The number of events determined per spin state is corrected for the e^+e^- background arising from charge symmetric processes (the latter is negligible at high x but amounts to almost 15% of the statistics in the lowest-x bin) and normalized to the luminosity measured by Bhabha scattering from the target gas electrons [1].

The asymmetry A_{zz}^d is corrected for detector smearing and QED radiative effects to obtain the Born asymmetry corresponding to pure single-photon exchange in the scattering process. The kinematic migration of the events

<table>
<thead>
<tr>
<th>Target state</th>
<th>Hyper.</th>
<th>Atomic popul.</th>
<th>P_{zz}</th>
<th>P_zP_B</th>
<th>P_{zz} yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector$^+$</td>
<td>[1+6]</td>
<td>n^+</td>
<td>$+0.80 \pm 0.03$</td>
<td>$+0.45 \pm 0.02$</td>
<td>$\sigma^{0\mp}$</td>
</tr>
<tr>
<td>vector$^-$</td>
<td>[3+4]</td>
<td>n^-</td>
<td>$+0.85 \pm 0.03$</td>
<td>-0.45 ± 0.02</td>
<td>σ^{zz}</td>
</tr>
<tr>
<td>tensor$^+$</td>
<td>[3+6]</td>
<td>$n^+ + n^-$</td>
<td>$+0.89 \pm 0.03$</td>
<td>0.00 ± 0.01</td>
<td>$\sigma^{0\mp}$</td>
</tr>
<tr>
<td>tensor$^-$</td>
<td>[2+5]</td>
<td>n^0</td>
<td>-1.65 ± 0.05</td>
<td>0.00 ± 0.01</td>
<td>σ^0</td>
</tr>
</tbody>
</table>

TABLE I: Hyperfine state composition, corresponding atomic population and polarization of the target states [5] employed in the b^d measurement as described in the text. The average target vector P_z and tensor P_{zz} polarizations are typically more than 80% of the ideal values. The average beam polarization $|P_B|$ is 0.53 ± 0.01. A positive P_B is assumed in the table. Four independent polarized yields, defined in the text, were measured depending on beam and target polarizations.
due to radiative and detector smearing is treated using an unfolding algorithm, which is only sensitive to the detector model, the known unpolarized cross section, and the models for the background processes [10]. The radiative background is negligible at high x but increases as $x \to 0$ and reaches almost 50% of the statistics in the lowest-x bin. The radiative corrections are calculated using a Monte Carlo generator based on RADGEN [4]. The coherent and quasi-elastic radiative tails are estimated using parameterizations of the deuteron form factors [11, 12] and corrected for the tracking inefficiency due to showering of the radiated photons. The polarized part of the quasi-elastic radiative tail is neglected since there is no net tensor effect by inclusive scattering on weakly-bound spin-1/2 objects [13]. The extracted tensor asymmetry A_{zz}^d is shown in Fig. 1 and listed in Table II. It appears to be positive at high x and is negative at low x, crossing zero at an x value of about 0.2. In the lowest-x bin, the asymmetry is not zero at the 2-sigma level only after the subtraction of the radiative background. The magnitude of the observed tensor asymmetry A_{zz}^d does not exceed 0.02 over the measured range; from this result and using Eqs. (3) and (4), the fractional correction due to tensor asymmetry is estimated to be less than 0.01.

No contribution from the hitherto unmeasured double spin-flip structure function Δ [14] is considered here, being kinematically suppressed for a longitudinally polarized target [15]. The function F_2^d is calculated as $F_2^d = F_2^p (1 + F_2^p / F_2^n) / 2$ using the parameterizations of the precisely measured structure function F_2^p [16] and F_2^p / F_2^n ratio [17]. In Eq. (5), $R = \sigma_L / \sigma_T$ is the ratio of longitudinal to transverse photo-absorption cross sections [18] and ν is the virtual-photon energy. The results for b_1^d are listed together with those for A_{zz}^d in Table II. The x-dependence of b_1^d is displayed in Fig. 2. The data show that b_1^d is different from zero for $x < 0.1$, its magnitude rises for decreasing values of x and, for $x \lesssim 0.03$, becomes even larger than that of g_1^d at the same value of Q^2 [8].

Because the deuteron is a weakly-bound state of spin-1/2 nucleons, b_1^d was initially predicted to be negligible, at least at moderate and large values of x ($x > 0.2$) [14, 20], where it should be driven by nuclear binding and Fermi motion effects. It was later realized that b_1^d could rise to values which significantly differ from zero as $x \to 0$, and its magnitude could reach about 1% of the unpolarized structure function F_1^d, due to the same mechanism that leads to the well known effect of nuclear shadowing in unpolarized scattering [21].

![FIG. 1: The tensor asymmetry $A_{zz}^d(x)$. The error bars are statistical and the shaded band shows the systematic uncertainty.](image-url)

TABLE II: Measured values (in 10^{-2} units) of the tensor asymmetry A_{zz}^d and the tensor structure function b_1^d. Both the corresponding statistical and systematic uncertainties are listed as well.

<table>
<thead>
<tr>
<th>$<x>$</th>
<th>(Q^2)</th>
<th>A_{zz}^d</th>
<th>$\pm \delta A_{zz}^{stat}$</th>
<th>$\pm \delta A_{zz}^{sys}$</th>
<th>b_1^d</th>
<th>$\pm \delta b_1^{stat}$</th>
<th>$\pm \delta b_1^{sys}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[GeV2]</td>
<td>$[10^{-2}]$</td>
<td>$[10^{-2}]$</td>
<td>$[10^{-2}]$</td>
<td></td>
<td>$[10^{-2}]$</td>
<td>$[10^{-2}]$</td>
</tr>
<tr>
<td>0.012</td>
<td>0.51</td>
<td>-1.06</td>
<td>0.52</td>
<td>0.26</td>
<td>11.20</td>
<td>5.51</td>
<td>2.77</td>
</tr>
<tr>
<td>0.032</td>
<td>1.06</td>
<td>-1.07</td>
<td>0.49</td>
<td>0.36</td>
<td>5.50</td>
<td>2.53</td>
<td>1.84</td>
</tr>
<tr>
<td>0.063</td>
<td>1.65</td>
<td>-1.32</td>
<td>0.38</td>
<td>0.21</td>
<td>3.82</td>
<td>1.11</td>
<td>0.60</td>
</tr>
<tr>
<td>0.128</td>
<td>2.33</td>
<td>-0.19</td>
<td>0.34</td>
<td>0.29</td>
<td>0.29</td>
<td>0.53</td>
<td>0.44</td>
</tr>
<tr>
<td>0.248</td>
<td>3.11</td>
<td>-0.39</td>
<td>0.39</td>
<td>0.32</td>
<td>0.29</td>
<td>0.28</td>
<td>0.24</td>
</tr>
<tr>
<td>0.452</td>
<td>4.69</td>
<td>1.57</td>
<td>0.68</td>
<td>0.13</td>
<td>-0.38</td>
<td>0.16</td>
<td>0.03</td>
</tr>
</tbody>
</table>
This feature is described by coherent double-scattering models \cite{22,23,24,25,26,27,28}. The observed b_1^d confirms qualitatively the double-scattering model predictions, except for the negative value at $x = 0.452$, which, however, is still compatible with zero at the 2-sigma level. In the context of the Quark-Parton Model description, the sum rule $\int b_1(x)dx = 0$ is broken if the quark sea is tensor polarized \cite{29,30}. From the x-behavior of xb_1^d shown in Fig. 2 it can be seen that the first moment of b_1^d is non-zero. A 2-sigma result, \begin{equation}
abla_{0.002} b_1(x)dx = (1.05 \pm 0.34_{\text{stat}} \pm 0.35_{\text{sys}}) \times 10^{-2}, \end{equation} is obtained within the measured range, and a 1.7-sigma result, \begin{equation}
abla_{0.02} b_1(x)dx = (0.35 \pm 0.10_{\text{stat}} \pm 0.18_{\text{sys}}) \times 10^{-2}, \end{equation} within the restricted x-range where $Q^2 > 1$ GeV2. The integrals are calculated after having b_1^d evolved to $Q_0^2 = 5$ GeV2 by assuming a Q^2-independence of the measured b_1^d/F_1^d ratio, $b_1^d(Q_0^2) = b_1^d/F_1^d \cdot F_1^d(Q_0^2)$.

In conclusion, HERMES has provided the first measurement of the tensor structure function b_1^d, in the kinematic domain $0.01 < \langle x \rangle < 0.45$ and 0.5 GeV$^2 < \langle Q^2 \rangle < 5$ GeV2. The function b_1^d is found to be different from zero for $x < 0.1$. Its first moment is found to be not zero at the 2-sigma level within the measured x range. The b_1^d measurement can be used to reduce the systematic uncertainty on the g_1^d measurement that is assigned to the tensor structure of the deuteron. The behavior of b_1^d at low values of x is in qualitative agreement with expectations based on coherent double-scattering models.

We gratefully acknowledge the DESY management for its support, the staff at DESY and the collaborating institutions for their significant effort, and our national funding agencies for financial support. We are grateful to N. Nikolaev and O. Shekhovtsova for useful discussions.

\begin{thebibliography}{10}
\bibitem{9} I. V. Akushhich \textit{et al.}, \texttt{hep-ph/9906408}.
\bibitem{16} H. Abramowicz \textit{et al.}, \texttt{hep-ph/9712415}.
\end{thebibliography}