Perspectives on the Higgs p_T as a probe of BSM physics

Emanuele A. Bagnaschi (DESY Hamburg)

31 May 2017
Rencontres de Blois 2017
Blois, France

emanuele.bagnaschi@desy.de
Higgs production and BSM physics
Gluon Fusion

Vector Boson Fusion

Quark associated production

Higgs Strahlung

Higgs production channels at the LHC

Perspectives on the Higgs p_T as a probe BSM physics
BSM physics in the Higgs sector

Characterization of the boson at 125 GeV

- Deviation of the Yukawa couplings from the SM.
- Deviation of the couplings to the EW gauge bosons.
- Gluon fusion: new states in the loop?

The differential measurements can probe NP differently from the inclusive results.

New Higgs states

- Extended Higgs sector?
- Simplest extension: Two Higgs Doublet Model (2HDM).
- MSSM has a type-II 2HDM.
- Non-SM like Yukawas can alter the hierarchy between different production processes.

Predictions required to properly recast experimental results in NP models.
ρ^H_T theoretical description and its uncertainties
The p_T^H distribution

- The Higgs acquires a transverse momentum due to the recoil against QCD radiation.
- At fixed order, the p_T^H distribution diverges in the limit $p_T^H \to 0$.
- The physical behavior is restored by resumming the divergent terms, either analytically or numerically (i.e. through a Parton Shower).
- **Problem**: match the resummed and fixed order calculation.
- **Uncertainty estimation in this procedure is important for precision phenomenology.**

Available matched-resummed frameworks

- **Analytic resummation – b-space**: Collins, Soper, Sterman, Catani, Grazzini.
- **Analytic resummation – p_T-space**: Re, Torrielli, Monni et al.
- **Analytic resummation – SCET**: Becher et al.
- **NLO+PS, MC@NLO**: Frixione, Webber.
- **NLO+PS, POWHEG**: Frixione, Nason, Oleari.
- **NNLO+PS NNLOPS**: Hamilton, Nason, Re, Zanderighi

See P. Richardson’s talk for an overview of the matching and the latest developments.

[Bozzi Catani De Florian Grazzini, hep-ph/0302104]
Heavy Quark Effective Field Theory (HQEFT)

In the limit \(m_{top} \to \infty \) we can construct an effective Lagrangian for the interaction of the Higgs boson with the gluons

\[
\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{12\pi} \frac{H}{v} (1 + \Delta) \text{Tr} \left[G_{\mu\nu}^a G_{\mu\nu}^a \right]
\]

In this theory the heavy quark loop shrinks to a point vertex, simplifying the calculations.

Validity conditions

- Total cross section, \(m_H < 2m_{top} \)
- Kinematic variables, as \(p_T^H \), less than \(m_{top} \)
- No strongly coupled light particles running in the loop (e.g. bottom quark in the THDM/MSSM for large \(\tan \beta \))
The HQEFT vs the SM

- The emitted parton can resolve the internal structure of the quark loop if the p_T^H is large enough (mass effects start at $p_T^H > 150$ GeV for the top loop and $p_T^H > 10$ GeV for the bottom one).

![Graph showing the comparison between HQEFT and SM for LHC 7 TeV with $m_H = 125$ GeV.](image)

$R = \frac{\frac{1}{\sigma} \frac{d\sigma}{dp_T^H}}{\frac{1}{\sigma_{\text{HQEFT}}} \frac{d\sigma_{\text{HQEFT}}}{dp_T^H}}$

[EB Degrassi Slavich Vicini, 1111.2854]
The HQEFT vs the SM

- The emitted parton can resolve the internal structure of the quark loop if the p_T^H is large enough (mass effects start at $p_T^H > 150$ GeV for the top loop and $p_T^H > 10$ GeV for the bottom one)

NLO+PS

[EB Degrassi Slavich Vicini, 1111.2854]
The HQEFT vs the SM

- The emitted parton can resolve the internal structure of the quark loop if the $p_{T,H}^H$ is large enough (mass effects start at $p_{T,H}^H > 150$ GeV for the top loop and $p_{T,H}^H > 10$ GeV for the bottom one).

Perspectives on the Higgs p_T as a probe BSM physics

Emanuele A. Bagnaschi (DESY)
The inclusion of the bottom quark adds a mass scale that is much lower with respect to the others (m_h and m_t).

We can always rewrite the full amplitude as

$$|\mathcal{M}(t + b)|^2 = |\mathcal{M}(t)|^2 + |\mathcal{M}(b)|^2 + \left[|\mathcal{M}(t + b)|^2 - |\mathcal{M}(t)|^2 - |\mathcal{M}(b)|^2 \right].$$

One should introduce separate resummation scales for the top (Q_t), the bottom (Q_b) and the interference (Q_{int}) contributions and rewrite the formula for the total cross section as

$$\sigma(t + b) = \sigma(t, Q_t) + \sigma(b, Q_b) + [\sigma(t + b, Q_{\text{int}}) - \sigma(t, Q_{\text{int}}) - \sigma(b, Q_{\text{int}})].$$

Extend the same reasoning to differential distributions.
Theoretical uncertainties

- We discuss the NLO-matched case for simplicity.

Analytic resummation

- In parameter space the cross section for multiple emissions factorizes and can be resummed. The factorization is defined at the unphysical resummation scale Q.
- Q is unphysical and the complete result does not depend on it. However, at fixed resummation-accuracy one has a residual dependency on it.
- This dependency can be used to probe the theoretically uncertainty on the resummed spectrum.

Matched NLO+PS

- In MC@NLO, the SCALUP parameters determines the effective range of application of the resummation. It is chosen in such a way to recover the NLO behavior in the high-p_T region.
- In POWHEG we can use effectively the h parameter (that controls the higher order terms) to recover the NLO behavior in the high-p_T region and then, with some caveats, again the SCALUP parameter to define the shower phase space.
- Scale determination oriented towards BSM physics.
- Two different approaches, based on different theoretical assumptions: collinear factorization ([Bagnaschi, Vicini '15]); high-p_T matching ([Harlander et al, '15])
- Both approaches yield results that diverge from the customary choices at large Higgs masses.
BSM Physics perspectives
The 2HDM and the MSSM

<table>
<thead>
<tr>
<th>Coupling</th>
<th>Type I</th>
<th>Type II</th>
<th>Lepton specific</th>
<th>Flipped</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_u^h</td>
<td>$\cos \alpha / \sin \beta$</td>
</tr>
<tr>
<td>λ_d^h</td>
<td>$\cos \alpha / \sin \beta$</td>
<td>$\sin \alpha / \cos \beta$</td>
<td>$\cos \alpha / \sin \beta$</td>
<td>$- \sin \alpha / \cos \beta$</td>
</tr>
<tr>
<td>λ_u^H</td>
<td>$\sin \alpha / \sin \beta$</td>
</tr>
<tr>
<td>λ_d^H</td>
<td>$\sin \alpha / \sin \beta$</td>
<td>$\cos \alpha / \cos \beta$</td>
<td>$\sin \alpha / \sin \beta$</td>
<td>$\cos \alpha / \cos \beta$</td>
</tr>
<tr>
<td>λ_u^A</td>
<td>$\cot \beta$</td>
<td>$\cot \beta$</td>
<td>$\cot \beta$</td>
<td>$\cot \beta$</td>
</tr>
<tr>
<td>λ_d^A</td>
<td>$- \cot \beta$</td>
<td>$\tan \beta$</td>
<td>$- \cot \beta$</td>
<td>$\tan \beta$</td>
</tr>
</tbody>
</table>

- Two Higgs doublets. Enlarged physical spectrum: $h/H/A$ and H^\pm.
- MSSM is a type II 2HDM; squark (and gluino at NLO) enters in the gluon fusion loops (many mass scales).
- Rescaled couplings to quarks. Change in the relative weight of the quarks in the gluon fusion process (e.g. bottom contribution larger than the top).
- If the bottom quark coupling to the Higgs is enhanced, the bottom annihilation process can be the dominant one.
In the MSSM the matrix element squared for the $gg \to gH$ channel is given by

$$|\mathcal{M}(gg \to gH)|^2 = |\mathcal{M}_t + \mathcal{M}_b + \mathcal{M}_{\tilde{q}}|^2 =$$

$$= |\mathcal{M}_t|^2 + 2\text{Re}(\mathcal{M}_t\mathcal{M}_b^\dagger) + |\mathcal{M}_b|^2 + 2\text{Re}(\mathcal{M}_t\mathcal{M}_{\tilde{q}}^\dagger) + 2\text{Re}(\mathcal{M}_b\mathcal{M}_{\tilde{q}}^\dagger) + |\mathcal{M}_{\tilde{q}}|^2$$

- The bottom contribution can be sizable if not dominant (i.e. $\tan \beta$ enhancement).
- This in turn could make the contribution of the interference between the bottom and the squarks relevant.
- Exact treatment of mass effects could not be neglected.
Higgs p_T^H distribution in the MSSM

- $R = \frac{d\sigma_{\text{MSSM}}/dp_T^\phi}{d\sigma_{\text{SM}}/dp_T^H}$, where the SM spectrum is computed for an Higgs of equal mass to the SUSY one
- In red SusHi and POWHEG fixed order. In blue, POWHEG+PS.

- Light Higgs ($m_h \sim 123$ GeV)
 - light-stop scenario, $M_A = 130$ GeV, $\tan \beta = 40$ – illustrative purpose of the effect of non-standard couplings.

- Heavy Higgs ($m_H \sim 130$ GeV)

[HXSWG YR3, 1307.1347]
Uncertainty on the heavy Higgs p_T^H distribution in the MSSM

$m_{h^{mod+}}$ scenario, $\tan \beta = 17$, $m_A = 500$ GeV, $m_H = 499.9$ GeV

- ±40% variation between the “normal” scale choices and the specific ones.

[EB, Harlander, Mantler, Wiesemann, Vicini 1510.08850]
Modifications of light-quark Yukawa couplings

- [Bishara et al. ’16, 1606.09253]
- Follows the same reasoning as in the MSSM/2HDM studies.
- Assumes only quarks running in the gluon-fusion loop.
- Includes HQEFT NLO corrections to the Higgs p_T^H and NNLL resummation.
- Provides limits (8 TeV ATLAS data) and projections for the rescaling factor of the bottom and charm Yukawa couplings, k_b and k_c.

Perspectives on the Higgs p_T as a probe BSM physics

Emanuele A. Bagnaschi (DESY)
Modifications of light-quark Yukawa couplings

- [Bishara et al. ’16, 1606.09253]
- Follows the same reasoning as in the MSSM/2HDM studies.
- Assumes only quarks running in the gluon-fusion loop.
- Includes HQEFT NLO corrections to the Higgs p_T^H and NNLL resummation.
- Provides limits (8 TeV ATLAS data) and projections for the rescaling factor of the bottom and charm Yukawa couplings, κ_b and κ_c.

Perspectives on the Higgs p_T as a probe BSM physics
Overview of other analyses

- Many other studies have been published on this subject that could not be covered here. For example:
 - EFT approach – Use the Higgs p_T to break the degeneracy between different operators ([Grazzini et al, 1612.00283])
 - And many others...

- Probing non-SM top-quark coupling in H+jet (high p_T region ([Azatov et al, 1309.5273] [Azatov et al, 1608.00977])).
- Other studies on light-quark Yukawa couplings modifications ([Cohen at al, 1705.09295], [Soreq et al., 1606.09621]).
Conclusions
Conclusions

- The Higgs transverse momentum distribution is sensitive to new physics in non-trivial ways.
- The measurement of this observable is going to be one of the focus of Higgs characterization in the current and future runs of LHC.

Properties

- Modifications of the Yukawa couplings (e.g. what happens in the 2HDM, MSSM etc.), impact the shape of the distribution.
- A proper treatment of the theoretical uncertainties is necessary for any meaningful discussion.

New colored states in gluon fusion

- Example: squarks in the MSSM.
- Non trivial shape modification when the emitted gluon starts probing the relevant mass scale.
Backup slides
References
Results overview

- To properly understand the sensitivity to BSM in the comparison with the data, precise SM predictions are required. It has a long history but new developments are still being made nowadays (see S. Forte talk for an overview).

- mixed NLO EWxQCD: [Anastasiou Boughezal Petriello] (2009).

- More work on the p_T at higher-orders: [Caola et al], [Monni et al] (2016).
To properly understand the sensitivity to BSM in the comparison with the data, precise SM predictions are required. It has a long history but new developments are still being made nowadays (see S. Forte talk for an overview).

- H+J NLO-QCD with finite m_t effects: [Harlander, Neumann, Ozeren, Wiesemann 2012].
- Pheno-analysis in GoSam, HQEFT, H+1,2,3J @ NLO-QCD, [Greiner et al 2015].

Codes

- HIGLU, Fehip - NLO full theory
- ggh@nnlo, HNNLO - NNLO-QCD HQEFT
- iHixs - NNLO-QCD HQEFT, NLO-EW,NLO-EW-QCD
- Pythia/Herwig
- HqT - (NNLO+NNLL) - QCD HQEFT
- HRES - MC NNLO+NNLL QCD (full theory@NLO)
- SusHi/ MoreSuShi / SusHi Bento - N3LO QCD HQEFT+SM/2HDM/MSSM
- CuTe - HQEFT, NNLO+NNLL
- aMC@NLO/aMCSushi/POWHEG - MC NLO + PS full theory/2HDM/MSSM;
- HNNLOPS, MiNLO merging.
- aMC@NLO with FxFx merging
Formalism
Matching in an analytic resummation framework

The master formula for the analytic matching is given by

\[
\frac{d\sigma}{dp_{\perp}^2} = \int \frac{d\Phi_B}{dp_{\perp}^2} (B + \hat{V}_{\text{fin}}) F_{\text{NLL}}(Q_{\text{res}}) + \int \frac{d\Phi}{dp_{\perp}^2} R \otimes \Gamma - \int \frac{d\Phi_B}{dp_{\perp}^2} B F_{\text{NLO}}(Q_{\text{res}}),
\]

with

\[
F_{\text{NLL}}(Q_{\text{res}}, p_{\perp}) = \frac{m_\phi^2}{S} \int_0^\infty db \frac{b}{2} J_0(b p_{\perp}) S(\alpha_s, \tilde{L})
\times \sum_{i,j} \int dz_1 dz_2 \left[\delta z_1 \delta z_2 + \frac{\alpha_s(b_0/b)}{\pi} C_{gi}^{(1)}(z_1) \delta z_2 + \frac{\alpha_s(b_0/b)}{\pi} \delta z_1 C_{gj}^{(1)}(z_2) \right] \Gamma_{ij}(b_0/b, z_1, z_2),
\]

with

\[
S(\alpha_s, \tilde{L}) = \exp \left\{ \tilde{L} g^{(1)}(\alpha_s, \tilde{L}) + g^{(2)}(\alpha_s, \tilde{L}) \right\}
\]

- Additive matching. Remove explicitly the terms that are double counted.
- \(\tilde{L} = \ln(b^2 Q_{\text{res}}^2/b_0^2 + 1) \)
- The scale \(Q_{\text{res}} \) determines the \(p_{\perp} \)-range where the resummation is applied.
Matching in a NLO+PS framework

\[d\sigma = d\Phi_B \overline{B}^s(\Phi_b) \left[\Delta^s(p_{\perp}^{\text{min}}) + d\Phi_R|_B \frac{R^s(\Phi_R)}{B(\Phi_B)} \Delta^s(p_T(\Phi)) \right] + d\Phi_R R^f(\Phi_R) \]

\[\overline{B}^s = B(\Phi_b) + \left[V(\Phi_b) + \int d\Phi_R|_B \hat{R}^s(\Phi_R|_B) \right] \]

\[\Delta(\Phi_B, p_T) = \exp \left\{ - \int d\Phi_{\text{rad}} \frac{R^s(\Phi_B, \Phi_{\text{rad}})}{B(\Phi_1)} \theta(k_T - p_T) \right\} \]

MC@NLO

\[R^s \propto \frac{\alpha_s}{t} P_{ij}(z) B(\Phi_B) \quad , \quad R^f = R - R^s \]

POWHEG

\[R^s = \frac{h^2}{h^2 + p_T^2} R \quad , \quad R^f = \frac{p_T^2}{h^2 + p_T^2} R \]

- The Sudakov form factor is the one from the P.S., i.e. it uses the collinear splitting function in the exponent.
- The full matrix element appears only in the regular contribution.
- \(h\) fact controls high order effects
- At low \(p_T \) \(R \) goes into collinear factorization and the Sudakov regains the splitting function in the exponent.

The two approaches differs by higher order terms.

See P. Richardson talk for a detailed talk on the topic and the latest developments.
Matching scales determination in gluon fusion
Collinear behavior of the $gg \rightarrow Hg$ amplitudes

\[C \equiv \frac{|M_{gg \rightarrow Hg}(s,p_T^H,m_Q)|^2}{|M_{gg \rightarrow Hg}^{div}(s,p_T^H,m_Q) + p_T^H|^2} \]

Relative deviation from the collinear limit.

- The p_T^H at which the deviation reach $\bar{C} = 0.9/1.1$ gives us our preferred value for the factor h.
- We choose a value of $s = s_{min} + s_{soft}$ close to the production threshold. Larger values should be PDF suppressed.
- $s_{min} = m_H^2 + 2(p_T^H)^2 + 2p_T^H\sqrt{(p_T^H)^2 + m_H^2}$.
- s_{soft} is used to move away from the soft divergence.
- Analogous study for the qg channel yields much lower scales.
- Combination of the two channels using a differential weights.
- Manifest effect of the top threshold.
- Monotonous line for HQEFT and the bottom since no relevant scales are crossed.
- For heavy Higgs masses, our scales lower than the extrapolation of the “canonical” ones ($m_H/2, m_H/1.2$), currently used for a light Higgs.
High-p_T matching, example for $m_h = 125$ GeV

- Decomposition of the cross section in three contributions:

$$\sigma(t + b) = \sigma(t, Q_t) + \sigma(b, Q_b) + \sigma(\text{interference}, Q_{\text{int}})$$
Comparison of the scale sets

- Similar behavior for the bottom scale.
- Different behavior (especially around the two-top threshold), though compatible, for the top quark contribution.
- Opposite behavior for the interference scale when the interference terms goes to zero.
SM results
- **HRes** recovers the fixed order distribution at $\mathcal{O}(m_h)$ with a forced matching.
- Difference in the intermediate region due to different matching and possibly due to the structure of the **POWHEG** Sudakov form factor.
- Change the default shower scale choice in POWHEG, by capping it at the same value used for h.
- Tail of the distribution goes over the fixed order results.
Analytic resummation vs POWHEG vs MC@NLO in the SM and in the 2HDM
Comparison of the hadronic predictions

We show the comparison of the results obtained with

Analytic resummation (NLO+NLL),

NLO+PS POWHEG (NLO+LL),

NLO+PS MC@NLO (NLO+LL).

 \(\tan \beta = 50, \sin(\beta - \alpha) = 0.999, m_h = 125 \text{ GeV}, \ m_H = 300 \text{ GeV}, \ m_A = 270 \text{ GeV} \).

- 2HDM large-top scenario
 \(\tan \beta = 1, \sin(\beta - \alpha) = 0.999, m_h = 125 \text{ GeV}, \ m_H = 300 \text{ GeV}, \ m_A = 270 \text{ GeV} \).

- We have considered the shape of the distribution (i.e. \(1/\sigma d\sigma/dp_T \)) for \(h, H \) and \(A \) production.

- Uncertainty band computed by varying only the matching scale using the rescaling-factor combination
 \(\{ Q_t/2, \ Q_t, \ 2 \cdot Q_t \} \times \{ Q_b/2, \ Q_b, \ 2 \cdot Q_b \} \times \{ Q_i/2, \ Q_b, \ 2 \cdot Q_i \} \) and then taking the envelope of the results.

- A more complete study, considering also different scenarios, is available in hep-ph/1510.08850
Scenario B – Matching uncertainty

- Bottom dominated scenario.
- Comparison at fixed scales (BV) of the different tools.
- Same behavior of the MCs up to 25 GeV. In the intermediate region POWHEG is flatter, then the two curves cross at $p_T \approx 150$ GeV.
- Overlap of the uncertainty bands.
- Different shape of the POWHEG vs MC@NLO band understood to be due to the very different distribution of the shower scale.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Value [GeV]</th>
<th>Scale</th>
<th>Value [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_t</td>
<td>111</td>
<td>Q_t</td>
<td>59</td>
</tr>
<tr>
<td>w_b</td>
<td>38</td>
<td>Q_b</td>
<td>38</td>
</tr>
<tr>
<td>w_{int}</td>
<td>23</td>
<td>Q_{int}</td>
<td>47</td>
</tr>
</tbody>
</table>
Scenario B – Matching uncertainty

- Bottom dominated scenario.
- Comparison at fixed scales (HMW) of the different tools.
- Same behavior of the MCs up to 25 GeV. In the intermediate region POWHEG is flatter, then the two curves cross at $p_T \approx 150$ GeV.
- Overlap of the uncertainty bands.
- Different shape of the POWHEG vs MC@NLO band understood to be due to the very different distribution of the shower scale.

<table>
<thead>
<tr>
<th></th>
<th>BV</th>
<th>HMW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>Value [GeV]</td>
<td>Scale</td>
</tr>
<tr>
<td>w_t</td>
<td>111</td>
<td>Q_t</td>
</tr>
<tr>
<td>w_b</td>
<td>38</td>
<td>Q_b</td>
</tr>
<tr>
<td>w_{int}</td>
<td>23</td>
<td>Q_{int}</td>
</tr>
</tbody>
</table>
- High-pt tail behavior enhanced in the case of bottom dominated models.
- Changing the default prescription for the shower scale (mPOWHEG) allow for the recovery of the fixed order at high-pt.
Sensitivity to the shower scale choice in \(\text{aMC@NLO}\)

In the default \(\text{aMC@NLO}\) implementation, the shower scale is chosen as

- **S–events**: it uses a probability density distribution, which depends on the kinematic of the event, and that results in relatively low scales.
- **H–events**: the scale is taken equal to the maximum of the distribution for the S–events.
- Probe the sensitivity to these choices by using instead a \(\delta\)-function distribution.

![Graph showing differential cross-sections](image)
H, large t scenario – Matching uncertainty

- Top dominated scenario.
- Comparison at fixed scales (BV) of the different tools.
- Very compatible behavior of the central predictions between the two MC.
- Overlap of the uncertainty bands.
- Very similar shape of the uncertainty band for the MCs.
H, large t scenario – Matching uncertainty

- Top dominated scenario.
- Comparison at fixed scales (HMW) of the different tools.
- Very compatible behavior of the central predictions between the two MCs.
- Overlap of the uncertainty bands.
- Very similar shape of the uncertainty band for the MCs.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Value [GeV]</th>
<th>Scale</th>
<th>Value [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_t</td>
<td>111</td>
<td>Q_t</td>
<td>59</td>
</tr>
<tr>
<td>w_b</td>
<td>38</td>
<td>Q_b</td>
<td>38</td>
</tr>
<tr>
<td>w_{int}</td>
<td>23</td>
<td>Q_{int}</td>
<td>47</td>
</tr>
</tbody>
</table>
Top dominated scenario.
Fixed tool (AR), all scales compared.
Different scales for the top quark.
Deviation of the central value predictions.
H, large t – Scale sensitivity

- Top dominated scenario.
- Fixed tool (MC@NLO), all scales compared.
- Different scales for the top quark.
- Deviation of the central value predictions.
H, large t – Scale sensitivity

- Top dominated scenario.
- Fixed tool (POWHEG), all scales compared.
- Different scales for the top quark.
- Deviation of the central value predictions.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Value [GeV]</th>
<th>Scale</th>
<th>Value [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_t</td>
<td>111</td>
<td>Q_t</td>
<td>59</td>
</tr>
<tr>
<td>w_b</td>
<td>38</td>
<td>Q_b</td>
<td>38</td>
</tr>
<tr>
<td>w_{int}</td>
<td>23</td>
<td>Q_{int}</td>
<td>47</td>
</tr>
</tbody>
</table>