The DESY II Testbeam Facility

5th Beam Telescopes and Test Beams Workshop 2017, Barcelona
Ralf Diener, Norbert Meyners, Marcel Stanitzki
DESY Testbeam Facility

- Facility fed by DESY II synchrotron
- Three thin, internal carbon fiber targets generate bremsstrahlung photons
- Conversion at target to e^+/e^- with energies up to 6 GeV
- Rates depend on beam line, energy, target, collimation
- Very high availability (~99% uptime)

- Three individual beam lines, controlled by the user
 - Shutter, area interlock
 - Select particle momentum/collimation
Infrastructure

• All the useful things:
 • 30 kg and 1 ton stages
 • 25 t crane
 • Patch panels: Ethernet, optical fiber, BNC, S-HV
 • IP cameras, dry nitrogen
 • Gas setup (incl. flammable gas)
 • Dipole magnet in TB 21
 • Superconducting solenoid (1 T)
 • Usable diameter ~ 75 cm
 • Wall: 0.2 X_0
 • Mounted on movable stage
Pixel Beam Telescopes

- Complete Package:
 - Hardware, trigger, software
- Using MAPS pixel planes
 - 6 Layers, 1 x 2 cm2 size
 - 18 μm pixel pitch
- Dedicated stages to move/rotate Devices-under-test (DUT)
- Both Arms adjustable for different DUTs
- Trigger rates up to 3 kHz
- Few micron tracking resolution
- Dedicated support crew
- High demand: requested by ~ 70% of users in 2016
2016

• Run 2016
 • March 14th -December 23rd
 • 105 weeks available, 67 allocated
 • 66 % booked, 30 % all beam lines used
 • 49 % from LHC groups
 • 292 Users from 21 countries
 • 67 % Germany,
 15 % other EU
 18 % outside the EU
 • 37 % new users, 47 % students

• Highlights
 • Belle II tracking system test with 66 Users
 • First Time: Physics teachers training
- Operation starts Feb. 13
- Belle II already in setup phase
- Shutdown in July/August for 4 weeks
- Beam until Dec. 22
- So far: 44 weeks requested by 24 groups
 - ~ 75 % LHC, ~ 80 % telescope
- AIDA2020
 - Common slow control for environmental conditions (temperature, humidity, ...)
 - Large area strip beam telescope inside PCMAG 1T solenoid

<table>
<thead>
<tr>
<th>Week</th>
<th>TB21</th>
<th>TB22</th>
<th>TB24</th>
<th>Telescope in PCMAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Jan-17</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-Jan-17</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-Jan-17</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-Jan-17</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-Jan-17</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-Feb-17</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-Feb-17</td>
<td>7</td>
<td>DATURA</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>20-Feb-17</td>
<td>8</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-Feb-17</td>
<td>9</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-Mar-17</td>
<td>10</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-Mar-17</td>
<td>11</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-Mar-17</td>
<td>12</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-Mar-17</td>
<td>13</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Apr-17</td>
<td>14</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-Apr-17</td>
<td>15</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-Apr-17</td>
<td>16</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-Apr-17</td>
<td>17</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-May-17</td>
<td>18</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-May-17</td>
<td>19</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May-17</td>
<td>20</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-May-17</td>
<td>21</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-May-17</td>
<td>22</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Jun-17</td>
<td>23</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-Jun-17</td>
<td>24</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-Jun-17</td>
<td>25</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-Jun-17</td>
<td>26</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Jul-17</td>
<td>27</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-Jul-17</td>
<td>28</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-Jul-17</td>
<td>29</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-Jul-17</td>
<td>30</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-Jul-17</td>
<td>31</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-Aug-17</td>
<td>32</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-Aug-17</td>
<td>33</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-Aug-17</td>
<td>34</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-Aug-17</td>
<td>35</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Sep-17</td>
<td>36</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-Sep-17</td>
<td>37</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-Sep-17</td>
<td>38</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-Sep-17</td>
<td>39</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Oct-17</td>
<td>40</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-Oct-17</td>
<td>41</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-Oct-17</td>
<td>42</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-Oct-17</td>
<td>43</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-Oct-17</td>
<td>44</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-Nov-17</td>
<td>45</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-Nov-17</td>
<td>46</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-Nov-17</td>
<td>47</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-Nov-17</td>
<td>48</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Dec-17</td>
<td>49</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-Dec-17</td>
<td>50</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-Dec-17</td>
<td>51</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-Dec-17</td>
<td>52</td>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4th Beam Line

- Current beam lines well used, but sufficient → additional of this type not needed

- Under study: 4th beam line using DESY beam directly (∼10^{10} e⁻/bunch, 12.5 Hz)

- Electrons with max DESY II energy and/or high intensity
 - Studies with 6.3 GeV beam, high intensities (100 kHz or more)
 - Fan out + collimation: 10^{10} to 100 electrons/cm²
 - User communities: HL-LHC, Pixel detectors

- Pion/muon beam (beryllium target): up to 4 GeV / O(10) pions per bunch
 - Extended test possibilities: hadronic calorimetry and particle identification
 - User communities: calorimeter & PID detectors

- Electromagnetic irradiation (∼ 10 X₀ tungsten target)
 - Intensive electromagnetic shower of electrons and photons with E < 1 GeV
 - User communities: beam instrumentation, space flight
4th Beam Line

- No influence on DESY II operations
- Uses only dumped beam
- Extraction and beam line already installed (former transport line to DORIS)
- Needed
 - Small building incl. shielding/interlock
 - Magnets, collimator, targets, instrumentation, ...
- Studies to establish the full feasibility
- Workshop planned for summer 2017
 - Demand and requirements of user communities
 - More details of planning
- Subscribe to testbeam-info mailing list
Information, Contact, Scientific Accounting

- More information available on: http://testbeam.desy.de
- Annual calls for testbeam time and other information (free slots etc.): Subscribe to testbeam-info mailing list
- AIDA2020 transnational access possible
- Contact over web page link or via: testbeam-coor@desy.de
- Acknowledging the use of the facility: The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)
- Scientific Accounting
 - We need to keep track of talks, proceedings, papers that have used the DESY testbeam
 - Please provide the necessary information
Summary

- DESY II testbeam facility
 - 3 beam lines with 1 to 6 GeV electrons/positrons, controlled by the users
 - Very high availability, open to the entire community
 - Infrastructure: Test beam telescopes, 1T solenoid and dipole magnet

- Schedule
 - 2016/17 winter shutdown ongoing till Feb. 13
 - This year 4 week summer shutdown (July)
 - Operation till Christmas 2017

- Studies for 4th beam line offering new possibilities
 - Dedicated workshop planned for summer 2017

Acknowledgements: The DESY testbeam setup is / has been supported by: European Commission / Union (6th Framework Programme “Structuring the European Research Area”, contract number RII3-026126, FP7 Research Infrastructures project AIDA, grant agreement no. 262025, H2020 project AIDA-2020, GA no. 654168), JSPS KAKENHI Grant Number 23000002
Additional information
DESY II

- Radius: 46.601 m (circumference is 292.8 m)
- Bunch of about 10^{10} (electrons or positrons) injected from LINAC at 450 MeV
- Acceleration by eight 7-cell PETRA-type cavities
- Revolution frequency is 1 MHz, bunch length around 30 ps
- Acceleration/deceleration in sinusoidal mode; frequency of 12.5 Hz (cycle: 80 ms)
- Today: DESY II runs as pre-accelerator for PETRA
- Usual running conditions: acceleration to 6.3 GeV (maximum 7 GeV)
- Extraction for PETRA every minute at 6.0 GeV
The DESY II Testbeam Facility, 5th BTTB, 25.01.2017

DESY Synchrotron

- 1964-1979:
 - DESY I runs with electrons at up to 7 GeV

- 1974-1986:
 - DESY delivers electrons/positrons for DORIS (3 GeV)

- 1976-1986:
 - Pre-accelerator for PETRA

- 1985: first run tests of DESY II
 (electrons beam up to 10 GeV)

- 1986: DESY I switched off and converted into proton synchrotron DESY III

- 1987: DESY II takes over and delivers beam to DORIS (→2013), PETRA and the testbeam area

- Runs with an availability of 99% in automatic operation

- “DESY II is assigned to deliver beam quietly without fanfare. This challenge has been completely and continuously fulfilled.” from: “25 years DESY II beam operation”
Testbeam Rates

- Rates depend on beam line, energy, target material, collimator setting and DESY II beam energy / filling
Beam Generation

- Three thin, internal carbon fiber targets generate bremsstrahlung photons
- Conversion at target to e^+/e^- with energies up to 6 GeV
- Beam momentum steered by magnet current