Diffraction effects in the Recoil-Frame Photoelectron Angular Distributions of Halomethanes

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/635/11/112020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 131.169.95.162
This content was downloaded on 22/12/2016 at 13:45

Please note that terms and conditions apply.

You may also be interested in:

Recoil-frame photoelectron angular distributions probing inner-valence dissociative ionization of carbon monoxide
M Lebech, J C Houver, G Raseev et al.

Probing the dynamics of dissociation of methane following core ionization using three-dimensional molecular frame photoelectron angular distributions
J B Williams, C S Trevisan, M S Schöffler et al.

Photoelectron angular distribution in bichromatic atomic ionization
A N Grum-Grzhimailo, E V Gryzlova, E I Staroselskaya et al.

Effect of elliptically polarised light on the angular distribution of photoelectrons
J A R Samson and A F Starace

Differential Cross Section and Polarization of Radiative Recombination
Wu Ze-Qing, Li Yue-Ming, Duan Bin et al.

Strong asymmetry of the angular distribution of Auger electrons from electron-impact excited autoionizing states of Rb
G Kereviius and A Kupliauskiene

Angular distribution of light scattered from heavily doped silica fibres
V V Alekseev, M E Likhachev, M M Bubnov et al.

Electric octupole contribution to the angular distribution of the krypton 4p photoelectrons
K Holste, A A Borovik, Jr, T Buhr et al.
Diffraction effects in the Recoil-Frame Photoelectron Angular Distributions of Halomethanes

Cédric Bomme*, 1, Denis Anielski*,†, Evgeny Savelyev*, Rebecca Boll*,†, Benjamin Erk*, Sadia Bari*, Jens Viefhaus*, Mauro Stener†, Piero Decleva† and Daniel Rolles* 2

* Deutsches Electronen-Synchrotron(DESY), Hamburg, Germany
† Max-Planck-Institut f. Kernphysik, Heidelberg, Germany
‡European XFEL GmbH, Hamburg, Germany
§Universita' di Trieste, Trieste, Italy
$J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA

Synopsis We have measured the Recoil Frame - Photoelectron Angular Distributions (RF-PADs) for inner-shell photoionization of CH₃F, CH₃I and CF₃I halomethane molecules for photoelectron energies up to 300 eV detected within a 4π solid angle in the gas-phase. For high kinetic energies, the RF-PADs are dominated by diffraction effects that encode information on the molecular geometry.

Recoil frame - photoelectron angular distributions supply deep insights into the molecular photoionization process and provide access to an unparalleled level of detailed information such as phases of photoelectron waves [1, 2], localization of core holes [3], and double-slit interference [4, 5]. RF-PADs can also be interpreted in terms of photoelectron diffraction [6, 7] and direct information on the geometric and electronic structure of the molecule can be obtained, e.g., by comparing the measured diffraction patterns and RF-PADs to single and multiple scattering calculations [8, 9, 10, 11, 12].

For high kinetic energies of 50eV and above, the RF-PADs contain diffraction effects that encode information on the molecular geometry in the RF-PADs. In order to illustrate this in more detail, we are comparing our experimental results to single and multiple scattering calculations similar to those used in earlier studies [10, 11, 12] and to DFT calculations [13, 14].

References:

Figure 1: RF-PADs after F(1s) photoionization of CH₃F at 875eV photon energy, i.e. 180eV photoelectron energy. Light propagation axis and molecular F-C axis are parallel.