New Results on Diffraction at HERA

S. Levonian, DESY

H1 Preliminary
data
signal
background

H1 data

ZEUS

H1

D* in diffractive DIS

ZEUS (prel.) 374 pb⁻¹
HERA: The World’s Only ep Collider

HERA-1 (1993-2000) \(\simeq 120 \text{ pb}^{-1} \)
HERA-2 (2003-2007) \(\simeq 380 \text{ pb}^{-1} \)

Final Data samples
H1+ZEUS: \(2 \times 0.5 \text{ fb}^{-1} \)

- 1998 \(E_p \) upgrade: \(820 \Rightarrow 920 \text{ GeV} \)
 \((\sqrt{s} : 301 \Rightarrow 319 \text{ GeV}) \)
- 2001 HERA-2 upgrade: \(\mathcal{L} \times 3 \), Polarised \(e^+e^- \)
 \(\langle P \rangle = 40\% \)
Diffraction at HERA. Factorisation properties

QCD factorisation
(rigorously proven for DDIS by Collins et al.):

\[\sigma^{D(4)}_r \propto \sum_i \hat{\sigma} \gamma^*_i(x, Q^2) \otimes f^D_i(x, Q^2; x_{IP}, t) \]

- \(\hat{\sigma} \gamma^*_i \) – hard scattering part, same as in inclusive DIS
- \(f^D_i \) – diffractive PDF's, valid at fixed \(x_{IP}, t \) which obey (NLO) DGLAP

Regge factorisation
(conjecture, e.g. RPM by Ingelman, Schlein):

\[F^{D(4)}_2(x_{IP}, t, \beta, Q^2) = \Phi(x_{IP}, t) \cdot F^{IP}_2(\beta, Q^2) \]

- In this case shape of diffractive PDF's is independent of \(x_{IP}, t \)
 while normalization is controlled by Regge flux \(\Phi(x_{IP}, t) \)
Selection of Diffractive Events

Measure the leading proton

- Forward spectrometers (H1 FPS/VFPS)

- x_{IP} and t measurements
- Less statistics
- p-tagging systematics

Measure a Large Rapidity Gap

- Data integrated over $|t| < 1 \text{ GeV}^2$
- High statistics
- Contamination from proton dissociation events
 - Needs to be controlled

Different systematics
Different kinematic coverage
Inclusive Diffraction and DPDFs: gluon dominated P
Diffraction at HERA: Some old Results

Inclusive Diffraction and DPDFs: gluon dominated P

VM: soft vs hard P transition from soft to hard regime at $\mu^2 \approx 4 \div 5$ GeV2
Selected new Results

- Diffractive Photoproduction of Isolated Photons [ZEUS-prel-2015]

- D^* Meson Production in Diffractive DIS at HERA [H1-prel-2016]

- Cross-section Ratio $\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}}$ in Exclusive DIS [ZEUS-pub-2016]

- Exclusive ρ^0 Meson Photoproduction with a Leading Neutron [H1-pub-2016]
Isolated Photons in Diffractive Photoproduction
Examples of lowest-order diagrams by which diffractive processes may generate a prompt photon

- **Direct** incoming photon gives all its energy to the hard scatter \((x_\gamma = 1) \).
- **Resolved** incoming photon gives fraction \(x_\gamma \) of its energy.

An outgoing photon must couple to a charged particle line and so the exchanged colourless object ("pomeron") must be resolved in these lowest-order processes.

\[4 < E^\gamma_t < 15 \text{ GeV} \]
\[-0.7 < \eta^\gamma < 0.9 \]

- Use energy-weighted e.m. cluster width \(\langle \delta Z \rangle \) to distinguish \(\gamma \) from \(\pi^0 \), \(\eta \) background
- Diffraction: LRG signature, and \(x_{IP} < 0.03 \)
Isolated Photon + Jet: Data vs MC model

Comparison with NLO QCD to follow

All well described, except highest z_{IP}.
D* in Diffractive DIS at HERA
Based on 280 pb$^{-1}$ HERA-2 data

Open charm tagged with D^*

$D^{*+} \rightarrow D^0\pi^+_\text{slow} \rightarrow (K^-\pi^+)\pi^+_\text{slow} + C.C.$

LRG selection of diffraction ($\sim 1100D^*$)
D^* Production in Diffractive DIS: Data vs NLO

- NLO QCD by HQVDIS in FFNS (H1 DPDF-2006, $m_c = 1.5$ GeV, $\mu_r^2 = \mu_f^2 = m_c^2 + 4Q^2$)
 - in good agreement with data

- Charm fragm. func. as determined in H1 non-diffractive D^* analysis
 - works here \Rightarrow supports universality of charm fragmentation

- Data could be used as additional input to the global DPDF fit
Cross–section Ratio $\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}}$ in DIS
Motivation

$\frac{\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}}{\sigma_{\gamma p \rightarrow \psi(2S)p}}$ gives information about the dynamics of hard process sensitive to radial wave function of charmonium.

pQCD predictions: $R(Q^2 = 0) \simeq 0.17$ and rises with Q^2.

$\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$ in DIS

$R = \frac{\sigma_{\gamma p \rightarrow \psi(2S)p}}{\sigma_{\gamma p \rightarrow J/\psi p}}$

$\psi(2S)$ wave function different from J/ψ wave function:

- Has a node at ≈ 0.35 fm
- $\langle r^2 \rangle_{\psi(2S)} \approx 2 \langle r^2 \rangle_{J/\psi(1S)}$
Data samples and Decay channels

\[
J/\psi(1S) \rightarrow \mu^+\mu^- \quad \psi(2S) \rightarrow J/\psi(1S) \pi^+\pi^- \\
\psi(2S) \rightarrow J/\psi(1S) \pi^+\pi^- ; \ J/\psi(1S) \rightarrow \mu^+\mu^- \\
J/\psi(1S) \rightarrow \mu^+\mu^- \quad \langle Q^2 \rangle < 80 \text{GeV}^2 \quad \mathcal{L} = 468 \text{ pb}^{-1}
\]

Data samples

HERA I + HERA II data (1996 — 2007)
Integrated luminosity: 468 pb^{-1}

MC-data samples

Signal MC: DIFFVM for exclusive VM production
Background MC: GRAPE
for Bethe–Heitler
mu–pair production

\[\begin{align*}
5 < Q^2 < 80 \text{GeV}^2 \\
\mathcal{L} = 468 \text{ pb}^{-1}
\end{align*}\]
Results: \(\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)} \) vs \(Q^2, W \) and \(|t| \)

- Ratio rises with \(Q^2 \) and is constant in \(W \) and \(|t| \)
- HERA data in qualitative agreement with pQCD models
- Some discriminating power (albeit statistically limited)
Rho−0 with a Leading Neutron at HERA
HERA as a ‘4P’ facility

HERA enables to study structure of

- **Proton** – $F_2, F_L, ...$
- **Photon** – g/γ
- **Pomeron** – F_2^D, F_L^D
- **Pion** – F_2^π
HERA as a ‘4P’ facility

HERA enables to study structure of

- Proton – F_2, F_L, ...
- Photon – g/γ
- Pomeron – F_2^D, F_L^D
- Pion – F_2^π

Here for the first time we investigate the reaction involving all these objects simultaneously:

$$\gamma + p \rightarrow \rho^0 \pi^+ n$$

Photoproduction: $Q^2 < 2 \text{ GeV}^2$ ($\langle Q^2 \rangle = 0.04 \text{ GeV}^2$)
Low p_t: $|t| < 1 \text{ GeV}^2$ ($\langle |t| \rangle = 0.20 \text{ GeV}^2$)
Small mass: $0.3 < m_{\pi\pi} < 1.5 \text{ GeV}$ (m_{ρ^0})
π^+, π^- in CT: $20 < W_{\gamma p} < 100 \text{ GeV}$ ($\langle W_{\gamma p} \rangle = 45 \text{ GeV}$)
Leading n: $E_n > 120 \text{ GeV}$; $\theta_n < 0.75 \text{ mrad}$

No hard scale present \Rightarrow Regge framework is most appropriate
ρ^0 with Leading Neutron: S/B decomposition

Data sample: $L = 1.16 \text{ pb}^{-1}$

~ 7000 events

Precision:
- $\delta_{\text{stat}} = 2\%$
- $\delta_{\text{sys}} = 14\%$

(a) $W_{\gamma p}$
(b) $W_{\gamma N}$
(c) $W_{\gamma n}$
(d) M_Y

ρ^0 with Forward Neutron

- $E_{\eta k}$
- $B/(S+B)$

$F_{bg} = 0.34 \pm 0.05$

Data points are shown with statistical errors only;
green band represents estimated
total background fraction uncertainty
ρ-meson shape

ρ⁰ with Forward Neutron

![Graph](image)

H1 data
- H1 data
- ρ⁰: BW
- ρ⁰: BW×RS
- interference term
- ω reflection
- full fit

\[
\frac{dN(M_{\pi\pi})}{dM_{\pi\pi}} \propto BW_\rho(M_{\pi\pi}) \left(\frac{M_\rho}{M_{\pi\pi}} \right)^n_{RS}
\]

- \(M = 764 \pm 3 \text{ MeV} \)
- \(\Gamma = 155 \pm 5 \text{ MeV} \)

Exclusive ρ⁰ photoproduction

![Graph](image)

- H1 data
- ZEUS-1994 (γp → ρ⁰p)
- fit \(n_0(p_T^2 + M^2)^\beta \)

Analysis region: \(0.6 < M_{\pi^+ \pi^-} < 1.1 \text{ GeV} \) extrapolated using BW to the full range: \(0.28 < M_{\rho^0} < 1.5 \text{ GeV} \)
Cross sections definitions

\[\sigma_{\gamma p} = \frac{\sigma_{e p}}{\Phi_{\gamma}} \]

\[\Phi_{\gamma} = \int f_{\gamma/e}(y, Q^2)dydQ^2 \]

\[\sigma_{\gamma\pi} = \frac{\sigma_{\gamma p}}{\Gamma_{\pi}} \]

\[\Gamma_{\pi} = \int f_{\pi/p}(x_L, t)dx_L dt \]

VMD:

\[f_{\gamma/e}(y, Q^2) = \frac{\alpha}{2\pi Q^2 y} \left\{ 1 + (1 - y)^2 - 2(1 - y) \left(\frac{Q_{\text{min}}^2}{Q^2} - \frac{Q^2}{M_\rho^2} \right) \right\} \frac{1}{\left(1 + \frac{Q^2}{M_\rho^2} \right)^2} \]

OPE:

\[f_{\pi/p}(x_L, t) = \frac{1}{2\pi} \frac{g^2_{\rho\pi N}}{4\pi} \frac{-t}{(m_\pi^2 - t)^2} \exp\left[-R_{\pi n}^2 \frac{m_\pi^2 - t}{1 - x_L} \right] \]
Cross sections definitions

\[\sigma_{\gamma p} [\text{nb}] \]

\[W_{\gamma} \]

\[\rho^0 \text{ with Forward Neutron} \]

\[H1 \]

\[e' \]

\[e \]

\[f_{\gamma/e} \]

\[f_{\pi/p} \]

\[p \]

\[n \]

\[\pi^+ \]

\[\pi^- \]

\[\gamma \]

\[\rho^0 \]

\[\pi^+ \]

\[\pi^- \]

\[\pi^0 \text{ with Forward Neutron} \]

\[H1 \]

\[H1 \text{ data} \]

\[\rho^0 (\gamma \pi^+ \pi^-) \, [\mu\text{b}] \]

\[W_{\pi} \text{ [GeV]} \]

VMD:

\[
 f_{\gamma/e}(y, Q^2) = \frac{\alpha}{2\pi Q^2 y} \left\{ \left[1 + (1 - y)^2 - 2(1 - y) \left(\frac{Q^2_{\text{min}}}{Q^2} - \frac{Q^2}{M^2_{\rho}} \right) \right] \frac{1}{(1 + \left(\frac{Q^2}{M^2_{\rho}} \right)^2)} \right\}
\]

OPE:

\[
 f_{\pi/p}(x_L, t) = \frac{1}{2\pi} \frac{g_{p\pi N}^2}{4\pi} \frac{1}{(1 - x_L)} \left(\frac{m^2_{\pi} - t}{(m^2_{\pi} - t)^2} \right) \exp\left[-R^2_{\pi n} \frac{m^2_{\pi} - t}{1 - x_L} \right]
\]
Constraining pion flux

Failure to describe $b_n(x_L)$ suggests strong absorptive effects (n rescattering) \Rightarrow try to quantify
Estimate of absorption corrections

\[r_{el} = \frac{\sigma_{\gamma\pi \to \rho^0 \pi}}{\sigma_{\gamma p \to \rho^0 p}} = \begin{cases}
0.25 \pm 0.06 \quad \text{(exp.extracted)} \\
0.57 \pm 0.03 \quad \text{(theo.expected)}
\end{cases} \]

\[K_{\text{abs}} = 0.44 \pm 0.11 \]

- Optical Theorem: \[\frac{d\sigma_{el}}{dt} \Big|_{t=0} = b_{el}\sigma_{el} \propto \sigma_{\text{tot}}^2 \]
- Eikonal approach: \[b = \langle R^2 \rangle; \quad b_{12} = b_1 + b_2 \]
- World data: \(b_{pp} \simeq 11.7, \quad b_{\pi^+p} \simeq 9.6, \quad b_{\gamma p} \simeq 9.75 \) GeV\(^{-2}\)
Differential cross section in $p^2_{T,\rho}$

$$d\sigma_{\gamma p}/dt' [\mu b/GeV^2]$$

<table>
<thead>
<tr>
<th>t' [GeV2]</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d\sigma_{\gamma p}/dt'$ [\mu b/GeV^2]</td>
<td>10</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

- H1 data
- Fit: $a_1 e^{b_1 t'} + a_2 e^{b_2 t'}$
 - $b_1 = 25.7 \pm 3.2$ GeV$^{-2}$, $b_2 = 3.62 \pm 0.32$ GeV$^{-2}$

Geometric interpretation: $\langle r^2 \rangle = 2b_1 \cdot (\hbar c)^2 \simeq 2$ fm$^2 \Rightarrow (1.6R_p)^2 \Rightarrow$ ultra-peripheral process

DPP explanation: low mass $\pi^+ n$ state \rightarrow large slope, high masses \rightarrow less steep slope
Summary

- Diffraction is an important part of HERA physics landscape. Despite overall consistent picture, the field is challenging, as it represents a complicated interplay of soft and hard phenomena.

- Statistically limited channels have been studied with full HERA data sample. Whenever a hard scale is present, pQCD calculations are successful.

- The data show sensitivity to some QCD models parameters. They can also be used to further constrain DPDF, especially at high z_P.

- Photon-pion elastic cross section is extracted experimentally (in OPE approximation) for the first time.

- Strong absorptive effects are confirmed in Leading Neutron production. Since the nature of these is non-perturbative, exp. results are essential for tuning models of ‘Survival Gap Probability’.
Backup Slides
Open questions

■ $F_2^{D(4)}$ from HERA-II VFPS data and final DPDF determination without assumption on Regge factorisation.

■ Explain factorisation breaking mechanism in PHP, in particular independence of Gap Survival Probability on x_γ.

■ Multiscale problem: (Q^2, E_T, M_V, t).

■ Where is an Odderon?

■ Can one observe Glueball in a double Pomeron reaction in PHP?

\[\gamma p \rightarrow (IP\overline{IP}) \rightarrow M_X \quad (M_X = \sqrt{x_{IP1}x_{IP2}}W_{\gamma p} = 2 \div 4 \text{ GeV}) \]

HERA has finished, but not DIS physics.
What’s next? eRHIC? LHeC?