Measurement of the WZ production cross section in pp collisions at \(\sqrt{s} = 7 \) and 8 TeV and search for anomalous triple gauge couplings at \(\sqrt{s} = 8 \) TeV

The CMS Collaboration

Abstract

The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9 fb\(^{-1}\) collected at \(\sqrt{s} = 7 \) TeV, and 19.6 fb\(^{-1}\) at \(\sqrt{s} = 8 \) TeV. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for \(71 < m_Z < 111 \) GeV are
\[
\sigma(pp \rightarrow WZ; \sqrt{s} = 7 \text{ TeV}) = 20.14 \pm 1.32 \text{(stat)} \pm 1.13 \text{(syst)} \pm 0.44 \text{(lumi)} \text{ pb}
\]
and
\[
\sigma(pp \rightarrow WZ; \sqrt{s} = 8 \text{ TeV}) = 24.09 \pm 0.87 \text{(stat)} \pm 1.62 \text{(syst)} \pm 0.63 \text{(lumi)} \text{ pb}
\]
Differential cross sections with respect to the Z boson \(p_T \), the leading jet \(p_T \), and the number of jets are obtained using the \(\sqrt{s} = 8 \) TeV data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.

Submitted to the European Physical Journal C
1 Introduction

The measurement of the production of electroweak heavy vector boson pairs (diboson production) in proton-proton collisions represents an important test of the standard model (SM) description of electroweak and strong interactions at the TeV scale. Diboson production is sensitive to the self-interactions between electroweak gauge bosons as predicted by the $SU(2)_L \times U(1)_Y$ gauge structure of electroweak interactions. Triple and quartic gauge couplings (TGCs and QGCs) can be affected by new physics phenomena involving new particles at higher energy scales. The WZ cross section measured in this paper is sensitive to WWZ couplings, which are non-zero in the SM. The WZ production also represents an important background in several searches for physics beyond the SM.

![Leading-order Feynman diagrams for WZ production in proton-proton collisions.](image)

We present a study of WZ production in proton-proton collisions based on data recorded by the CMS detector at the CERN LHC in 2011 and 2012, corresponding to integrated luminosities of 4.9 fb$^{-1}$ collected at $\sqrt{s} = 7$ TeV, and 19.6 fb$^{-1}$ collected at $\sqrt{s} = 8$ TeV. The measurements use purely leptonic final states with W and Z bosons decaying into electrons and muons. At leading order (LO) within the SM, WZ production in proton-proton collisions occurs through quark-antiquark interactions in the s-, t-, and u-channels, as illustrated by the Feynman diagrams shown in Fig. We present a study of WZ production in proton-proton collisions based on data recorded by the CMS detector at the CERN LHC in 2011 and 2012, corresponding to integrated luminosities of 4.9 fb$^{-1}$ collected at $\sqrt{s} = 7$ TeV, and 19.6 fb$^{-1}$ collected at $\sqrt{s} = 8$ TeV. The measurements use purely leptonic final states with W and Z bosons decaying into electrons and muons. At leading order (LO) within the SM, WZ production in proton-proton collisions occurs through quark-antiquark interactions in the s-, t-, and u-channels, as illustrated by the Feynman diagrams shown in Fig.1. Among them, only the s-channel includes a TGC vertex. Hadron collider WZ production has been previously observed at both the Tevatron [1, 2] and the LHC [3–8].

We first describe measurements of the inclusive WZ production cross section at both centre-of-mass energies. The measurements are restricted to the phase space in which the invariant mass of the two leptons from the Z boson decay lies within 20 GeV of the nominal Z boson mass [9]. Using the larger integrated luminosity collected at $\sqrt{s} = 8$ TeV, we also present measurements of the differential cross section as a function of the Z boson transverse momentum p_T, the number of jets produced in association with the WZ pair, and the p_T of the leading associated jet. The measurements involving jets are especially useful for probing the contribution of higher-order QCD processes to the cross section.

Finally, we present a search for anomalous WWZ couplings based on a measurement of the p_T spectrum of the Z boson. The search is formulated both in the framework of anomalous couplings and in an effective field theory approach.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid with detection planes made using three technologies: drift tubes, cathode strip cham-
bers, and resistive-plate chambers. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. The silicon tracker measures charged particles within the pseudorapidity range $|\eta| < 2.50$. The ECAL provides coverage in $|\eta| < 1.48$ in a barrel region and $1.48 < |\eta| < 3.00$ in two endcap regions. Muons are measured in the range $|\eta| < 2.40$.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [10].

3 Simulated samples

Several Monte Carlo (MC) event generators are used to simulate signal and backgrounds processes. The $t\bar{t}$, tW, and $q\bar{q} \to ZZ$ processes are generated at next-to-leading order (NLO) with POWHEG 2.0 [11–13]. The $gg \to ZZ$ process is simulated at leading order (one loop) with GG2ZZ [14]. The WZ signal and other background processes are generated at LO with MADGRAPH 5.1 [15]. The other background processes include $Z + \text{jets}$, $W\gamma^*$, $Z\gamma$ as well as processes with at least three bosons in the decay chain comprised of WZZ, ZZZ, WWZ, WWW, tW, $t\bar{t}Z$, $t\bar{t}WW$, $t\gamma$ and $WW\gamma$, collectively referred to as VVV in the following. The $W\gamma^*$ contribution is included in the signal sample, restricted to the phase space with $m_{\gamma*} > 12$ GeV. The signal sample was generated with up to two additional partons at matrix element level. For the modeling of aTGCs, the NLO MCFSM 6.3 [16] Monte Carlo program is used to compute weights that are applied to the WZ signal sample generated with MADGRAPH. In all samples, the parton-level events are interfaced with PYTHIA 6.426 [17] to describe parton showering, hadronization, fragmentation, and the underlying event with the Z2* tune [18]. For LO generators, the default set of parton distribution functions (PDFs) used is CTEQ6L1 [19], while CT10 [20] is used with NLO generators. For all processes, the detector response is simulated with a detailed description of the CMS detector, based on the GEANT4 package [21]. The event reconstruction is performed with the same algorithms as are used for data. The simulated samples include additional interactions per bunch crossing (pileup). Simulated events are weighted so the pileup distribution in the simulation matches the one observed in data.

4 Event reconstruction and object identification

The measurement of the $WZ \to \ell\nu\ell'\nu'$ decay, where $\ell, \ell' = e$ or μ, relies on the effective identification of electrons and muons, and an accurate measurement of missing transverse momentum. The lepton selection requirements used in this measurement are the same as those used in the Higgs boson $H \to WW \to \ell\ell'\nu\nu$ measurement [22]. The kinematic properties of the final-state leptons in those two processes are very similar and the two measurements are affected by similar sources of lepton backgrounds.

Events are required to be accepted by one of the following double-lepton triggers: two electrons or two muons with transverse momentum thresholds of 17 and 8 GeV. For the 8 TeV data sample, events are also accepted when an electron-muon pair satisfies the same momentum criteria.

Electrons are reconstructed by combining information from the ECAL and tracker [23]. Their identification relies on a multivariate regression technique that combines observables sensitive to the amount of bremsstrahlung along the electron trajectory, the geometrical and momentum matching between the electron trajectory in the tracker and the energy deposit in the calorimeter, as well as the shower shape. Muons are reconstructed using information from both the
tracker and the muon spectrometer [24]. They must satisfy requirements on the number of hits in the layers of the tracker and in the muon spectrometer, and on the quality of the full track fit. All lepton candidates are required to be consistent with the primary vertex of the event, which is chosen as the vertex with the highest \(\sum p_T^2 \) of its associated tracks. This criterion provides the correct assignment for the primary vertex in more than 99% of both signal and background events for the pileup distribution observed in data. Both electrons and muons are required to have \(p_T > 20 \text{ GeV} \). Electrons (muons) must satisfy \(|\eta| < 2.5 \) (2.4).

Charged leptons from W and Z boson decays are mostly isolated from other final-state particles in the event. Consequently, the selected leptons are required to be isolated from other activity in the event to reduce the backgrounds from hadrons that are misidentified as leptons or from leptons produced in hadron decays when they occur inside or near hadronic jets. The separation between two reconstructed objects in the detector is measured with the variable \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \), where \(\phi \) is the azimuthal angle. To measure the lepton isolation, we consider a \(\Delta R = 0.3 \) cone around the lepton candidate track direction at the event vertex. An isolation variable is then built as the scalar \(p_T \) sum of all PF objects consistent with the chosen primary vertex, and contained within the cone. The contribution from the lepton candidate itself is excluded. For both electrons and muons a correction is applied to account for the energy contribution in the isolation cone due to pileup. In the case of electrons, the average energy density in the isolation cone due to pileup is determined event-by-event and is used to correct the isolation variable [25]. For muons, the pileup contribution from neutral particles to the isolation is estimated using charged particles associated with pileup interactions. This isolation variable is required to be smaller than about 10% of the candidate lepton \(p_T \). The exact threshold value depends on the lepton flavour and detector region, and also on the data taking period: for 7 TeV data, it is 13% (9%) for electrons measured in the ECAL barrel (endcaps) and 12% for muons, while for 8 TeV data it is 15% for all electrons. For muons, a modified strategy has been used for 8 TeV data to account for the higher pileup conditions in order to reduce the dependence of this variable on the number of pileup interactions. It uses a multivariate algorithm based on the \(p_T \) sums of particles around the lepton candidates built for \(\Delta R \) cones of different sizes [22].

The lepton reconstruction and selection efficiencies are determined using \(Z \rightarrow \ell \ell \) events [26]. The simulated samples are corrected for the difference in the efficiencies between the data and simulation. The total uncertainty in the lepton efficiencies, including effects from trigger, reconstruction, and selection, amounts to about 2% per lepton. The lepton selection criteria in the 7 and 8 TeV samples are chosen to maintain a stable efficiency throughout each data sample.

Jets of hadrons are reconstructed from particle-flow (PF) objects using the anti-\(k_t \) clustering algorithm [27, 28] with a size parameter \(R \) of 0.5. The particle-flow event algorithm [29, 30] reconstructs and identifies each individual particle with an optimized combination of information from the various elements of the CMS detector. The energy of photons is obtained from the ECAL measurement. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with origination from the electron track. The energy of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy. The jet momentum is determined as the vector sum of all particle momenta in the jet. A correction is applied to jet energies to take into account the contribution from pileup.
Jet energy corrections are derived from the simulation, and are confirmed with in situ measurements with the energy balance of dijet and photon + jet events [31]. The jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV. Additional selection criteria are applied to each event to remove spurious jet-like features originating from isolated noise patterns in certain HCAL regions.

The missing transverse momentum vector \vec{p}_T^{miss} is defined as the negative vector sum of the transverse momenta of all reconstructed particles in an event. Its magnitude is referred to as E_T^{miss}.

5 Event selection and background estimates

We select $WZ \rightarrow \ell \nu \ell' \ell'$ decays with $W \rightarrow \ell \nu$ and $Z \rightarrow \ell' \ell'$, where ℓ and ℓ' are electrons or muons. These decays are characterized by a pair of same-flavour, opposite-charge, isolated leptons with an invariant mass consistent with a Z boson, together with a third isolated lepton and a significant amount of missing transverse energy E_T^{miss} associated with the escaping neutrino. We consider four different signatures corresponding to the flavour of the leptons in the final state: eee, $\text{e}\mu \mu$, $\text{e} \mu \mu$, and $\mu \mu \mu$.

The four final states are treated independently for the cross section measurements and for the search for anomalous couplings, and are combined only at the level of the final results. Unless explicitly stated otherwise, identical selection criteria are applied to the 7 and 8 TeV samples.

Candidate events are triggered by requiring the presence of two electrons or two muons. In the 8 TeV sample, events triggered by the presence of an electron and a muon are also accepted. The trigger efficiency for signal-like events that pass the event selection is measured to be larger than 99%. The candidate events are required to contain exactly three leptons matching all selection criteria. In the 8 TeV analysis, the invariant mass of the three leptons is required to be larger than 100 GeV. The Z boson candidates are built from two oppositely charged, same-flavour, isolated leptons. The leading lepton is required to have $p_T > 20$ GeV. The Z boson candidate invariant mass should lie within 20 GeV of the nominal Z boson mass: $71 < m_{\ell\ell} < 111$ GeV. If more than one matching pair is found, the Z boson candidate with the mass closest to the nominal Z boson mass is selected. The remaining lepton is associated with the W boson and is required to have $p_T > 20$ GeV and to be separated from both leptons in the Z boson decay by $\Delta R > 0.1$. Finally, to account for the escaping neutrino, E_T^{miss} is required to be larger than 30 GeV.

Background sources with three reconstructed leptons include events with prompt leptons produced at the primary vertex or leptons from displaced vertices, as well as jets.

The contribution from backgrounds with non-prompt leptons, dominated by $t\bar{t}$ and Z+jets events in which one of the three reconstructed leptons is misidentified, is estimated using a procedure similar to Ref. [32]. The method uses the distinction between a loose and a tight lepton selection. The tight selection is identical to the one used in the final selection, while some of the lepton identification requirements used in the final selection are relaxed in the loose selection. The procedure starts from a sample, called the loose sample, with three leptons passing loose identification criteria and otherwise satisfying all other requirements of the WZ selection. This sample receives contributions from events with three prompt (p) leptons, two prompt leptons and one non-prompt (n) lepton, one prompt lepton and two non-prompt leptons, and three non-prompt leptons. The event yield of the loose sample N_{FFF} can thus be expressed as,

$$N_{\text{FFF}} = n_{ppp} + n_{ppn} + n_{pnp} + n_{npp} + n_{npn} + n_{npp} + n_{pnn} + n_{nnn}. \quad (1)$$
In this expression, the first, second and third indices refer to the leading and subleading leptons from the Z boson decay and to the lepton from the W boson decay, respectively. The loose sample can be divided into subsamples depending on whether each of the three leptons passes or fails the tight selection. The number of events in each subsample is labeled N_{ijk} with $i, j, k = T, F$ where T and F stand for leptons passing or failing the tight selection, respectively. The yield in each of these subsamples can be expressed as a linear combination of the unknown yields $n_{a\beta\gamma}$ ($a, \beta, \gamma = p, n$),

$$N_{ijk} = \sum_{a,\beta,\gamma=p,n} c_{a\beta\gamma}^{ijk} n_{a\beta\gamma}, \quad i, j, k = T, F,$$

(2)

where the coefficients $c_{a\beta\gamma}^{ijk}$ depend on the efficiencies ϵ_{p} and ϵ_{n}, which stand for the probabilities of prompt and non-prompt leptons, respectively, to pass the tight lepton selection provided they have passed the loose selection. For example, starting from Eq. (1), the number of events with all three leptons passing the tight selection N_{TTT} can be written as

$$N_{TTT} = n_{ppp} n_{ppp} n_{ppp} n_{ppp} + n_{ppn} n_{ppp} n_{ppp} n_{ppp}.$$

(3)

The goal is to determine the number of events with three prompt leptons in the TTT sample, corresponding exactly to the selection used to perform the measurement. This yield is $n_{ppp} n_{ppp} n_{ppp} n_{ppp}$. The number of events with three prompt leptons in the loose sample, n_{lll}, is obtained by solving the set of linear equations (2). Independent samples are used to measure the efficiencies ϵ_{p} and ϵ_{l} [32]. The prompt lepton efficiency ϵ_{p} is obtained from a $Z \to \ell\ell$ sample, while the non-prompt lepton efficiency ϵ_{l} is measured using a quantum chromodynamics (QCD) multijet sample. Both efficiencies are measured in several lepton (p_{T}, η) bins. For 7 TeV (8 TeV) data, the measured non-prompt efficiencies for leptons are in the range 1–6% (1–10%), while they are in the range 1–5% (7–20%) for muons. The measured prompt efficiencies lie between 60 and 95% for electrons, and between 71 and 99% for muons for both the 7 and 8 TeV data samples.

The number of events with non-prompt leptons in each final state obtained with this method is given in Table [1]. While these results include the contribution of events with any number of misidentified leptons, simulation studies show that the contribution from backgrounds with two or three misidentified leptons, such as W+jets or QCD multijet processes, is negligible, so the non-prompt lepton background is completely dominated by tW and Z+t jets processes.

The remaining background is composed of events with three prompt leptons, such as the $ZZ \to 2\ell \ell'$ process in which one of the four final-state leptons has not been identified, as well as processes with three or more heavy bosons in the final states (VVV), and the $W\gamma^*$ process, with $\gamma^* \to \ell^+ \ell^-$. These backgrounds are estimated from simulation. The relevant $W\gamma^*$ process is defined for low γ^* masses, $m_{\gamma^*} < 10$ GeV, so it does not overlap with the $W\gamma^*$ process included in the signal simulation and it is simulated separately. It is considered a background since it does not fall in the fiducial phase space of the proposed measurement. Such $W\gamma^*$ processes would be accepted by the event selection only if the charged lepton from the W decay is wrongly interpreted as coming from the Z/γ^* decay. The contribution of $Z\gamma$ events in which the photon is misidentified as a lepton is also determined from simulation. Prompt photons will not contribute to a non-prompt lepton signal since photons and electrons have a similar signature in the detector. Prompt photons in $Z\gamma$ events will also typically be isolated from other final state particles.
We finally consider the contribution of WZ decays, in which either the W or Z boson decays to a τ lepton. Such decays are considered a background to the signal. Their contribution is subtracted using the fraction of selected WZ decays that have τ leptons in the final state. This fraction, labeled \(f_\tau \), is estimated from simulation for each of the four final states, and lies in between 6.5 and 7.6%. This background is almost entirely composed of WZ events with \(W \rightarrow \tau \nu \) decays where the τ lepton subsequently decays into an electron or a muon.

After applying all selection criteria, 293 (1559) events are selected from the 7 (8) TeV data corresponding to an integrated luminosity of 4.9 (19.6) \(fb^{-1} \). The yields for each leptonic channel, together with the expectations from MC simulation and data control samples are given in Table 1. The inclusive distributions of the dilepton invariant mass \(m_{\ell\ell} \) for both 7 and 8 TeV data samples are shown in Fig. 2.

Table 1: Expected and observed event yields at \(\sqrt{s} = 7 \) and 8 TeV.

<table>
<thead>
<tr>
<th>Sample</th>
<th>eee</th>
<th>eeeμ</th>
<th>μμμ</th>
<th>μμμμ</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{s} = 7)TeV; (\mathcal{L} = 4.9) fb(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-prompt leptons</td>
<td>2.2 ± 2.1</td>
<td>1.5^{+4.8}_{-1.5}</td>
<td>2.4^{+5.1}_{-2.4}</td>
<td>1.8^{+7.5}_{-1.8}</td>
<td>7.9^{+13.0}_{-5.0}</td>
</tr>
<tr>
<td>ZZ</td>
<td>2.0 ± 0.3</td>
<td>3.5 ± 0.5</td>
<td>2.7 ± 0.4</td>
<td>5.1 ± 0.7</td>
<td>13.3 ± 1.9</td>
</tr>
<tr>
<td>Zγ</td>
<td>0</td>
<td>0</td>
<td>0.5 ± 0.5</td>
<td>0</td>
<td>0.5 ± 0.5</td>
</tr>
<tr>
<td>VVV</td>
<td>1.6 ± 0.8</td>
<td>2.0 ± 1.0</td>
<td>2.4 ± 1.2</td>
<td>3.0 ± 1.5</td>
<td>9.0 ± 4.5</td>
</tr>
<tr>
<td>Total background ((N_{bkg}))</td>
<td>3.8 ± 2.3</td>
<td>6.0 ± 1.9</td>
<td>8.0 ± 2.4</td>
<td>9.9 ± 2.4</td>
<td>30.7 ± 7.0</td>
</tr>
<tr>
<td>WZ</td>
<td>44.7 ± 0.5</td>
<td>49.8 ± 0.5</td>
<td>56.0 ± 0.5</td>
<td>73.8 ± 0.6</td>
<td>224.3 ± 1.1</td>
</tr>
<tr>
<td>Total expected</td>
<td>50.5 ± 2.3</td>
<td>56.8 ± 1.9</td>
<td>64.0 ± 2.8</td>
<td>83.7 ± 2.5</td>
<td>255 ± 14</td>
</tr>
<tr>
<td>Data ((N_{obs}))</td>
<td>64</td>
<td>62</td>
<td>70</td>
<td>97</td>
<td>293</td>
</tr>
</tbody>
</table>

\(\sqrt{s} = 8 \)TeV; \(\mathcal{L} = 19.6 \) fb\(^{-1} \)					
Non-prompt leptons	18.4 ± 12.7	32.0 ± 21.0	54.4 ± 33.0	62.4 ± 37.7	167.1 ± 55.8
ZZ	2.1 ± 0.3	2.4 ± 0.4	3.2 ± 0.5	4.7 ± 0.7	12.3 ± 1.0
Zγ	3.4 ± 1.3	0.4 ± 0.4	5.2 ± 1.8	0	9.1 ± 2.2
Wγ∗	0	0	2.8 ± 1.0	2.8 ± 1.0	41.9 ± 7.3
VVV	6.7 ± 2.2	8.7 ± 2.8	11.6 ± 3.8	14.8 ± 5.1	41.9 ± 7.3
Total background \((N_{bkg}) \)	30.6 ± 13.0	43.5 ± 21.2	74.4 ± 33.3	84.7 ± 38.1	232.2 ± 56.3
WZ	211.1 ± 1.6	262.1 ± 1.8	346.7 ± 2.1	447.8 ± 2.4	1267.7 ± 4.0
Total expected	241.6 ± 13.1	305.7 ± 21.3	421.0 ± 33.3	532.4 ± 38.2	1500.8 ± 56.5
Data \((N_{obs}) \)	258	298	435	568	1559

6 Systematic uncertainties

Systematic uncertainties can be grouped in several categories. The first group includes uncertainties affecting the product of the acceptance and efficiency, referred to as \(A\epsilon \), which is determined from simulation. Uncertainties on \(A\epsilon \) depend on theoretical uncertainties in the PDFs. The PDF uncertainty is evaluated following the prescription in Ref. [33] using the CTEQ6 [19] PDF set. The uncertainties from normalization (\(\mu_R \)) and factorization (\(\mu_F \)) scales...
are estimated by varying both scales independently in the range $(0.5 \mu_0, 2 \mu_0)$ around their nominal value $\mu_0 = 0.5(M_Z + M_W)$ with the constraint $0.5 < \frac{\mu_R}{\mu_F} < 2$. The product $A \epsilon$ is also affected by experimental uncertainties in the muon momentum scale and in the electron energy scale, lepton reconstruction and identification efficiencies, E_{miss} calibration scale, and pileup contributions. The effect of the muon momentum scale is estimated by varying the momentum of each muon in the simulated signal sample within the momentum scale uncertainty, which is 0.2% [24]. The same is done for electrons by varying the energy of reconstructed electrons within the uncertainty of the energy scale measurement, which is p_T and η dependent and is typically below 1%. The product $A \epsilon$ also depends on the uncertainties in the ratios of observed-to-simulated efficiencies of the lepton trigger, reconstruction, and identification requirements. These ratios are used in the determination of $A \epsilon$ to account for efficiency differences between data and simulation. They are varied within their uncertainties, which depend on the lepton p_T and η and are about 1%. The uncertainty from the E_{miss} calibration is determined by scaling up and down the energy of all objects used for the E_{miss} determination within their uncertainties. Finally, the product $A \epsilon$ is affected by the uncertainty in the pileup contribution. Simulated events are reweighted to match the distribution of pileup interactions, which is estimated using a procedure that extracts the pileup from the instantaneous bunch luminosity and the total inelastic pp cross section. The weights applied to simulated events are changed by varying this cross section by 5% uncertainty [34].

The second group comprises uncertainties in the background yield. The uncertainty in the background from non-prompt leptons [32] is estimated by varying the leading jet p_T threshold used to select the control sample of misidentified leptons, since the energy of the leading jet determines the composition of the sample. The uncertainties from other background processes, whose contributions are determined from simulation, are calculated by varying their predicted
cross sections within uncertainties. The cross sections are varied by 15% (14%) for $Z\ Z$, by 15% (7%) for $Z\gamma$, by 50% (50%) for the VVV processes, and by 20% for $W\gamma^*$ for the 8 TeV (7 TeV) measurements, based on the uncertainties of the measurements of these processes [35–39]. Finally, the uncertainty in the measurement of the integrated luminosity is 2.2 (2.6)% for 7 (8) TeV data [40, 41].

A summary of all uncertainties is given in Table 2.

Table 2: Summary of relative uncertainties, in units of percent, in the WZ cross section measurement at 7 and 8 TeV.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 8$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eee eee $\mu\mu$</td>
<td>eee eee $\mu\mu$</td>
</tr>
<tr>
<td>Renorm. and fact. scales</td>
<td>1.3 1.3 1.3 1.3</td>
<td>3.0 3.0 3.0 3.0</td>
</tr>
<tr>
<td>PDFs</td>
<td>1.4 1.4 1.4 1.4</td>
<td>1.4 1.4 1.4 1.4</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.3 0.5 1.0 0.6</td>
<td>0.2 0.4 0.3 0.2</td>
</tr>
<tr>
<td>Lepton and trigger efficiency</td>
<td>2.9 2.7 2.0 1.4</td>
<td>3.4 2.5 2.5 3.2</td>
</tr>
<tr>
<td>Muon momentum scale</td>
<td>— 0.6 0.4 1.1</td>
<td>— 0.5 0.8 1.3</td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>1.9 0.8 1.2 —</td>
<td>1.4 0.8 0.8 —</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>3.7 3.4 4.3 3.7</td>
<td>1.5 1.5 1.6 1.2</td>
</tr>
<tr>
<td>ZZ cross section</td>
<td>0.5 0.9 0.6 0.9</td>
<td>0.1 0.1 0.1 0.1</td>
</tr>
<tr>
<td>$Z\gamma$ cross section</td>
<td>0.0 0.0 0.1 0.0</td>
<td>0.2 0.0 0.2 0.0</td>
</tr>
<tr>
<td>$t\bar{t}$ and Z+jets</td>
<td>2.7 6.5 6.3 6.0</td>
<td>4.6 7.2 6.1 7.7</td>
</tr>
<tr>
<td>Other simulated backgrounds</td>
<td>0.2 0.2 0.9 0.2</td>
<td>1.0 1.1 1.1 1.0</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>6.1 7.8 8.1 7.2</td>
<td>7.0 8.6 7.7 9.2</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>13.5 13.9 13.1 11.0</td>
<td>7.7 7.2 6.4 5.2</td>
</tr>
<tr>
<td>Integrated luminosity uncertainty</td>
<td>2.2 2.2 2.2 2.2</td>
<td>2.6 2.6 2.6 2.6</td>
</tr>
</tbody>
</table>

7 Results

7.1 Inclusive cross section measurement

The inclusive WZ cross section $\sigma(pp \to WZ + X)$ in the $\ell\ell'\ell''$ final state is related to the number of observed events in that final state, N_{obs}, through the following expression,

$$\sigma(pp \to WZ + X) B(W \to \ell\nu) B(Z \to \ell'\ell'') = (1 - f_\tau) \frac{N_{\text{obs}} - N_{\text{bkg}}}{A \epsilon L},$$

where $B(W \to \ell\nu)$ and $B(Z \to \ell'\ell'')$ are the W and Z boson leptonic branching fractions per lepton species, and f_τ accounts for the expected fraction of selected $WZ \to \ell\nu\ell'\ell''$ decays produced through at least one prompt τ decay in the final state after removing all other backgrounds. The number of expected background events is N_{bkg}, and the number of signal events is determined by subtracting N_{bkg} from the observed data N_{obs}. The product of the signal efficiency ϵ and acceptance A is obtained for each of the four final states using the simulated WZ sample by calculating the ratio of the number of events passing the full selection to the number of generated $WZ \to \ell\nu\ell'\ell''$ events with $71 < m_{\ell\ell'} < 111$ GeV, where $m_{\ell\ell'}$ is the dilepton mass of the two leptons from the Z boson decay prior to final state photon radiation. Only events decaying into the respective final state are considered in both the numerator and denominator of this fraction. The resulting cross section values are reported in Table 3 for the four leptonic channels. There is good agreement among the four channels for both the 7 and 8 TeV data.
Table 3: Measured WZ cross section in the four leptonic channels at $\sqrt{s} = 7$ and 8 TeV.

<table>
<thead>
<tr>
<th>Channel</th>
<th>$\sigma(pp \rightarrow WZ; \sqrt{s} = 7 \text{ TeV}) \text{[pb]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>eee</td>
<td>22.46 \pm 3.12 (stat) \pm 1.40 (syst) \pm 0.49 (lumi)</td>
</tr>
<tr>
<td>eeμ</td>
<td>19.04 \pm 2.68 (stat) \pm 1.54 (syst) \pm 0.42 (lumi)</td>
</tr>
<tr>
<td>$\mu\mu$e</td>
<td>19.13 \pm 2.60 (stat) \pm 1.61 (syst) \pm 0.42 (lumi)</td>
</tr>
<tr>
<td>$\mu\mu\mu$</td>
<td>20.36 \pm 2.31 (stat) \pm 1.53 (syst) \pm 0.45 (lumi)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>$\sigma(pp \rightarrow WZ; \sqrt{s} = 8 \text{ TeV}) \text{[pb]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>eee</td>
<td>24.80 \pm 1.92 (stat) \pm 1.74 (syst) \pm 0.64 (lumi)</td>
</tr>
<tr>
<td>eeμ</td>
<td>22.38 \pm 1.62 (stat) \pm 1.92 (syst) \pm 0.58 (lumi)</td>
</tr>
<tr>
<td>$\mu\mu$e</td>
<td>23.94 \pm 1.52 (stat) \pm 1.85 (syst) \pm 0.62 (lumi)</td>
</tr>
<tr>
<td>$\mu\mu\mu$</td>
<td>24.93 \pm 1.29 (stat) \pm 2.29 (syst) \pm 0.65 (lumi)</td>
</tr>
</tbody>
</table>

These four measurements are combined using the best linear unbiased estimator (BLUE) method [42]. We have assumed full correlation for all uncertainties common to different channels. Combining the four leptonic channels, the total WZ cross section for $71 < m_Z < 111 \text{ GeV}$, at 7 and 8 TeV, is measured to be

$$\sigma(pp \rightarrow WZ; \sqrt{s} = 7 \text{ TeV}) = 20.14 \pm 1.32 \text{ (stat)} \pm 1.13 \text{ (syst)} \pm 0.44 \text{ (lumi)} \text{ pb.}$$

$$\sigma(pp \rightarrow WZ; \sqrt{s} = 8 \text{ TeV}) = 24.09 \pm 0.87 \text{ (stat)} \pm 1.62 \text{ (syst)} \pm 0.63 \text{ (lumi)} \text{ pb.}$$

These results can be compared with recent calculations at NLO and next-to-next-to-leading order (NNLO) in QCD via MATRIX [43]. The NLO (NNLO) predictions are 17.72$^{+5.3\%}_{-1.8\%}$ (19.18$^{+1.7\%}_{-1.8\%}$) pb at 7 TeV, and 21.80$^{+5.1\%}_{-3.9\%}$ (23.68$^{\pm}$1.8%) pb at 8 TeV, where uncertainties include only scale variations. All these predictions are in agreement with the measured values within uncertainties. The NLO predictions are slightly lower than the measured values, and a better agreement is observed for the NNLO observations at both centre-of-mass energies. The ratios of the inclusive cross sections for the individual and combined results to the NLO and NNLO predictions are shown in Fig. 3.

The total WZ production cross sections for different centre-of-mass energies from the CMS [6] and ATLAS [3–5] experiments are compared to theoretical predictions calculated with MCFM (NLO) and MATRIX (NNLO) in Fig. 4. The theoretical predictions describe, within the uncertainties, the energy dependence of the measured cross sections.

7.2 Differential cross section measurement

Using the larger available integrated luminosity in the 8 TeV sample, we measure the differential WZ cross sections as a function of three different observables: the Z boson p_T, the number of jets produced in association with the $\ell\nu\ell'$ final state, and the p_T of the leading accompanying jet. For the latter two measurements, the differential cross sections are defined for generated jets built from all stable particles using the anti-k_T algorithm [27] with a distance parameter of 0.5, but excluding the electrons, muons, and neutrinos from the W and Z boson decays. Jets are required to have $p_T > 30 \text{ GeV}$ and $|\eta| < 2.5$. They also must be separated from the charged leptons from the W and Z boson decays by $\Delta R(jet, \ell) > 0.5$. The jets reconstructed from PF candidates, clustered by the same algorithm, have to fulfill the same requirements.

To obtain the cross section in each bin, the background contribution is first subtracted from the observed yield in each bin, in the same way as it was done for the inclusive cross section. The measured signal spectra are then corrected for the detector effects. These include efficiencies as
well as bin-to-bin migrations due to finite resolution. Both effects are treated using the iterative D’Agostini unfolding technique [44], as implemented in ROOUNFOLD [45], with 5 iterations. The technique uses response matrices that relate the true distribution of an observable to the observed distribution after including detector effects. The response matrices are obtained using the signal MC sample for all four leptonic final states separately. The unfolded spectra are then used to obtain differential cross sections for all four leptonic final states. The four channels are combined bin-by-bin.

A few additional sources of systematic uncertainties need to be considered with respect to those described in Section 6. The measurements involving jets are affected by the experimental uncertainties in the jet energy scale and resolution. The effects on the response matrices are studied by smearing and scaling the jet energies within their uncertainties. Furthermore, an uncertainty due to the limited size of the simulated sample used to build the response matrices is also included. The unfolding procedure introduces statistical correlations between bins, which range from a few percent up to 40% in a few cases. These correlations are taken into account together with correlated systematic uncertainties by using a generalization of the BLUE method as described in Ref. [46]. The three measured differential cross sections are given in Tables 4, 5, and 6 for each of the four final states, and the combined results are given in Table 7. The combined differential cross sections are shown in Figs. 5 and 6.

The differential cross sections are compared with the MCFM and MadGRAPH predictions. The MadGRAPH spectra are normalized to the NLO cross section as predicted by MCFM.
Table 4: Differential WZ cross section as a function of the Z transverse momentum at $\sqrt{s} = 8$ TeV for the four leptonic final states. The first uncertainty is statistical, the second is systematic, and the third is the integrated luminosity.

<table>
<thead>
<tr>
<th>p_T^Z [GeV]</th>
<th>$\frac{d\sigma}{dp_T^Z}$ [pb /GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eee</td>
</tr>
<tr>
<td>0–20</td>
<td>(1.63 ± 0.90) $\times 10^{-1}$</td>
</tr>
<tr>
<td>20–40</td>
<td>(3.9 ± 1.4) $\times 10^{-1}$</td>
</tr>
<tr>
<td>40–60</td>
<td>(3.14 ± 1.25) $\times 10^{-1}$</td>
</tr>
<tr>
<td>60–80</td>
<td>(1.69 ± 0.92) $\times 10^{-1}$</td>
</tr>
<tr>
<td>80–100</td>
<td>(1.27 ± 0.80) $\times 10^{-1}$</td>
</tr>
<tr>
<td>100–120</td>
<td>(8.1 ± 6.4) $\times 10^{-2}$</td>
</tr>
<tr>
<td>120–140</td>
<td>(5.8 ± 5.4) $\times 10^{-2}$</td>
</tr>
<tr>
<td>140–200</td>
<td>(1.07 ± 1.34) $\times 10^{-2}$</td>
</tr>
<tr>
<td>200–300</td>
<td>(3.66 ± 6.05) $\times 10^{-3}$</td>
</tr>
</tbody>
</table>
Table 5: Differential WZ cross section as a function of the jet multiplicity at $\sqrt{s} = 8$ TeV for the four leptonic final states. Notations are as in Table 4.

<table>
<thead>
<tr>
<th>N_{jets}</th>
<th>EEE</th>
<th>Ee\mu</th>
<th>$\mu\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 jets</td>
<td>16.60 \pm 4.07</td>
<td>15.68 \pm 3.96</td>
<td>14.97 \pm 3.87</td>
</tr>
<tr>
<td></td>
<td>\pm 1.04</td>
<td>\pm 1.03</td>
<td>\pm 0.93</td>
</tr>
<tr>
<td></td>
<td>\pm 0.43</td>
<td>\pm 0.41</td>
<td>\pm 0.39</td>
</tr>
<tr>
<td>1 jet</td>
<td>6.06 \pm 2.46</td>
<td>4.80 \pm 2.19</td>
<td>5.32 \pm 2.31</td>
</tr>
<tr>
<td></td>
<td>\pm 0.48</td>
<td>\pm 0.57</td>
<td>\pm 0.61</td>
</tr>
<tr>
<td></td>
<td>\pm 0.16</td>
<td>\pm 0.12</td>
<td>\pm 0.14</td>
</tr>
<tr>
<td>2 jets</td>
<td>2.43 \pm 1.56</td>
<td>1.75 \pm 1.32</td>
<td>2.93 \pm 1.71</td>
</tr>
<tr>
<td></td>
<td>\pm 0.34</td>
<td>\pm 0.32</td>
<td>\pm 0.26</td>
</tr>
<tr>
<td></td>
<td>\pm 0.06</td>
<td>\pm 0.05</td>
<td>\pm 0.08</td>
</tr>
<tr>
<td>3 jets</td>
<td>(7.8 \pm 27.9) $\times 10^{-2}$</td>
<td>0.45 \pm 0.67</td>
<td>0.42 \pm 0.65</td>
</tr>
<tr>
<td></td>
<td>\pm 7.3</td>
<td>\pm 0.17</td>
<td>\pm 0.21</td>
</tr>
<tr>
<td></td>
<td>\pm 0.2</td>
<td>\pm 0.01</td>
<td>\pm 0.01</td>
</tr>
</tbody>
</table>

Table 6: Differential WZ cross section as a function of the leading jet transverse momentum at $\sqrt{s} = 8$ TeV for the four leptonic final states. Notations are as in Table 4.

<table>
<thead>
<tr>
<th>p_{T} [GeV]</th>
<th>EEE</th>
<th>Ee\mu</th>
<th>$\mu\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30–60</td>
<td>(1.22 \pm 0.34) $\times 10^{-1}$</td>
<td>(1.11 \pm 0.20) $\times 10^{-1}$</td>
<td>(1.10 \pm 0.24) $\times 10^{-1}$</td>
</tr>
<tr>
<td>60–100</td>
<td>(5.4 \pm 1.7) $\times 10^{-2}$</td>
<td>(4.3 \pm 2.1) $\times 10^{-2}$</td>
<td>(6.5 \pm 2.0) $\times 10^{-2}$</td>
</tr>
<tr>
<td>100–150</td>
<td>(2.96 \pm 1.57) $\times 10^{-2}$</td>
<td>(3.26 \pm 1.40) $\times 10^{-2}$</td>
<td>(3.9 \pm 1.2) $\times 10^{-2}$</td>
</tr>
<tr>
<td>150–250</td>
<td>(1.18 \pm 0.29) $\times 10^{-2}$</td>
<td>(8.1 \pm 3.4) $\times 10^{-3}$</td>
<td>(1.07 \pm 0.61) $\times 10^{-2}$</td>
</tr>
</tbody>
</table>
Table 7: Combined result for the differential WZ cross sections at √s = 8 TeV.

<table>
<thead>
<tr>
<th>p_T [GeV]</th>
<th>dσ/dp_T [pb/GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–20</td>
<td>1.48 ± 0.40 (stat) ± 0.17 (syst) ± 0.04 (lumi) ×10^{-1}</td>
</tr>
<tr>
<td>20–40</td>
<td>3.47 ± 0.60 (stat) ± 0.50 (syst) ± 0.09 (lumi) ×10^{-1}</td>
</tr>
<tr>
<td>40–60</td>
<td>2.56 ± 0.54 (stat) ± 0.49 (syst) ± 0.07 (lumi) ×10^{-1}</td>
</tr>
<tr>
<td>60–80</td>
<td>2.10 ± 0.47 (stat) ± 0.30 (syst) ± 0.05 (lumi) ×10^{-1}</td>
</tr>
<tr>
<td>80–100</td>
<td>1.20 ± 0.37 (stat) ± 0.21 (syst) ± 0.03 (lumi) ×10^{-1}</td>
</tr>
<tr>
<td>100–120</td>
<td>4.9 ± 2.3 (stat) ± 1.5 (syst) ± 0.1 (lumi) ×10^{-2}</td>
</tr>
<tr>
<td>120–140</td>
<td>5.0 ± 2.2 (stat) ± 1.0 (syst) ± 0.1 (lumi) ×10^{-2}</td>
</tr>
<tr>
<td>140–200</td>
<td>1.34 ± 0.73 (stat) ± 0.57 (syst) ± 0.03 (lumi) ×10^{-2}</td>
</tr>
<tr>
<td>200–300</td>
<td>4.9 ± 3.6 (stat) ± 1.6 (syst) ± 0.1 (lumi) ×10^{-3}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N_jets</th>
<th>dσ/dN_jets [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 jets</td>
<td>16.15 ± 1.95 (stat) ± 0.88 (syst) ± 0.42 (lumi)</td>
</tr>
<tr>
<td>1 jet</td>
<td>5.27 ± 1.11 (stat) ± 0.52 (syst) ± 0.14 (lumi)</td>
</tr>
<tr>
<td>2 jets</td>
<td>2.11 ± 0.69 (stat) ± 0.27 (syst) ± 0.05 (lumi)</td>
</tr>
<tr>
<td>3 jets</td>
<td>0.196 ± 0.227 (stat) ± 0.102 (syst) ± 0.005 (lumi)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_T^{leading jet} [GeV]</th>
<th>dσ/dp_T^{leading jet} [pb/GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30–60</td>
<td>1.12 ± 0.30 (stat) ± 0.23 (syst) ± 0.03 (lumi) ×10^{-1}</td>
</tr>
<tr>
<td>60–100</td>
<td>5.5 ± 1.8 (stat) ± 1.9 (syst) ± 0.1 (lumi) ×10^{-2}</td>
</tr>
<tr>
<td>100–150</td>
<td>3.06 ± 1.20 (stat) ± 1.37 (syst) ± 0.08 (lumi) ×10^{-2}</td>
</tr>
<tr>
<td>150–250</td>
<td>1.04 ± 0.48 (stat) ± 0.41 (syst) ± 0.03 (lumi) ×10^{-2}</td>
</tr>
</tbody>
</table>
7.3 Anomalous triple gauge couplings limits

Triple gauge boson couplings are a consequence of the non-Abelian nature of the SM electroweak sector. Several extensions of the SM predict additional processes with multiple bosons in the final state so any observed deviation of diboson production cross sections from their SM predictions could be an early sign of new physics. The most general Lorentz invariant effective Lagrangian that describes WWV couplings, where V = γ or Z, has 14 independent parameters \([47, 48]\), seven for V = γ and seven for V = Z. Assuming charge conjugation (C) and parity (P) conservation, only six independent parameters remain. The effective Lagrangian, normalized by the electroweak coupling, is given by:

\[
\mathcal{L}_{\text{TGC}}^{\gamma} = ig_1^V (W_{\mu}^- W^{\mu +} V^\gamma - W_{\mu}^\gamma W^\mu V^{\mu +}) + ik_1 W_{\mu}^- W^{\mu +} V^\gamma + \frac{i\lambda_V}{M_W^2} W_{\mu}^- W^{\mu +} V^\gamma \delta, \tag{4}
\]

where \(W^{\pm}_{\mu\nu} = \partial_{\mu} W^\pm_{\nu} - \partial_{\nu} W^\pm_{\mu} \), \(V^{\mu\nu} = \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu} \), and couplings \(g_{WW\gamma} = -e \) and \(g_{WWZ} = -e \cot \theta_W \), with \(\theta_W \) being the weak mixing angle. Assuming electromagnetic gauge invariance, i.e. \(g_1^\gamma = 1 \), the remaining parameters that describe the WW coupling are \(g_1^\gamma, k_Z, k_\gamma, \lambda_Z \) and \(\lambda_\gamma \). In the SM \(\lambda_Z = \lambda_\gamma = 0 \) and \(g_1^\gamma = k_\gamma = k_\gamma = 1 \). The couplings are further reduced to three independent parameters if one requires the Lagrangian to be \(SU(2)_L \times U(1)_Y \) invariant ("LEP
Figure 5: Differential WZ cross section at $\sqrt{s} = 8$ TeV as a function of the Z boson transverse momentum. The measurement is compared with MADGRAPH and MCFM predictions. The MADGRAPH prediction is rescaled to the total NLO cross section as predicted by MCFM. The error bands in the ratio plots indicate the relative errors on the data in each bin and contain both statistical and systematic uncertainties.

Figure 6: Differential WZ cross section at $\sqrt{s} = 8$ TeV as a function of: (left) the leading jet transverse momentum; (right) the number of accompanying jets. The measurements are compared with MADGRAPH predictions. The MADGRAPH prediction is rescaled to the total NLO cross section as predicted by MCFM. The error bands in the ratio plots indicate the relative errors on the data in each bin and contain both statistical and systematic uncertainties.
parameterization”):

\[\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_{\gamma} \tan^2 \theta_W, \quad \lambda = \lambda_{\gamma} = \lambda_Z, \]

(5)

where \(\Delta \kappa_Z = \kappa_Z - 1 \), \(\Delta g_1^Z = g_1^Z - 1 \) and \(\Delta \kappa_{\gamma} = \kappa_{\gamma} - 1 \).

In this analysis we measure \(\Delta \kappa_Z \), \(\lambda \), and \(\Delta g_1^Z \) from WZ production at 8 TeV. No form factor scaling is used for anomalous triple gauge couplings (aTGCs), as this allows us to provide results without the bias that can be caused by the choice of the form factor energy dependence.

Another approach to the parametrization of anomalous couplings is through effective field theory (EFT), with the higher-order operators added to the SM Lagrangian as follows:

\[\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{n=1}^{\infty} \sum_{i} c_i^{(n)} \frac{1}{\Lambda^n} O_{i}^{(n+4)}. \]

(6)

Here \(O_i \) are the higher-order operators, the coefficients \(c_i \) are dimensionless, and \(\Lambda \) is the mass scale of new physics. Operators are suppressed if the accessible energy is low compared to the mass scale. There are three CP-even operators that contribute to WWZ TGC, \(O_{WWW} \), \(O_W \), and \(O_B \). For the case of ‘LEP parametrization’ and no form factor scaling of aTGCs, the relations between parameters in the aTGCs and EFT approaches are as follows:

\[g_1^Z = 1 + c_W \frac{m_Z^2}{2 \Lambda^2}, \]

\[\kappa_{\gamma} = 1 + (c_W + c_B) \frac{m_W^2}{2 \Lambda^2}, \]

\[\kappa_Z = 1 + (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2 \Lambda^2}, \]

\[\lambda_Z = \lambda_{\gamma} = c_{WWW} \frac{3 g_2^2 m_W^2}{2 \Lambda^2}. \]

The presence of anomalous triple gauge couplings would be manifested as an increased yield of events, with the largest increase at high Z boson transverse momentum \((p_T^Z) \). The expected \(p_T^Z \) spectrum for some aTGC values is obtained by normalizing the MADGRAPH events to the expected NLO SM cross section from MCFM, and then reweighting them to the expected cross section for that particular aTGC scenario, as obtained with MCFM, based on the generated value of \(p_T^Z \). Samples for three 2D anomalous parameter grids are generated, \(\lambda \) versus \(\Delta \kappa^Z \), \(\lambda \) versus \(\Delta g_1^Z \), and \(\Delta \kappa^Z \) versus \(\Delta g_1^Z \), where the third parameter is set to its SM value. The expected yield of the anomalous coupling signal in every \(p_T^Z \) bin is parametrized by a second-order polynomial as a function of two aTGC parameters for every channel. The observed \(p_T^Z \) spectrum is shown in Fig. 7 together with the expected spectra for a few different aTGC scenarios. A simultaneous fit to the values of aTGCs is performed [49] in all four lepton channels. A profile likelihood method, Wald gaussian approximation, and Wilks’ theorem [50] are used to derive 1D and 2D limits at a 95% confidence level (CL) on each of the three aTGC parameters and every combination of two aTGC parameters, respectively, while all other parameters are set to their SM values. No significant deviation from the SM expectation is observed. Results can be found in Tables 8 and 9 and in Figs. 8, 9, and 10.

Limits on aTGC parameters were previously set by LEP [51], ATLAS [4, 7] and CMS [8]. LHC analyses using 8 TeV data are setting most stringent limits. Results in this paper show sensitivity similar to the results given by the ATLAS Collaboration in the same channel [4].
Following the calculation in Ref. [52] we find the lowest incoming parton energy for which observed limits on the coefficients would lead to unitarity violation (Table 10). Overall, for charged aTGCs, we are in the region where unitarity is not violated.

Table 8: One-dimensional limits on the aTGC parameters at a 95% CL for WZ → ℓνℓ′ℓ′.

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δκ^Z</td>
<td>[−0.21, 0.25]</td>
<td>[−0.29, 0.30]</td>
</tr>
<tr>
<td>Δg^Z</td>
<td>[−0.018, 0.035]</td>
<td>[−0.028, 0.040]</td>
</tr>
<tr>
<td>λ^Z</td>
<td>[−0.018, 0.016]</td>
<td>[−0.024, 0.021]</td>
</tr>
</tbody>
</table>

Table 9: One-dimensional limits on the EFT parameters at a 95% CL for WZ → ℓνℓ′ℓ′.

<table>
<thead>
<tr>
<th></th>
<th>Observed [TeV^−2]</th>
<th>Expected [TeV^−2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_B/Λ^2</td>
<td>[−260, 210]</td>
<td>[−310, 300]</td>
</tr>
<tr>
<td>c_W/Λ^2</td>
<td>[−4.2, 8.0]</td>
<td>[−6.8, 9.2]</td>
</tr>
<tr>
<td>c_WWW/Λ^2</td>
<td>[−4.6, 4.2]</td>
<td>[−6.1, 5.6]</td>
</tr>
</tbody>
</table>

Table 10: Lowest incoming partons energy for which observed limits on the coefficients would lead to unitarity violation.

<table>
<thead>
<tr>
<th></th>
<th>√s [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>From observed limit on c_B/Λ^2 parameter</td>
<td>1.6</td>
</tr>
<tr>
<td>From observed limit on c_W/Λ^2 parameter</td>
<td>5.1</td>
</tr>
<tr>
<td>From observed limit on c_WWW/Λ^2 parameter</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Figure 7: Transverse momentum distribution of the Z boson candidates, in linear scale (left) and log scale (right) for all channels combined. The SM WZ contribution (light orange) is normalized to the predicted cross section from MCFM. Dashed lines correspond to aTGC expectations with different parameter values. The last bin includes the integral of the tail.

8 Summary

This paper reports measurements of the WZ inclusive cross section in proton-proton collisions at √s = 7 and 8 TeV in the fully-leptonic WZ decay modes with electrons and muons in the
Figure 8: Two-dimensional observed 95% CL limits and expected 68%, 95% and 99% CL limits on anomalous coupling parameters $\Delta \kappa^Z$ and Δg_1^Z.

The data samples correspond to integrated luminosities of 4.9 fb$^{-1}$ for the 7 TeV measurement and 19.6 fb$^{-1}$ for the 8 TeV measurement. The measured production cross sections for $71 < m_Z < 111$ GeV are $\sigma(p p \rightarrow WZ; \sqrt{s} = 7 \text{ TeV}) = 20.14 \pm 1.32 \text{ (stat)} \pm 1.13 \text{ (syst)} \pm 0.44 \text{ (lumi)} \text{ pb}$ and $\sigma(p p \rightarrow WZ; \sqrt{s} = 8 \text{ TeV}) = 24.09 \pm 0.87 \text{ (stat)} \pm 1.62 \text{ (syst)} \pm 0.63 \text{ (lumi)} \text{ pb}$. These results are consistent with standard model predictions.

Using the data collected at $\sqrt{s} = 8 \text{ TeV}$, results on differential cross sections are also presented, and a search for anomalous WWZ couplings has been performed. The following one-dimensional limits at 95% CL are obtained: $-0.21 < \Delta \kappa^Z < 0.25$, $-0.018 < \Delta g_1^Z < 0.035$, and $-0.018 < \lambda^Z < 0.016$.
Figure 9: Two-dimensional observed 95% CL limits and expected 68%, 95% and 99% CL limits on anomalous coupling parameters Δg^Z_1 and λ^Z.
Figure 10: Two-dimensional observed 95% CL limits and expected 68%, 95% and 99% CL limits on anomalous coupling parameters $\Delta\kappa^Z$ and λ^Z.
Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Bronidolin, M. Dragicevic, J. Erö, M. Flechl,
M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, A. König,
I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer,
J. Schieck1, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous,
S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck,
P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart,
R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk,
A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni,
F. Zhang2

Ghent University, Ghent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, D. Poyraz, S. Salva,
R. Schöfebeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, C. Beluffi3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher,
C. Delaere, M. Delcourt, L. Forthomme, B. Francois, A. Giammanco, A. Jafari, P. Jez,
M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski,
L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeirow, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custódio, E.M. Da Costa,
G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza,
L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim,
H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznejder, E.J. Tonelli Manganote4, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
S. Elgammal, A. Mohamed, E. Salama

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Toriaishvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
N. Filipovic

Wigner Research Centre for Physics, Budapest, Hungary
G. Benčze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszprémi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvári

National Institute of Science Education and Research, Bhubaneswar, India
INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbargli, V. Ciulli, C. Civinini, R. D'Alessandro, E. Focardi, V. Gori, P. Lenzi, M. Meschini, S. Paolotti, G. Sguazzoni, L. Viliani

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Università di Napoli 'Federico II', Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitullo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestizi, G.M. Bilei, D. Ciangottini, L. Fano, P. Lariccia, R. Leonardi, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma, Università di Roma, Roma, Italy

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa,b, F. Cossuttia, G. Della Riccaa,b, C. La Licataa,b, A. Schizzia,b, A. Zanettia

Kyungpook National University, Daegu, Korea

Chonbuk National University, Jeonju, Korea
A. Lee

Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, T.J. Kim

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinterio, I. Pedraza, H.A. Salazar Irbarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas
National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology
A. Bylinkin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, Y. Skovpen

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Vekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Troconiz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA
The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA
A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, P. Lamichhane, J. Sturdy
University of Wisconsin - Madison, Madison, WI, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Now at British University in Egypt, Cairo, Egypt
10: Also at Zewail City of Science and Technology, Zewail, Egypt
11: Now at Ain Shams University, Cairo, Egypt
12: Also at Université de Haute Alsace, Mulhouse, France
13: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
21: Also at University of Debrecen, Debrecen, Hungary
22: Also at Indian Institute of Science Education and Research, Bhopal, India
23: Also at Institute of Physics, Bhubaneswar, India
24: Also at University of Visva-Bharati, Santiniketan, India
25: Also at University of Ruhuna, Matara, Sri Lanka
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at Purdue University, West Lafayette, USA
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Institute for Nuclear Research, Moscow, Russia
36: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at University of Florida, Gainesville, USA
A The CMS Collaboration

39: Also at P.N. Lebedev Physical Institute, Moscow, Russia
40: Also at California Institute of Technology, Pasadena, USA
41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
44: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Riga Technical University, Riga, Latvia
47: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
48: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
49: Also at Mersin University, Mersin, Turkey
50: Also at Cag University, Mersin, Turkey
51: Also at Piri Reis University, Istanbul, Turkey
52: Also at Gaziosmanpasa University, Tokat, Turkey
53: Also at Adiyaman University, Adiyaman, Turkey
54: Also at Ozyegin University, Istanbul, Turkey
55: Also at Izmir Institute of Technology, Izmir, Turkey
56: Also at Marmara University, Istanbul, Turkey
57: Also at Kafkas University, Kars, Turkey
58: Also at Istanbul Bilgi University, Istanbul, Turkey
59: Also at Yildiz Technical University, Istanbul, Turkey
60: Also at Hacettepe University, Ankara, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
64: Also at Utah Valley University, Orem, USA
65: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
66: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
67: Also at Argonne National Laboratory, Argonne, USA
68: Also at Erzincan University, Erzincan, Turkey
69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
70: Also at Texas A&M University at Qatar, Doha, Qatar
71: Also at Kyungpook National University, Daegu, Korea