The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment

Shruti Shrestha
On Behalf of the Mu3e Collaboration

International Conference on Technology and Instrumentation in Particle Physics
2-6 June, 2014
Outline

• The decay $\mu \rightarrow eee$

• The Mu3e Experiment
 • The Mu3e Pixel Detector based on HV-MAPS
 • Results from Test Beam at DESY 2013/2014
Motivation

• The Mu3e experiment searches for:

 • Lepton flavor violation in the decay of $\mu^+ \rightarrow e^+ e^+ e^-$ with a sensitivity of $\text{BR} < 10^{-16}$

 • Four orders of magnitude improvement over the most stringent limit to date

 • In the SM, the decay is suppressed to unobservable levels ($\text{BR} < 10^{-54}$)

 • Any observed signal event is a clear signature of new phenomena beyond the SM
Motivation

• The experiment allows to test models involving new particles

• Supersymmetry

• Extended Higgs models

• Heavy vector bosons

Supersymmetry

LFV at tree level
Signal and Backgrounds

- Decay signature: Muon decays at rest
- Two positrons and an electron
- Opposite curvature in magnetic field
- Coincident in time, originating from same vertex
- Momentum conservation: $|\vec{p}_{tot}| = |\Sigma \vec{p}_i| = 0$
- Energy conservation: $E_{tot} = \Sigma E_i = m_{\mu}c^2$
- Individual energies are below 53 MeV
Signal and Backgrounds

- Internal Conversion (Radiative muon decay)

Good momentum and total energy resolution required

- Combinatorials

Precise timing, good momentum and vertex resolution required

$\sigma_p < 0.3 \text{ MeV, } \sigma_t < 100 \text{ ps}$
Mu3e Experiment

- To achieve sensitivity goal:
 - 10^9 muon decays/s
 - excellent vertex resolution
 - excellent time resolution
- Low $p_T < 53$ MeV/c decay product, track resolution dominated by multiple scattering.
- High granularity Si-based tracking detector made of HV-MAPS
HV-MAPS

- HV-MAPS as a particle detector
- Based on 180 nm HV-CMOS technology
 - Fast charge collection (<100 ps) via drift, results in high radiation tolerance
 - Thinning to < 50 µm
- Power consumption ~ 7.5 µW/pixel
- Relatively cheap due to use of commercial process
HV-MAPS

- Low doped deep N-well as signal collecting region
- Depleted p-n junction as a sensor $\sim 9 \, \mu m$
- The charge collected by drift $\sim 625 \, e$ in depleted region using Sr90 as a source
- Entire pixel electronics CMOS transistors inside the deep N-well
- Integrated readout electronics
- N-well are in matrix, depleted zones overlapped $\sim 100\%$ fill factor
MUPIX4

- Features: AMS 180nm process
- Pixel Matrix: 40x32 pixels, 80x92 μm² (pixel size) Active area: 9.4 mm²
- Moderate substrate resistivity ~10 Ω cm
- Designed by Ivan Peric (U. Heidelberg Institute for Computer Science (ZITI))
- Analog part: Small pixel capacitance Temperature tolerance
- Digital part: Zero suppression Mostly Ready Feature: pixel address problem in half column Fixed in MUPIX6 using inverters
HV-MAPS: Integrated readout electronics

Concept: Each pixel has its own read out (RO) cell placed on the chip periphery.

Readout cell function:
- Time stamp
- Hit data
- Priority logic
- Binary Suppressed read out

RO cell size is 7μm x 40 μm in 180nm AMS process (with comparator and threshold tune DAC)
Test Beam set up at DESY

- DESY Test Beam set up
 - Beam-line T22
 - 1 GeV to 6 GeV electrons
 - EUDET Telescope
 - MUPIX4 prototype
Test Beam Results
Time and Single Hit Resolution

Result: Time Resolution : 17 ns (Sensor and DAQ)
External Gray counter at 100 MHz

Result: Resolution given by pixel size
Measured track residuals:
RMS x = 28 μm, RMS y = 29 μm
Pixel Efficiency

Result: First working prototype
Efficiency > 99% for untuned DAC

Result: Rotated chip with 45 degree angle, higher efficiency
Conclusion

- Mu3e experiment aims for $\mu^+ \rightarrow e^+e^+e^-$ with sensitivity of $\text{BR} < 10^{-16}$

- HV-MAPS has been implemented for fast charge collection efficiency, radiation hardness and minimum material

- Looking forward to integrate full digital electronics in the Mu3e pixel prototype by end of this year

- The MUPIX4 has already the required analog performance

- Currently, the performance of MUPIX6 is being tested at PSI
Backup slides
Mechanical prototype and sandwich Design

HV-MAP
Thinned to 50 μm
sensor size 1 x 2 cm² or 2x2 cm²

Kapton™ flex print
25 μm Kapton™
12.5 μm Al traces

Kapton™ Frame Modules
25 μm foil
self support

<0.1% X₀ per layer
Thinned sensor

Reference

~300 μm

<90 μm

PSI test beam
Result: No significant difference in pulse shape
Temperature stability

- Latency measurement
 - LED pulse to a pixel discriminator output

Result: Temperature dependence within the resolution setup
Result after 380MRad radiation and $\sim 8 \times 10^{15} n_{eq} \text{ cm}^{-2}$

- Perform: Irradiation at PS (CERN) for 180 nm HV CMOS

Result: The chip works, particles are measured when the chip is in the beam

Courtesy: RESMDD 2012, Ivan Peric