Measurement of the inclusive top-quark pair cross-section in the dilepton channel at 13 TeV with the CMS experiment

Maria Aldaya, Till Arndt, Carmen Diez Pardos, Alexander Grohsjean, Ali Harb, Johannes Hauk, Eleni Ntomari, Mykola Savitskyi

T2.06
DPG 2016
Hamburg, 03.03.2016
Introduction

- Measuring the top pair cross section is the first step for understanding top physics
 - In the frame of the Standard Model (SM), test QCD predictions
 - Sensitivity to new physics beyond the SM (BSM)
 - Test the presence of new production mechanisms
 - Important background for many Higgs and BSM searches

- Predicted Inclusive cross section (NNLO + NNLL) 832 ± 45 pb at 13 TeV

- Today: measurement of the top pair cross section at 13 TeV using full 2015 data in the dilepton channel
 - Simple and robust Cut&Count method
 - Special focus on lepton identification
Cross section obtained with the following expression:

- N: number of observed events
- N_{bkg}: number of background events
- A: Detector acceptance (from MC)
- ϵ: detector efficiency
- Includes reconstruction, trigger, Isolation and Identification efficiencies...
- Br: Branching ratio
- $\int Ldt$: integrated luminosity

$$
\sigma(pp \rightarrow t\bar{t}) = \frac{N - N_{\text{bkg}}}{(A \times \epsilon \times \text{Br}) \int Ldt}
$$
Lepton efficiencies and scale factors

- Lepton efficiency measurements are a central component of the top pair production measurement and are main source of uncertainty.

- Need a method based on real data to extract the identification/isolation efficiency:
 - Using data directly avoids depending on simulation and introducing bias due to detector behavior miss-modeling.
 - Efficiency measurements are closely related to physics analysis and the results depend on the selection.
 - Aimed for ttbar to dilepton analysis (signature: isolated, well reconstructed medium/high pT leptons).

- Tag&Probe: method based on Drell-Yan resonances where leptons have similar characteristics:
 - One lepton with stringent criteria tags the event.
 - Second lepton used as a probe.
 - "passing probes" are defined according to the efficiency to measure.
 - Efficiency = number of passing probes/all probes once the back ground is taken into account.
Lepton efficiencies and scale factors

> Selection of the $Z \rightarrow e^+e^-$ Sample for electron identification measurement:
 - Preselection of electrons with Kinematic cut $p_T > 20$ GeV/c and $|\eta| < 2.4$
 - Events with exactly two electrons fulfilling the opposite charge requirement
 - And in the range of $60. < M_{ee} < 120$ GeV/c2

> Tag electrons:
 - Tighter kinematic cut $p_T > 25/30$ GeV/c and $|\eta| < 2.1$
 - Tight ID and Isolation
 - Matched to Single electron HLT

> Probe electrons:
 - All other electrons considered as a probe to study the efficiency (fulfilling or not the same criteria as the tag electron)

> Passing probes:
 - All probes passing the medium ID/Iso criteria
Lepton efficiencies and scale factors

- Invariant mass of the (passing probes, tag electron) and the (failing probes, tag electron).

- Once background is subtracted, Efficiency = No. passing probes / No. all probes.
Lepton efficiencies and scale factors

Applied to the analysis:

- Lepton SFs: ratio of data and MC efficiencies
- These SFs were used for the early measurement of the top pair cross section with 42 pb⁻¹ arXiv:1510.05302 and TOP-15-010
Top Pair Production in Dilepton Channel

> Event Selection:
 - >= 2 opposite sign high-pT leptons (ee, eμ, μμ) pT > 20 GeV, |eta| < 2.4
 - QCD veto: mll > 20 GeV
 - Z veto: |m_Z - m_ll| > 15 GeV (ee, μμ)
 - >= 2 jets pT > 30 GeV, |eta| < 2.4
 - MET > 40 GeV (ee, μμ)
 - >= 1 b-tagged jet

> Data Sets from 2015 25ns run with ~2.3 fb^{-1}

> MC Signal:
 - Nominal: Powheg v2 + Pythia8
 - Modeling systematic: aMC@NLO + Pythia8

> Measurement done in 3 channels (ee, eμ, μμ)
Kinematic distributions

Leading jets

Leading leptons
Results $\mu\mu$ channel

- Preliminary SFs and corrections applied

- $\sigma_{\mu\mu} = 891 \pm 15 \text{ (stat.)} \pm 90 \text{ (syst.) pb}$

- The systematic uncertainty is dominated by the Luminosity (4.6%) and the lepton efficiencies (3.1%)

- Results are in agreement with theory predictions
Results ee channel

- Preliminary SFs and corrections applied

- \(\sigma_{ee} = 819 \pm 18\ \text{(stat.)} \pm 96\ \text{(syst.)} \ \text{pb} \)

- The systematic uncertainty is dominated by the Luminosity (4.6%) and the lepton efficiencies (5%)

- Results are in agreement with theory predictions
Results $e\mu$ channel

- Preliminary SFs and corrections applied

- $\sigma_{e\mu} = 829 \pm 9$ (stat.) ± 82 (syst.) pb

- The systematic uncertainty is dominated by the Luminosity (4.6 %) and the lepton efficiencies (3.8%)

- Results are in agreement with theory predictions
Summary

- Measurement of the top quark pair production cross section at 13 TeV with CMS was performed using ~2.3 fb⁻¹ collected data.

- Preliminary results presented in the three dileptonic channels:
 - \(\sigma_{ee} = 819 \pm 18 \) (stat.) \(\pm 96 \) (syst.) pb
 - \(\sigma_{e\mu} = 829 \pm 9 \) (stat.) \(\pm 82 \) (syst.) pb
 - \(\sigma_{\mu\mu} = 891 \pm 15 \) (stat.) \(\pm 90 \) (syst.) pb

- And shown to be consistent with the theory predictions.