Preliminary results on the production of b-jets and pairs of b-jets with associated jets at the CMS experiment at $\sqrt{s} = 13$ TeV

DPG annual meeting

Patrick L.S. Connor Paolo Gunnellini Hannes Jung

Deutsches Elektronen-Synchrotron

29 February 2016
Standard Model

- **bottom** or **beauty** quark
- heaviest quark that hadronises
- mostly in B-mesons

<table>
<thead>
<tr>
<th>Meson</th>
<th>Content</th>
<th>M [MeV c^{-2}]</th>
<th>τ [ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^{\pm}</td>
<td>ub</td>
<td>5279.29 ± 0.15</td>
<td>1.638 ± 0.004</td>
</tr>
<tr>
<td>B^{0}</td>
<td>db</td>
<td>5279.61 ± 0.16</td>
<td>1.520 ± 0.004</td>
</tr>
<tr>
<td>(B^{+}_c)</td>
<td>cb</td>
<td>6275.1 ± 1.0</td>
<td>0.507 ± 0.009</td>
</tr>
<tr>
<td>(B^{0}_s)</td>
<td>sb</td>
<td>5366.79 ± 0.23</td>
<td>1.510 ± 0.005</td>
</tr>
</tbody>
</table>

$\Rightarrow \lambda \approx 2$ mm at CMS for heavily boosted B’s
Motivation

1. **background** in many (B)SM processes
 \[\rightarrow H\bar{b}b, \ Z\bar{b}b, \ tt, \ etc. \]

2. **signal** where
 - \(m_b \gg \lambda_{\text{QCD}} \)
 \(\Rightarrow \) avoid non-perturbative effects
 - typical two-scale process
 \(\Rightarrow \) investigation of *Transverse-Momentum-Dependent* PDFs
As a function of \(p_T \) in bins of rapidity:

- ratio data/MC
- fraction of \(b \)-jets in the inclusive jet production

\[b \text{-inclusive production} \]

\[\Rightarrow \text{textbook measurements par excellence!} \]
Leading and subleading b-jet production

\Rightarrow start investigation of $b\bar{b}$ pairs
Particle reconstruction

- bunch crossing at LHC
- Pythia 8
- Geant 4
- hits + energy deposits

Reconstruction
- Particle-Flow

Jet clustering
- anti-kt algorithm
- jets

Jet calibration
- corrected jets

b-tagging
- CSV
- b-jets
Machine acceptance

Rapidity

\[|y_{b\text{-jet}}| < 2.5 \]

Jet transverse momentum

<table>
<thead>
<tr>
<th>trigger threshold [GeV]</th>
<th>effective threshold [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>114</td>
</tr>
<tr>
<td>80</td>
<td>133</td>
</tr>
<tr>
<td>140</td>
<td>220</td>
</tr>
<tr>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>260</td>
<td>430</td>
</tr>
<tr>
<td>320</td>
<td>507</td>
</tr>
<tr>
<td>400</td>
<td>638</td>
</tr>
<tr>
<td>450</td>
<td>737</td>
</tr>
</tbody>
</table>

Trigger strategy \[p_\perp > 114 \text{ GeV} \]
Jet clustering

anti-k_\perp algorithm ($R = 0.4$ at CMS)

\[d_{iB} = \frac{1}{k_{\perp i}} \]
\[d_{ij} = \min \left(\frac{1}{k_{\perp i}^2}, \frac{1}{k_{\perp j}^2} \right) \frac{\Delta R_{ij}^2}{R^2} \]
where \[\Delta R_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \]

→ any two particles and pseudojets i and j must satisfy $d_{ij} < d_{iB}$ to belong to the same jet
Jet Energy Correction

- (L1) event pile-up
- (L2-3) non-uniformities in the detector response
- Residuals (only for data): discrepancies between data and MC

Charged-Hadron Subtraction

- To a given jet is associated the vertex that mostly contributes to its p_\perp
- Hadrons from other vertices are removed from the jet.
b and $\bar{b}\bar{b}$

Patrick Connor

Introduction
Motivation
Goals of the analysis
Measurement
Event reconstruction
Jet reconstruction
b-tagging

Results
Conclusions

Work in progress

Jet p_\perp spectrum

\Rightarrow except in second bin, the agreement looks alright
Combined Secondary Vertex

Result of a MVA combining

1. **Track-Counting**: reject secondary vertices whose tracks are to close to the primary vertex
2. **Simple-Secondary-Vertex-Mass**: reject other meson candidates than B-mesons
3. **Soft-Lepton-Tag**: look for a non-isolated lepton in the jet

⇒ medium working point at 0.679
Application on the p_{\perp} spectrum

anti-k_{\perp} (R = 0.4)

CMS Data

Pythia 8
Early results

Selection

- $p_{\perp} > 114$ GeV
- $|y| < 2.5$
- CSV > 0.679
- anti-k_{\perp} with $R = 0.4$

Caution
Results at detector level, without treatment of systematic and model uncertainties yet!
Ratio data over Monte Carlo

anti-k_T ($R = 0.4$) \[\int L \, dt = 575 \text{ pb}^{-1} \]

- CSV > 0.679
 - b-jets
 - Jets

$|y| < 0.5$
$0.5 < |y| < 1.0$
$1.0 < |y| < 1.5$
$1.5 < |y| < 2.0$
$2.0 < |y| < 2.5$

p_T [GeV]

⇒ SF for b-jets to be applied, otherwise good agreement

Work in progress
Fraction of b-jets among jets

\[\text{Fraction of } b\text{-jets among jets} \]

\[\frac{b\text{-jet}}{\text{inclusive jet}} \]

\[|y| < 0.5 \]

\[0.5 < |y| < 1.0 \]

\[1.0 < |y| < 1.5 \]

\[1.5 < |y| < 2.0 \]

\[2.0 < |y| < 2.5 \]

\[p_T \geq 200 \text{ GeV}, 1000 \text{ GeV} \]

\[CMS \text{ Data}, \text{Pythia 8} \]

\[\Rightarrow \text{same conclusion} \]
Leading and subleading b-jets

\(\text{anti-}k_{\perp} \ (R = 0.4)\)
\[\int L \, dt = 575 \text{ pb}^{-1}\]
\[\text{CSV} > 0.679\]

\[\begin{array}{c}
\text{CMS Data / Pythia 8} \\
\text{leading jet} \\
\text{subleading b-jet} \\
\text{third jet}
\end{array}\]

\[\Rightarrow \text{enough statistics for at least 2-}b-jet studies\]
Conclusions

Summary

- b’s can help study two-scale effects of the evolution.
- Previous measurements can already be reproduced at the TeV scale.
- The CMS experiment will soon provide enough luminosity to have a sufficient resolution to study two-scale effects.

Outline

- Improvement of the detector simulation in the MC (correction scale factors for b-jets).
- Correction of the detector effects on the data (unfolding).
- Improvement of the pile-up treatment using data-driven methods.
- Treatment of model and systematic uncertainties.
References

anti-k_{\perp} algorithm The anti-k_t jet clustering algorithm, Matteo Cacciari and Gavin P. Salam, [arXiv:0802.1189v2]

Jet calibration CMS Performance note CMS DP-2-1012/012

TMDs http://tmdplotter.desy.de