Measurements of Charm and Beauty in DIS via muon tags at ZEUS

Marcello Bindi1, on behalf of ZEUS Collaboration

1University and INFN of Bologna, Italy

Charm and Beauty production were measured in deep inelastic scattering (DIS) with the ZEUS detector at HERA. Heavy quarks were reconstructed using their semi-leptonic decay into muons. The signal was separated from the background using lifetime information, the transverse momentum of the muon with respect to the axis of the associated jet and the missing transverse momentum parallel to the muon direction. Differential cross sections were measured and compared to next-to-leading order QCD predictions. The heavy quarks contribution to the proton structure function F_2, $F_{c\bar{c}}^2$ and $F_{b\bar{b}}^2$, were extracted and compared with theoretical predictions using different parametrizations of the proton PDFs.

1 Introduction

The measurement of charm and beauty production in deep inelastic scattering (DIS) provides a stringent test of quantum chromodynamics (QCD) since the large quark masses and the square of the four momentum transfer, Q^2, provide hard scales that make perturbative calculations applicable. At leading order, heavy quarks (HQ) are produced in DIS via boson–gluon fusion (BGF) ($\gamma^*g \rightarrow q\bar{q}$). A precise measurement of HQ production in DIS therefore provides a direct constraint on the gluon parton density function (PDF) of the proton.

Charm production in DIS at HERA has been measured previously using reconstructed charmed mesons or inclusively by exploiting the long lifetime of charmed hadrons\cite{1}. Beauty production in DIS has been studied in events with muons and jets and from lifetime information\cite{1}. The existing data are generally in good agreement with next-to-leading-order (NLO) QCD predictions.

We present here a recent measurement\cite{2} of HQ production using semi-leptonic (SL) decays into muons. It is the first time that leptonic tags are used for charm measurements at HERA.

2 Selection cuts, fits and cross sections measurement

The data used in this analysis have been collected with the ZEUS detector in the 2005 running period during which HERA collided electrons of energy $E_e = 27.5$ GeV with protons of energy $E_p = 920$ GeV corresponding to a centre-of-mass energy $\sqrt{s} = 318$ GeV. The corresponding integrated luminosity was $L = 126.0 \pm 3.3$ pb-1.

A sample of muon in DIS was selected and the accessible inelasticity $y = Q^2/(xs)$ and Q^2 were restricted to $0.01 < y < 0.7$ and $Q^2 > 20$ GeV2. To remove background events with isolated muons ($\gamma\gamma \rightarrow \mu^+\mu^-$, J/ψ and Y decays) and residual cosmic muons, an anti-isolation
The pseudorapidity is defined as \(\eta = -\ln \left(\tan \frac{\theta}{2}\right) \), where \(\theta \) is the polar angle.

A control sample of inclusive DIS data was used to test the quality of the simulation of HQ decays. The fractions of muons originating from charm, beauty or LF events were determined by fitting a combination of MC predictions. The differential cross sections as a function of \(Q^2 \) region are compared in Fig. 2 to the NLO QCD predictions based on Hvqdis.

A control sample of inclusive DIS data was used to test the quality of the simulation of HQ decays. The fractions of muons originating from charm, beauty or LF events were determined by fitting a combination of MC predictions. The differential cross sections as a function of \(Q^2 \) region are compared in Fig. 2 to the NLO QCD predictions based on Hvqdis.

Figure 1: Distributions of (a) \(p_T^{\text{miss}}/\mu \), (b) \(\delta \), (c) \(p_T^{\text{rel}} \) for the selected sample of muons in DIS, and of (d) \(p_T^{\text{rel}} \) for a signal-enriched subsample with \(p_T^{\text{miss}}/\mu > 2 \text{ GeV} \) and either a muon in FMUON or \(\delta > 0.01 \text{ cm} \).

Figure 2: Differential muon cross sections for \(c \) and \(b \) as a function of (a) \(p_T^{\mu} \), (b) \(\eta^{\mu} \), (c) \(Q^2 \), and (d) \(x \). The bands show the NLO QCD predictions (Hvqdis) and the corresponding uncertainties. The differential cross sections from Rapgap are also shown.

The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the proton beam direction, referred to as the “forward direction”, and the X axis pointing towards the centre of HERA.

The pseudorapidity is defined as \(\eta = -\ln \left(\tan \frac{\theta}{2}\right) \), where \(\theta \) is the polar angle.
3 Extraction of $F_{2}^{c\bar{c}}$ and F_{2}^{bb}

The muon cross sections, σ^q, measured in bins of x and Q^2, were used to extract $F_{2}^{q\bar{q}}$ at a reference points in the x, Q^2 plane by: $F_{2}^{q\bar{q}}(x, Q^2) = \sigma^q \frac{F_{2}^{q\bar{q},\text{th}}(x, Q^2)}{\sigma^{q}_{\text{th}}}$, where $F_{2}^{q\bar{q},\text{th}}(x, Q^2)$ and σ^{q}_{th} were calculated at NLO in the FFNS using the Hvqdis program. The largest uncertainty is related to the extrapolation to the full muon phase space. The theoretical uncertainty in the extraction of $F_{2}^{q\bar{q}}$ was evaluated by varying the Hvqdis parameters and by using a different PDF set (CTEQ5F). Figure 3 shows the extracted $F_{2}^{c\bar{c}}$ and F_{2}^{bb} from this analysis, as functions of Q^2 for fixed values of x, compared to previous ZEUS and H1 results [1] corrected to the same reference x used in the present analysis. Different QCD calculation are also shown. For $Q^2 \geq 60$ GeV2 the present results are of comparable or higher precision than those previously existing.

References

