Full system model for terahertz generation by optical rectification

K. Ravi1,2
D. Schimpf2, W.R. Huang1,2, E.A. Nanni1 and F.X. Kärtner1,2,3

1. Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, MIT, USA
2. Center for Free-Electron Laser Science (CFEL), Hamburg, Germany
 Ultrafast Optics and X-Rays Division
3. Department of Physics and The Hamburg Center for Ultrafast Imaging, University of Hamburg, Germany

Why is high field THz important?

E_{peak} = 0.7 GV/m

Fleischer, PRL 107 (2011)

Wong, Opt. Exp. 21 (2013)

Palfalvi, Phys. Rev. STAB 17 (2014)
Method: Optical Rectification

- Most efficient method: >1% energy conversion efficiency\(^1\), \(\sim\) mJ THz pulse energy\(^2,3\)

\[
|E_{THZ}(\Omega)|
\]

- Intra-pulse difference frequency generation
- THz bandwidth proportional to optical pulse bandwidth
- Must satisfy phase-matching condition

\[
\mathbf{k}(\omega+\Omega)-\mathbf{k}(\omega)=\mathbf{k}(\Omega)
\]

A General case : Optical Rectification using Tilted Pulse Fronts

- Lithium Niobate : Large bandgap, high damage thresholds.

- THz refractive index ~ 5, optical group refractive index ~ 2.25 -> Phase matching?

- Intensity fronts tilted with respect to the propagation direction -> 'Tilted Pulse Fronts'

Optical Rectification: Cascading effects

- 100% photon conversion efficiency, energy conversion efficiency
 \[\eta = \frac{0.3}{300} \approx 0.1\% \]

- Experimentally, energy conversion efficiency > 1% -> greater than 100% photon conversion efficiency

- Repeated down-conversion till phase-matching exists -> Cascading effects

\[\omega - \Omega \]
\[\omega - 2\Omega \]
\[\omega - 3\Omega \]

Small energy change but large change in spectrum!

Motivation : Gap in Theory

• Predicted energy conversion efficiencies > 10%\[^5\], but experimentally \sim (2-3%). **Why?**

• Large spectral reshaping of the optical spectrum -> **Undepleted pump approximation valid?**

• Prior models: **Either 1-D or undepleted.**
Motivation : Requisites for a model

(1) Consider *spatio-temporal distortions* of ultrafast pulses

(2) Consider cascading, self phase modulation.

(3) Solution in 2-D.

Device sizes -> cm scale

How can you model all this efficiently?
Simulation Approach: Spatio-temporal distortions

- Propagate spectral component $E(\omega)$ through arbitrary optical setup ->
 Use dispersive ray pulse matrices

- Spatial profile $E(\omega,x,z)$, pre-calculated

$$E_{out}(\omega, x, z) = \sqrt{\frac{\sigma_{in}(\omega)}{\sigma_{out}(\omega, z)}} \cdot E_{in}(\omega, 0, 0)e^{-jk \left[\frac{(x_0 - x_{out}(\omega, z))^2}{2q_{out}(\omega, z)} + x_{out}(\omega, z)x \right] - j[\phi_0(\omega, z) + \phi_1(\omega, z) + \phi_2(\omega, z) + \phi_3(\omega, z)]}$$

Simulation Approach: THz generation

Initial conditions

\[E_{in}(\omega,x,0) = 0 \]

Back-propagate optical field from \(z = 0 \)

\[E_{out}(\omega,x,z) = \left(\frac{\sigma_{in}(\omega)}{\sigma_{out}(\omega,z)} \right) \cdot E_{in}(\omega,0,0) \]

\[\phi_0(\omega) = k \sum_{i=1}^{N} L_i n_i(\omega) \]

Material dispersion

\[\sqrt{\frac{1}{A(\omega,z_0) + B(\omega,z_0) / q(\omega)_{in}}} = \frac{\sigma_{in}(\omega)}{\sigma_{out}(\omega,z_0)} e^{-j\phi_1(\omega,z_0)} \]

Angular Dispersion

\[\phi_2(\omega,z_0) = \frac{k}{2} \left[x_{in}(\omega) x_{in}(\omega,z_0) - x_{out}(\omega) x_{out}(\omega,z_0) \right] \]

Spatial Chirp

\[-jk \left[\frac{(x_0 - x_{out}(\omega,z))^2}{2q_{out}(\omega,z)} + x_{out}(\omega,z).x \right] e^{-j[\phi_0(\omega,z) + \phi_1(\omega,z) + \phi_2(\omega,z) + \phi_3(\omega,z)]} \]

Various other dispersive terms which arise from the setup

\[\phi_3(\omega,z_0) = \frac{k}{2} \sum_{i=1}^{N} F_i(\omega)x_{outi+1}(\omega) \]
Simulation approach

Initial conditions

\[P_{op}(\omega, x, z) = \varepsilon_0 \chi^{(2)}_{eff}(x, z) \int_{0}^{\infty} E_{op}(\omega + \Omega, x, z) E_{THz}^{*}(\Omega, x, z) d\omega \]

+ \varepsilon_0 \chi^{(2)}_{eff}(x, z) \int_{0}^{\infty} E_{op}(\omega - \Omega, x, z) E_{THz}(\Omega, x, z) d\omega

\[\begin{align*}
& - \frac{2k_z \varepsilon_0 c^2}{\omega^2} \mathcal{F}\left\{ \frac{\varepsilon_0 \omega_0 n(\omega_0)^2 n_2(x, z)}{2} |E_{op}(t, x, z)|^2 E_{op}(t, x, z) \right\} \\
& - \frac{2k_z \varepsilon_0 c^2}{\omega^2} \mathcal{F}\left\{ j \frac{\varepsilon_0 \omega_0 n(\omega_0)^2 n_2(x, z)}{2} |E_{op}(t-t', x, z)|^2 \otimes h_r(t') E_{op}(t, x, z) \right\}
\end{align*} \]

Cascading effects

THz + Optical Sum Frequency Generation

Self Phase Modulation

Stimulated Raman Scattering
Simulation Approach: Solving the wave Eqs.

\[\nabla^2 E(\Omega, x, z) + k^2(\Omega)E(\Omega, x, z) = \frac{-\Omega^2}{\varepsilon_0 c^2} P^{(2)}(\Omega, x, z) \]

THz

\[\nabla^2 E(\omega, x, z) + k^2(\omega)E(\omega, x, z) = \frac{-\Omega^2}{\varepsilon_0 c^2} P^{(2)}(\omega; \Omega, x, z) \]

Optical

Fourier Decomposition

\[\frac{\partial A(\Omega, k_x, z)}{\partial z} = -\frac{\alpha(\Omega)}{2} A(\Omega, k_x, z) - \frac{j\Omega^2}{(2k_z \varepsilon_0 c^2)} P^{(2)}(\Omega, k_x, z)e^{jk_z z} \]

\[\frac{\partial \phi_{op}(\omega, k_x, z)}{\partial z} = -\frac{\omega^2}{\varepsilon_0 c^2} P_{op}(\omega, k_x - k_{x0}, z) e^{j \left(k_{z0}(\omega) + \frac{k_{x0}(\omega)k_x}{k_{z0}(\omega)} - \frac{jk_x^2}{2k_{z0}} \right) z} \]

Easily parallelized

Transmitted THz field at a distance \(z_d \) from the crystal

\[E(\Omega, x, z) = F^{-1} \left\{ A(\Omega, k_x, h \sin \alpha) T(k_x) e^{-j(k_0^2 - k_x^2)^{1/2} z_d} \right\} \]

\[T(k_x) = \frac{2 \sqrt{\frac{\Omega^2 n(\Omega)^2}{c^2} - k_x^2}}{\sqrt{\frac{\Omega^2 n(\Omega)^2}{c^2} - k_x^2} + \sqrt{\frac{\Omega^2 n(\Omega)^2}{c^2} - k_x^2}} \]

Verification of model

Simulation of Optimal Imaging Conditions

Analytic Calculation

$\gamma = 63^\circ$

$s_1 = 60.06$ cm

$s_2 = 37.1$ cm

$\theta_i = 46^\circ$

η (Normalized)

$s_1 = 60.89$ cm

$s_2 = 36.84$ cm

Verification of model

Effects of cascading on THz generation

(a) SPM, GVD-AD, material dispersion, absorption

(b) Cascading Effects, GVD-AD, material dispersion, absorption

- **Without Cascading effects** -> Longer interaction, higher energy efficiency

 2.27%

- **With Cascading**, shorter interaction- lower efficiency.

 0.85%

Momentum picture

Broadening in Frequency

\[\chi_{\text{eff}}^{(2)} = 0 \]

\[\chi_{\text{eff}}^{(2)} = 360 \text{pm/V} \]

Optical Fluence

THz Fluence

Broadening in Momentum

\[\vec{k}(\omega) \to \vec{k}(\omega - \Omega) \to \vec{k}(\omega - 2\Omega) \]

Energy transfer

Energy transfer

\[\vec{k}(\omega) \to \vec{k}(\omega - \Omega) \to \vec{k}(\omega - 2\Omega) \]

Broadening in Frequency

Optical Fluence in k-space

\[\sum |E(\xi, k_x, z)|^2 \]

\[z = 1.7 \text{mm} \]

\[z = 3.4 \text{mm} \]

Spectral broadening -> **accompanied by broadening in** \(k_x \)

Time domain picture

\[\tau_{\text{FWHM}} = 500 \text{ fs} \]
\[F_{\text{pump}} = 20 \text{ mJ/cm}^2 \]

- Spatio–temporal break-up of the optical pulse
- Large spatial chirp of the THz frequency
Implications: Scaling to large beam sizes

- Conversion efficiency does not scale with beam size.

Implications: Effects of intensity

Different intensities have different optimal beam positions
Implications: Trade-offs of optimizing efficiency

- Higher efficiency can also lead to very large spatial chirp
Conclusion

• Developed a full system model for THz generation

• **Self limiting property**: Group velocity dispersion due to angular dispersion -> causes spatio-temporal break-up of optical pulse.

• Affects THz generation using large pump beams, spatial properties of THz.
Acknowledgment

European Research Council
Established by the European Commission

Synergy Grant: AXSIS
Frontiers of Attosecond X-ray Science: Imaging and Spectroscopy