Sub-300 fs, 0.5 mJ pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression

K. Murari1,2,3, H. Cankaya1,2, B. Debord5, P. Li1, G. Cirmi1,2, G. M. Rossi1,2, S. Fang1,2, O. D. Mücke1,2, P. Kroetz2,3, G. J. Stein4, A. Rühl1, I. Hartl1, F. Gérôme5, F. Benabid5 \& F. X. Kärtner1,2,3,4

1Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
2Centre for Free Electron Laser Science (CFEL), Hamburg, Germany
3University of Hamburg, Germany
4Department of EECS and RLE, Massachusetts Institute of Technology (MIT), Cambridge, USA
5GPPMM Group, Xlim Research Institute, University of Limoges, France

CLEO:2015 San Jose, CA, USA
STu10.2
Motivation

- Development of driver for mid-IR Optical Parametric Amplifier (OPA)
 - Long wavelength 2 µm pump source
 - High energy CPA scheme (≈ 2mJ, 3.4 ps @ 1kHz)
- Sub-ps pulses for white light seed generation
- Self compression for 3.4 ps, 0.5 mJ pulse in Kagome fibre
- High Harmonic Generation: \(U_p \sim I_L \lambda^2 \)
- THz generation
Previous Results

 - First Ho:YLF Regenerative Amplifier (RA)
 - Seed source: Ho:YLF based oscillator $\tau \approx 250\text{ps}$
 - RA + SPA: $7.2\text{mJ}, 1\text{kHz}, 300\text{ps}$

 - Seed source: 2 stage OPA at $2.1\mu\text{m}$. $E \approx 0.7\mu\text{J}$
 - Ho:YAG RA: Anti-gain narrowing filter: 3mJ uncompressed, 5kHz, 530fs

 - Seed Source: Tm-Ho Amplifier seeded by frequency shifted Er oscillator
 - Ho:YLF RA + cryo cooled Ho:YLF amplifier: $39\text{mJ}, 100\text{Hz}, 10\text{ps}$
This Work

- Seeding of Ho:YLF regenerative amplifier with compact home built Ho: fibre oscillator $E_{\text{seed}} \approx 60 \text{ pJ}$ and $E_{\text{out}} \approx 1.1 \text{ mJ}$,

- Amplified gain of 10^7

- Shortest pulse duration achieved with Ho:YLF regen $t \approx 3.4 \text{ ps}$

- Demonstration of pulse self compression of the output using Kagome fibres

- Demonstration of self compression of 3.4 ps long pulses using 2 μm pulses to sub-300 fs
Comparison of 2-μm gain media

<table>
<thead>
<tr>
<th>Host</th>
<th>(\lambda_{\text{abs}}) (nm)</th>
<th>(\lambda_{\text{em}}) (nm)</th>
<th>(\sigma_{\text{abs}}) ((10^{20}\text{cm}^2))</th>
<th>(\sigma_{\text{em}}) ((10^{20}\text{cm}^2))</th>
<th>(T_c) (Wm(^{-1})K(^{-1}))</th>
<th>(\tau) (ms)</th>
<th>(n_2) ((\text{m}^2/W))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho:YLF</td>
<td>1940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[1]</td>
</tr>
<tr>
<td>Ho: YAG</td>
<td>1907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[1][2]</td>
</tr>
<tr>
<td>Ho:Sc(_2)O(_3)</td>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[3]</td>
</tr>
<tr>
<td>Ho:Lu(_2)O(_3)</td>
<td>1945</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[4][5]</td>
</tr>
<tr>
<td>Tm:YAG</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2]</td>
</tr>
<tr>
<td>Tm:Lu(_2)O(_3)</td>
<td>796</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[7]</td>
</tr>
<tr>
<td>Tm:YLF</td>
<td>782</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[8]</td>
</tr>
</tbody>
</table>

3. L. Fornasiero, *Conference. Advar*
Schematic of self-seeding two stages OPA

CW Tm: Fiber Laser 10W
~ 60pJ, 300ps, 2051nm

Ho: Fiber Oscillator
Home-built
~ 1 nJ, 160 fs, 2060nm, 35mW

CVBG Stretcher

Ho: YLF Regen + Single Pass Amplifier (SPA)
~ 1.2mJ, 2051nm

Commercial system

Kagome HC-PCF Compressor

0.5 mJ, 3.5ps

Mid-IR OPA

White light generation

CVBG Compressor
~ 1.1mJ, 3.5ps

Output

Schematic of self-seeding two stages OPA
Results: Regen + SPA

Oscillator Spectrum: FWHM 40.2 nm
Seed (after stretcher): FWHM 8.2 nm
Amplified (after regen): FWHM 2.5 nm

SHG FROG results
Nonlinear Pulse Compression

- Spectral broadening in conventional fibres
- Spectral broadening in noble-gas filled hollow capillaries
- Hollow Core Photonic Crystal Fibres (HC-PCFs)
 - Kagome lattice HC-PCFs: Inhibited Coupling
 - Extremely low core-clad power overlap
 - Low transmission loss
 - Dominance of anomalous dispersion over large section of transmission widow
Previous Results

- Input: 1.5 µm, 850 fs, 105 µJ
- 20 cm 19-cell Kagome fibre 3.5-bar He-filled
- Compressed to 300 fs

- Input: 1.5 µm, 740 fs, 18 µJ
- 66 cm 19-cell Kagome fibre 13-bar Ar-filled
- Compressed to 88 fs

- Input: 800 nm, 100 fs, 8 µJ
- 11 cm 19-cell Kagome fibre 15-bar Kr-filled
- Compressed to 10 fs

T. Balciunas et al. Nat Phot. 6, 6117 (2015)

- Input: 1.8 µm, 80 fs, 35 µJ
- 20 cm 19-cell Kagome fibre 4-bar Xe-filled
- Compressed to 4.5 fs
Kagome HC-PCF Compressor

Transmission Efficiency > 90%
Results: 19-cell

Spectral evolution for 19-cell fibre

Measured

Retrieved

Pulse Duration (ps)

Intensity (a.u.)

Phase (\pi \text{ rad})

290 fs

Intensity (a.u.)

Phase (\pi \text{ rad})
Conclusion

Summary

- Simple and Compact seeding of Ho: YLF regenerative amplifier
- 1.1 mJ output from Ho: YLF amplifier + SPA seeded with Ho:fibre oscillator.
 Stretched and compressed using CVBG
- Demonstration of self-compression 2 micron pulses using Kagome HC-PCFs
- 3.4 ps long pulses at 2050 nm was compressed to ~300 fs

Outlook

- Further optimization:
 - Gas pressure, fibre length and input pulse duration
- Pumping and seeding MIR-OPCPA

Ho: YLF Regen
2050 nm
1.1mJ, 3.5ps

Kagome HC-PCF Compressor
Mid-IR OPA
Output

White light generation

Output
Thanks for your attention