Constraints on an Annihilation Signal from a Core of Constant Dark Matter Density around the Milky Way Center with H.E.S.S.

(H.E.S.S. Collaboration)

1Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany
2Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany
3Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
4National Academy of Sciences of the Republic of Armenia, Marshall Baghramian Avenue, 24, 0019 Yerevan, Republic of Armenia
5Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia
6Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany
7University of Namibia, Department of Physics, Private Bag 13301, Windhoek, Namibia
8University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
9GRAPPA, Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
10Oberwissenschaftliche Astronomische, Universität Jagiellonska, ul. Orli 171, 30-244 Kraków, Poland
11Now at Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS-20, Cambridge, Massachusetts 02138, USA
12Department of Physics and Electrical Engineering, Linnaeus University, 351 95 Växjö, Sweden
13Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany
14GRAPPA, Anton Pannekoek Institute for Astronomy and Institute of High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
15Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria
16Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91286 Palaiseau, France
17Now at Santa Cruz Institute for Particle Physics, Department of Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA

© 2015 American Physical Society
Introduction.—The formation of the large scale structure of the universe as well as the dynamics of galaxy clusters and individual galaxies strongly suggest the presence of dark matter on the respective length scale [1]. Many extensions of the standard model of particle physics predict a stable particle without electromagnetic coupling whose presence can account for the missing mass that is apparent in astrophysical environments [1]. The annihilation of dark matter particles is expected to produce photons with energies up to the mass of the dark matter particles [2]. The detection of γ rays from a given direction can thus indirectly probe the presence of dark matter particles along the corresponding line of sight.

The central region of the Milky Way is of particular interest for indirect searches for annihilating dark matter because the squared dark matter density integrated over the line of sight towards the target region (i.e., the astrophysical or J factor) is expected to be large [3]. The J factor for observations of the Galactic center region depends strongly on the dark matter density distribution within the Milky Way. Simulations of the dynamics of the dark matter content of galaxies predict to universal dark matter density distributions. Towards the center of the galaxies, the influence of baryons on the distribution of dark matter is not yet resolved. The formation of pronounced density cusps towards the center of galaxies ([4, 5]) and, more
recently, the prediction that the dark matter density in the central few hundred pc is almost constant \cite{6,7,8} have been discussed. The latter prediction of an almost constant dark matter density in the central region of the Galaxy is considered in this Letter.

The current strongest constraints on the velocity averaged cross section for the self-annihilation of dark matter particles with masses in the range of \(\sim 400\) GeV to \(\sim 10\) TeV result from a search for an extended emission of \(\gamma\) rays in the central region of the Milky Way with H.E.S.S. \cite{9}. However, the constraints apply only if the dark matter density distribution in the central \(\sim 500\) pc of the Milky Way is cusped (see dotted lines in Fig. 1). An alternative search for the annihilation of dark matter particles is presented in this Letter and strong constraints on \(\langle \sigma v \rangle\) are derived without the assumption of a dark matter density profile that is cusped in the central 500 pc of the Milky Way.

The high energy stereoscopic system.—The high energy stereoscopic system (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACT) in the Namibian Khomas Highland. IACTs detect the Cherenkov light emitted by electromagnetic showers that are induced when primary \(\gamma\) rays interact with air nuclei in Earth’s atmosphere. Charged cosmic rays also induce showers in Earth’s atmosphere and constitute background for the IACT detection of \(\gamma\) rays. Cosmic ray background events that cannot be suppressed during the analysis of H.E.S.S. data (see \cite{11}) are typically treated with a background subtraction technique \cite{12}. The background subtraction relies on the definition of a signal region for which a background region is constructed. The construction of the background region must be performed such that the ratio of the acceptance for background events in the signal and the background region is known from instrumental characteristics. The definition of the background region enables a comparison between the number of events that are detected in the signal region and the number of background events that are expected in the signal region. The acceptance for background events of H.E.S.S. is in general strongly influenced by atmospheric conditions, the pointing zenith angle and the night sky background in the observed field of view. See \cite{11} for more information on the H.E.S.S. experiment.

On-off observations of the Galactic center region with H.E.S.S.—The on-off observation mode (see also \cite{13,12}) refers in this Letter to a special observation strategy where a background (off1) region, the signal (on) region, and another background (off2) region are observed consecutively for 33 min each. Figure 2 shows the observed regions in galactic coordinates. The signal region has a radius of \(2^\circ\) and centers at \(l = 1^\circ, b = -0.7^\circ\) in galactic coordinates or \(\alpha = 267.7^\circ, \delta = -28.4^\circ\) in equatorial coordinates (J2000). The centers of the two background regions have a symmetric offset of \(\pm 35\) min in right ascension to the signal region center. The two minute difference between the right ascension offset between the signal and background regions and the observation length allows for a transition time between the observations. The on-off observation pattern allows the equalization of the azimuth and zenith angles that are covered by array pointings in each of the observations. Differences in the acceptance for background events which result from differences in the zenith angle array pointing range can thus be neglected.

The time difference of 35 min between the observations is a compromise between the demand for small atmospheric changes (i.e., small time differences) and a large offset in
right ascension (i.e., large time differences). Two background regions are observed, to better control residual imbalances in the acceptance for background events between the observations. Figure 3 shows the J factor for a given line of sight as a function of the angular distance, θ, between the directions of the line of sight and the Galactic center. The J factor is proportional to the expected number of dark matter annihilation events in the respective direction. The θ angle ranges that are covered by the signal and background regions in the off1-on-off2 observations are indicated in Fig. 3. It is concluded from this figure that the expected number of dark matter annihilation events is larger in the signal than in the background regions when the radius of the core of constant dark matter density around the Galactic center is 500 pc or less. This is a clear advantage of the on-off method when compared to the background subtraction technique that the chosen exclusion regions are sufficient to exclude astrophysical sources of gamma rays for the on-off analysis.

The mean exposure ratio, $\alpha = 0.5$, for the on-off data analysis is the ratio of the live times for the observation of the signal and background regions [12]. However, imbalances in the acceptance for background events between the signal region and the two background regions lead to a systematic error, σ_{α}, on the exposure ratio. A conservative estimate for the relative systematic error on the exposure ratio, $\sigma_{\alpha}/\alpha = 2\%$, is derived. This estimate results from a comparison of the number of events which pass γ-ray event selection criteria in the two background regions.

Results.—A total of $N_{\text{on}} = 24268$ signal and $N_{\text{off}} = 49028$ background events are measured that pass standard Hillas criteria [11] for the selection of γ-ray events. The total γ-ray signal s has a statistical significance of -0.5σ. The statistical significance is calculated with the log-likelihood ratio test statistic as described in [15] with the likelihood function (see also [16])

$$L = P(N_{\text{on}}, \hat{\alpha}b + s)P(N_{\text{off}}, b)G(\tilde{\alpha}, \alpha, \sigma_{\alpha}).$$

Here, P and G represent the Poisson and Gaussian distributions. The parameters b (mean number of background events) and $\hat{\alpha}$ (exposure ratio with mean α) are treated as nuisance parameters. For comparison, the significance of the γ-ray event excess as calculated with Eq. (17) in [17] without consideration of the systematic error on the exposure ratio is -1.3σ. Since no significant γ-ray signal is measured, an upper limit on the integrated γ-ray signal for energies ranging from the instrumental...
energy threshold to a maximum energy E is derived. For the calculation of the upper limit, the likelihood function that is given by Eq. (1) is analyzed with the method described in [15]. The upper limit on the energy integrated signal translates (see, e.g., [18]) into an upper limit on the velocity averaged dark matter self annihilation cross section, $\langle \sigma v \rangle (M)$, for a dark matter particle with mass $M = \bar{E}$. The variation of the instrumental response with the zenith and azimuth angles of the array pointing and within the field of view is accounted for in the analysis. The consideration of the 2% relative systematic error on the exposure ratio increases the upper limit on $\langle \sigma v \rangle$ by a factor of ~ 3. Upper limits on $\langle \sigma v \rangle$ are presented in Fig. 4 for Einasto and NFW dark matter density profiles with a 500 pc radius core of constant dark matter density around the Galactic center. The parameters for the NFW and Einasto density profiles are taken from [10]. The derived upper limits on $\langle \sigma v \rangle$ hold for the γ-ray energy spectrum that is expected from the self annihilation of dark matter particles into light quarks (see [2], the same spectrum is assumed in [9]). For an Einasto dark matter profile that is cored in the inner 500 pc around the Galactic center, values of $\langle \sigma v \rangle \sim 3 \times 10^{-24}$ cm3/s or larger are excluded for dark matter particle masses in between ~ 1 to ~ 4 TeV at 95% C.L. The upper limits on $\langle \sigma v \rangle$ that are derived for an Einasto dark matter density distribution with a core radius of 500 pc are the most constraining exclusions that are derived for TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region. However, these limits are one order of magnitude less constraining than the current best limits for cusped dark matter density distributions (see Fig. 4) and 2 orders of magnitudes weaker than the expectation for thermal relic dark matter (see, e.g., [1]).

For core radii different from 500 pc, the upper limit on the velocity averaged dark matter self annihilation cross section scales like $\langle \sigma v \rangle_R = (\Delta J_{500 pc}/\Delta J_R)\langle \sigma v \rangle_{500 pc}$ where ΔJ denotes the difference between the field of view averaged astrophysical factors in the signal and background region and the subscript is equal to the core radius. The field of view averaged astrophysical factors in the signal and background region of the considered on-off analysis for different core radii are listed in Table I. The upper limits on $\langle \sigma v \rangle$ increase by a factor of 2 (5) if the radius of the central core of constant dark matter density is 750 pc (1 kpc) when compared to a core radius of 500 pc.

Summary.—A search for a signal from annihilating dark matter around the Galactic center was performed. For this purpose, data that were acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. were analyzed. No significant signal was found. The employed observation technique enabled the derivation of upper limits on $\langle \sigma v \rangle$ that are significantly more conservative in respect to the distribution of dark matter in the Galactic center region than previous constraints. In particular, the constraints apply also under the assumption of a core of constant dark matter density around the Galactic center. If the dark matter density in the central 500 pc around the Galactic center is constant and follows outside of the core radius an Einasto profile, values of $\langle \sigma v \rangle$ that are larger than 3×10^{-24} cm3/s were excluded for dark matter particle masses between ~ 1 and ~ 4 TeV at 95% C.L. This is currently the best constraint on $\langle \sigma v \rangle$ that has been derived without the assumption of a centrally cusped dark matter density distribution in the search region.
The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support of the German Ministry of Education and Research (BMBF), the Max Planck Society, the French Ministry of Research, the CNRS-IN2P3, and the Astroparticle Interdisciplinary Programme of the CNRS, the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the IPNP of the Charles University, the South African Department of Science and Technology and National Research Foundation, and by the University of Namibia. We appreciate the excellent work of the technical support staff in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in Namibia in the construction and operation of the equipment. J. Méhault is funded by contract ERC-StG-259391 from the European Community.