Complementarities of high energy WAXS and Raman spectroscopy measurements to study the crystalline phase orientation in polypropylene blends during tensile test

M. Ponçot a, *, J. Martin a, S. Chaudemanche a, O. Ferry a, T. Schenk a, J.P. Tinnes a, D. Chapron b, I. Royaud a, A. Dahoun a, P. Bourson b

a Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Parc de Saurupt, CS 50840, 54011 Nancy Cedex, France
b LMOPS, Université de Lorraine, Supélec, EA 4423, 2 Rue E. Belin, F-57070 Metz, France

A R T I C L E I N F O

Article history:
Received 13 July 2015
Received in revised form 7 September 2015
Accepted 20 October 2015
Available online 23 October 2015

Keywords:
Isotactic polypropylene
Ethylene propylene rubber
μ-talc
Wide angle X-ray scattering
Raman spectroscopy
Uniaxial tensile test
Chains orientation
Transient mesophase
Volume damage

A B S T R A C T

In situ measurements using simultaneously Raman spectroscopy and high energy wide angles X-rays scattering (HE-WAXS) were carried out during uniaxial tensile tests of different polypropylene blends (isotactic polypropylene – iPP, high impact polypropylene – iPP/EPR, and high impact polypropylene filled by 7%wt of μ-talc particles – iPP/EPR + μ-talc) at various strain rates (5.10^-3 s^-1, 10^-3 s^-1 and 5.10^-4 s^-1). Tensile tests were performed using the VideoTraction® system to determine the true mechanical behavior of materials in a Representative Volume Element (RVE) where microstructural analyses by both experimental techniques are obtained. Evolutions of the macromolecular chains orientation have been obtained live at the macromolecular and crystalline cell scales. Experimental results show both that over the course of adding charges in the iPP matrix or increasing the true strain rate, this major micromechanism of deformation of semi-crystalline polymers would be less and less important until its complete disappearance in case of iPP/EPR filled by μ-talc particles. Moreover, correlations made between both techniques evidence similar results over a wide range of true strains. However, measurements diverge at lower and higher strain rates due to singularities of each both techniques which are discussed in terms of experimental protocols and materials microstructure modifications (transient mesophase, volume damage). Finally, the determination of the true intrinsic mechanical behaviors show similar stress hardening slopes for the three studied iPP blends which means that they all present an highly fibrillar microstructure. The differences of macromolecular chains orientation levels between each material is then discussed in terms of analysis volume of both techniques which could be responsible of their lack of accuracy in case of filled polymers.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Relationships between mechanical properties and microstructure of materials, especially for solid polymers, represent the major key to better understand, control and predict their final in-use behavior. Numerous experimental works have been devoted to characterize the microstructural deformation mechanisms of polymers involved in uniaxial tension and many elementary descriptive models have been already proposed and discussed by the past [37,17,22,47]. They depend on the initial microstructures of polymers which are mainly induced by the formulation and the conformation processes. As a result, mechanical behavior presents significant differences if the polymer matrix is amorphous [7,5,42,48], semi-crystalline [53,18,45,3,46,12,36,42] or filled with mineral and/or rubber particles [8,38,43,35,52,12,28,39]. Chain orientation, shear banding, and volume damage (voids resulting from crazing or nodules/particles decohesion) are the main involved deformation micromechanisms whatever the initial microstructure of the considered material. The prevalence of one mechanism regarding the others induces such kind of mechanical properties differences. To investigate such mechanism of deformation of polymer blends involved during stretching, the need of fast and non-destructive techniques combining commodity in use is growing among the researchers community [11,30,31,41]. In this
paper, two of them are performed simultaneously during uniaxial tensile tests to study the micromechanisms of deformation of different polypropylene blends (neat isotactic polypropylene, high impact polypropylene, and high impact polypropylene filled by 7% wt of μ-talc particles). They are high energy wide angle X-rays scattering – HE-WAXS (PO7 beamline, PETRA III, DESY synchrotron, Hamburg, Deutschland) and Raman spectroscopy. HE-WAXS is a very suitable experimental technique to characterize the crystalline structure of semi-crystalline polymers. In case of neat polypropylene and its blends, crystallinity changes, phase transitions, crystalline macromolecular chains orientation, development of smectic mesophases during uniaxial tensile tests have been already explored [4,15]. Although this method is really sensitive, it is not so simple to perform such experiments since the use of specific beamline at a synchrotron is needed. This paper aims to compare results obtained by HE-WAXS with an experimental technique easier to perform at the laboratory scale or at the industry. Raman spectroscopy is well-suited to determine the vibrational frequencies of the covalent chemical bonds of polymers and allow analysis of molecular species at different scales, from the chemical repetitive unit to the conformational architecture of the macro-molecular chain [25]. The Raman spectra of isotactic polypropylene have been the object of several investigations and the assignment of Raman scattering bands are rather well established [49,10,16]. Martin et al. [30,31] have defined a specific spectral criterion which enables to characterize the macromolecular chains orientation of the crystalline phase of a neat iPP using a combination of different polarization geometries for both the incident and scattered radiation [44,9,50].

2. Experimental part

2.1. Materials

2.1.1. Isotactic polypropylene (IPP)

The semi-crystalline isotactic polypropylene that was investigated in this work was provided by Arkema (ref. 3050 MN1). The average molecular weights are $M_n = 75,500$ g mol$^{-1}$ and $M_w = 262,000$ g mol$^{-1}$ [39]. The density determined by hydrostatic weighting is $\rho = 0.946$ g cm$^{-3}$. The crystallinity index is $X_c = 50\%$. The glass transition temperature T_g (determined by dynamic mechanical analysis) and the melting temperature T_m (determined by differential scanning calorimetry) are 100 °C and 167 °C, respectively. Wide angle X-rays scattering analyses revealed the exclusive presence of the α-monoclinic crystal of iPP. The cell parameters are $a = 6.666$ Å, $b = 20.78$ Å, $c = 6.495$ Å, $a = 90°$, $b = 99.6°$ and $γ = 90°$ [33,51]. Forming of the material is made by injection-molding of 4 mm thick plates.

2.1.2. Isotactic polypropylene/ethylene-propylene rubber (IPP/EPR)

The second polymer investigated is an isotactic polypropylene/ethylene-propylene rubber (IPP/EPR) supplied by Total Petrochemicals (ref. PPC 3650). The EPR content is 17.5%. The final blend presents the following average molecular weights: $M_n = 69,000$ g mol$^{-1}$ and $M_w = 599,000$ g mol$^{-1}$. As previously evidenced with scanning electron microscopy and transmission electron microscopy analysis, EPR nodules are homogeneously dispersed in the IPP matrix. They consist in “core–shell”-like particles of about 10 μm in diameter enclosing crystalline polyethylene lamellae (as revealed by transmission electron microscopy using ruthenium oxide coloration) [39]. Then, differential scanning calorimetry analysis, performed at the standard heating rate of 10 °C min$^{-1}$, reveals two melting peaks; a first one at 115 °C with a very low enthalpy (inferior to 1 J/g) which corresponds to the melting of polyethylene crystals contained in the EPR nodules [39] and a second one at 167 °C attributed to the melting of the α-iPP crystalline phase. The glass transition of the IPP matrix is still close to 10 °C while the EPR elastomeric phase exhibits a glass transition at −45 °C (as revealed by dynamic mechanical analysis). Further WAXS analyses established that the average crystallinity index of IPP matrix is 45%vol [39]. The samples were processed by injection molding into 4 mm-thick plates.

2.1.3. Isotactic polypropylene/ethylene-propylene rubber filled with mineral fillers (IPP/EPR + μ-talc)

The IPP/EPR previously described has been then modified by the addition of 7% wt. μ-talc platelets as mineral fillers. The aspect ratio of these particles is about 5.5 with an average length of 25 μm and an average thickness of 5 μm. Neither chemical nor mechanical treatments are applied to these particles before their mixing with the IPP/EPR matrix. Differential scanning calorimetry analysis reveals the two previously identified peaks at 115 °C and 164 °C attributed to the melting of the polyethylene crystals present in the EPR nodules and α-iPP crystals, respectively. The presence of a third small peak located at 146 °C, usually attributed to the melting of β-iPP crystals, informs us about the fact that μ-talc particles promote their creation i) due to their nucleation effect [57] and ii) because they increase the blend viscosity (higher shear effect during the forming process by injection molding) as introduced by Kantz et al. in 1972 [58]. The average crystallinity index determined by DSC measurements and confirmed by WAXS experiments is about 55% vol. which is 10%vol more than the one determined in the case of the IPP/EPR. Samples were processed by injection molding into 5 mm-thick plates.

2.2. Experimental setup

2.2.1. Mechanical testing equipment

The video-controlled mechanical testing method used in this paper is the VideoTraction™ system [20,1,19,39,42]. For different deformation paths, it gives access to the true mechanical behavior of polymers by taking into account of the development of the polymer necking. Video measurements are performed locally at the centre of the sample in a specific Representative Volume Element (RVE) where plastic deformation appears. To ensure the localization of the necking zone at the centre of the sample, width of the dumbbell-shaped specimen is slightly reduced by milling (reduction of 6% of the specimen width). The axial true strain in the RVE, ε_{33}, is obtained by a polynomial interpolation of partial strains measured from the displacement of axial markers using Lagrange polynomial interpolation and following Hencky strain theory. For uniaxial tensile testing, transverse strains in the RVE, ε_{11} and ε_{22}, are equal considering the realistic hypothesis that the strain field is transversally isotropic in the centre of the neck [8,32,43,1,19,39]. Lastly, the volume strain in the RVE, ε_v, is computed as the trace of the true strain tensor:

$$\varepsilon_v = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}$$

(1)

The axial true stress (Cauchy stress) is determined in the same RVE as the load per unit actual cross-section:

$$\sigma_{33} = \frac{F}{S_0} \exp(-2\varepsilon_{11})$$

(2)

where S_0 is the initial cross-section of the tensile specimen.

All the mechanical tests were performed at room temperature (22 °C). It is also worth noting that VideoTraction™ system enables to perform tensile testing at constant axial true strain rate. The influence of the true axial strain rate on both the mechanical
behavior and deformation mechanisms of iPP and modified iPP was also investigated. Various true strain rates (5.10^{-3} s^{-1}, 10^{-3} s^{-1} and 5.10^{-4} s^{-1}) were chosen in such a way to ensure the control loop of the testing machine actuator and to avoid any self-heating of the material during the mechanical testing [6,55].

2.2.2. Raman spectroscopy analysis

Raman scattering experiments were performed using a RIXN1 Kaiser micro-spectrometer linked to a remote head of probe by means of two optical fibers. A 300 mW laser diode emitting a 785 nm exciting line was used which allows reducing fluorescence emission and local heating of the polymer specimen. All spectra were recorded in backscattered geometry with a working distance of 20 cm. Within such configuration, the laser waist on the specimen is about 0.16 mm². The micro-spectrometer is equipped with a 1200 gr/mm^2 grating and a spectral resolution of about 1 cm^{-1} is achieved. Rayleigh scattered light is eliminated through a holographic notch filter. Before each tensile test, shift in the Raman spectra is calibrated with the silicon band located at 521 cm^{-1}. An individual spectrum recording lasts a few seconds depending on the resolution and the true strain rate at the time of in situ analysis during stretching.

The crystalline macromolecular chains orientation is estimated from Raman spectra by performing acquisitions in particular polarization geometry of the incident and scattered radiations where both the incident and scattered radiations are polarized along the stretching direction L. Following these conditions, we demonstrated in previous papers that the ratio b_{100}^{hkl} / b_{001}^{hkl} of the integrated intensity of the two particular Raman scattering bands at 973 cm^{-1} (symmetric stretching mode of the C=C skeletal backbones in crystalline phase) and 998 cm^{-1} (rocking mode of CH₂ lateral alkyl groups in crystalline phase), enable to estimate orientation of crystalline phase chains in the tensile direction L [39,29–31,40,41,11] Chaudemanche, 2013.

2.2.3. Synchrotron 2D WAXS measurements

Experiments were carried out in the PETRA III synchrotron facility at the DESY laboratory (Hamburg-Germany) on the PO7 – High Energy Materials Science beamline. The beam energy was about 60 keV (λ = 0.0206 nm). The beam cross section was 150 × 150 μm². The samples were analyzed using Wide Angle X-ray Scattering (WAXS) in transmission. The scattered beam was collected with a PerkinElmer XRD1622AP digital flat panel detector. The chosen high energy resulted in a low X-ray absorption in the polymer (6.8% for a 4 mm thick sample). Coupled with the relatively short duration of the tensile tests, this leads to no measurable heating of the polymer or radiation degradation, despite the beam’s high influence, characteristic of synchrotrons radiations. A one second frame was acquired every second for samples tested at a true strain rate of 10^{-4} s^{-1}, whereas for samples tested at a 10^{-3} s^{-1}, the acquisition time was of a 0.5 s frame every 0.5 s. The distance between the detector and the sample was about 1.36 m, allowing us to focus on low scattering angle. Thus, both the central scattering zone corresponding to amorphous material and the diffractions patterns of the crystallized polymer and mineral charges were recorded with a good precision. With our detector, at the wavelength used for the experiment, measurements were realized with a 2-0 step of 0.0084°, up to a value of 12° (corresponding to Q- vector space values of a 0.044 nm^{-1} step, up to 62 nm^{-1}). The WAXS patterns were integrated with Fit2D to produce 1-dimensional intensity-vs-2theta graphs. The stretching direction (L) is always vertical on the acquired 2D WAXS patterns.

The orientation level of the crystallites can be formalized on a quantitative numerical basis using Hermans' orientation function F_{X/L} which describes the orientation of a given crystallographic axis X relative to one reference direction, usually the stretching direction (L). Its general expression is:

\[F_{X/L} = \frac{3 < \cos^2 (\alpha_{X/L}) > - 1}{2} \]

with:

\[< \cos^2 (\alpha_{X/L}) > = \int_0^{\pi/2} \int_0^{\pi/2} \rho_{hkl} \cdot \cos^2 \varphi \cdot \sin \varphi \cdot \rho \cdot d \varphi \]

where \(\rho_{hkl} \) represents the maximal intensity scattered by the (hkl) planes relative to a given crystallographic axis X as a function of the azimuthal angle \(\varphi \) [23].

Table 1 develops the meaning of the Hermans' orientation factor values related to the specific crystallographic orientation.

2.2.4. Synchrotron wide angles X-rays scattering (WAXS), Raman spectroscopy and VideoTraction™ coupling system

The experimental set-up in Fig. 1 was specifically designed to characterize the polymer micro-structure at different scales in real time with the course of a uniaxial tensile test and is based on the system patented by Dahoun et al. in 2011 [14]. It consists in the combination of a video-controlled tensile test machine (1) using the VideoTraction™ system (5) with a Raman spectrometer and a synchrotron High Energy WAXS beam line. They are fixed up on a 3-D directions movable hexapod. Before each tensile test, laser from the Raman head of probe (5) and X-rays beam from the X-ray monochromator (7) are strictly aligned towards the RVE of the polymer specimen (2) which is gripped between the clamps of the tensile-testing machine. Since uniaxial tension is applied by the displacement of the upper grip, gradual misalignment of the RVE with respect to laser and X-ray beams is expected. Thanks to a video camera continuously pointed to the polymer specimen and linked to a z-motorized stage (3) via a control loop, both the laser and X-ray beams remain aligned with the RVE during the entire course of the tensile test.

3. Experimental results

3.1. True mechanical behavior

3.1.1. Influence of the polymer formulation

Since glass transition temperatures of EPR (−45 °C) and iPP (10 °C) are below the room temperature, all the specimens that were uniaxially stretched in this work are in their rubber state. Fig. 2 shows the tensile curves recorded at a constant true strain rate (5.10^{-3} s^{-1}) for the three considered polymers, iPP, iPP/EPR and iPP/EPR/µtalc. In Fig. 2 a), despite the different values of stress and strain at the yield point (\(\sigma_Y = 36.2 \) MPa and \(\varepsilon_Y = 0.09 \) for iPP; \(\sigma_Y = 23.2 \) MPa and \(\varepsilon_Y = 0.07 \) for iPP/EPR), it is to be noticed that the tensile curve of iPP presents a similar shape to that of iPP/EPR until the plastic plateau (which begins at \(\varepsilon_P = 0.27 \) and \(\varepsilon_P = 0.18 \) for iPP and iPP/EPR, respectively) including a weak softening stage for both. Young’s moduli are calculated at the lowest values of strain at

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Remarkable values of F_{X/L} in relation to the associated crystalline macromolecular textures.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos^2 (\alpha_{X/L}))</td>
<td>F_{X/L}</td>
<td>Texture</td>
</tr>
<tr>
<td>0</td>
<td>−1/2</td>
<td>1 is perpendicular to X</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>Isotropic distribution of L in space</td>
</tr>
<tr>
<td>1/2</td>
<td>1/4</td>
<td>Isotropic distribution of L in the plane parallel to X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 is parallel to X</td>
</tr>
</tbody>
</table>
3.1.2. Influence of true strain rate

The influence of true strain rate in the range of 5×10^{-4} s$^{-1}$ to 1×10^{-3} s$^{-1}$ on the true mechanical behavior of polymers is presented in Fig. 3. An increase of stress is observed up to moderate strain levels with increasing the stretching rate whatever the material. Then, the yield point is higher for neat iPP than for the blends whatever the studied strain rate. Different amplitudes of microstructural softening appear since organic and mineral charges promote microstructural damages to macromolecular rearrangements in the blends. Stronger softening is observed in case of iPP/EPR + μ-talc. Then, plasticity is characterized by a quite large plateau for all materials. Strain-hardening takes place at large strain level. However, during the strain-hardening stage, the stress—strain curves are not parallel anymore for the two filled materials, as indicated in Fig. 3. This phenomenon does not enable to predict the tensile behavior at large strain level using phenomenological constitutive equations as the one proposed by Refs [21,39,42].

![Fig. 1](image1.png)

Fig. 1. 1) Tensile test machine, 2) Dumbbell-shape specimen, 3) Z-motorized stage, 4) Video camera, 5) Raman head of probe, 6) VideoTraction™ camera, 7) X-rays monochromator.

![Fig. 2](image2.png)

Fig. 2. a) True mechanical behaviors and b) volume strain curves as a function of true strain of iPP, iPP/EPR and iPP/EPR + 7 wt% μ-talc at ambient temperature and constant true strain rate of 5×10^{-3} s$^{-1}$.

the early stage of the visco-elastic domain. They are equal to 1695 MPa and 1130 MPa for iPP and iPP/EPR, respectively. The influence on mechanical toughness of the addition of the viscoelastic EPR phase into the iPP matrix is there clearly put in evidence. Then, the extents of the plastic plateau are different one to the other: the strain-hardening occurs earlier in terms of true strain value in case of iPP/EPR and shows a more important increase of the slope of the stress/strain curves at the highest values of strain. The addition of 7%wt. of μ-talc particles into the iPP/EPR polymer blend strongly modifies the true mechanical behavior as indicated in Fig. 2 a). The Young’s modulus is about 2025 MPa which is higher than the one determined for iPP. Moreover, the achieved stress level in comparison to the neat isotactic polypropylene is increased. Concerning yielding, it occurs at a stress value situated between the iPP and iPP/EPR. It is noticed that the yield strain is the lowest of all the studied materials which indicates that the plastic damage takes place earlier. Finally, the magnitude of the strain-hardening is similar to the one observed in case of iPP. Fig. 2 b) illustrates the evolutions of the volume strain (calculated by the equation (1)) as a function of the axial true strain corresponding to the mechanical behaviors of Fig. 2 a) for all the three materials. All curves show an almost linear evolution with stretching. Mainly the magnitudes are different. The addition of EPR nodules increases the volume strain in comparison to the neat matrix. This effect is emphasized by the introduction of mineral particles of μ-talc.

3.2. 2D WAXS patterns

Combination of the VideoTraction™ system with WAXS acquisitions allows us to follow the evolution of the crystalline phase during the uniaxial true tensile test with high time resolution. Fig. 4 shows three sets of 2D WAXS patterns recorded at different true strain level for the three different polymers investigated ($T = 22$ °C and $\epsilon = 5 \times 10^{-3}$ s$^{-1}$). Patterns at null true strain value are indexed in terms of characteristic scattering crystallographic planes of the polypropylene monoclinic crystalline cell (110), (040), (130), (111) and (131)). It can be noticed that the three materials show quasi-isotropic rings at the initial state for all values of the azimuthal angle (0°–360°). Only weak variations of the intensity are observed for filled polypropylene (iPP/EPR and iPP/EPR filled with μ-talc) suggesting a slight orientation of the crystalline phase at the initial state. Additional rings are naturally present in 2D WAXS.

Depending on the polymer formulations the rings intensity towards the azimuthal angle does not present the same evolution as a function of true strain. In case of neat iPP and iPP/EPR, most of the initial rings change into highly illuminated arcs as a result of stretching with a phenomena more pronounced for neat iPP. Concerning iPP/EPR filled with μ-talc, only weak modifications of the rings intensity distribution towards the azimuthal angle can be observed for high true strain values superior to 0.6 and they do not result in the appearance of arcs but in a kind of an equatorial
diffusion. This diffraction peak tendency to collapse is widely more developed in case of iPP, followed by iPP/EPR and finally by iPP/EPR + μ-talc.

The macromolecular chains orientation of the iPP crystalline phase, as one of the main micromechanisms of deformation of uniaxially stretched semi-crystalline polymers, is focused. From 2D WAXS patterns, the Hermans’ factor F_{040}/I_{040} is then calculated. Indeed, the normal direction of this particular crystallographic plane of the α monoclinic cell is strictly perpendicular to the c axis, the backbone chains direction. Fig. 5 reports the variation of this Hermans’ orientation factor as a function of the axial true strain for various true strain rates and for the three polymers that were investigated in this study.

Firstly, it has to be noticed that the three studied material show a weak initial texture induced by the forming process by injection molding ($F_{040}/I_{040} = -0.12, F_{040}/I_{040} = -0.1$ and $F_{040}/I_{040} = -0.06$ for iPP, iPP/EPR and iPP/EPR filled with μ-talc, respectively). Mechanical probes are then machined out in the manner that this crystalline orientation of the macromolecular chains is taken as the stretching direction. Addition of organic and mineral charges into the iPP matrix reduces the initial texture involved by the injection molding process. This is the reason why a small variation of F_{040}/I_{040} towards 0 (isotropic microstructure) is observed at the earliest true axial strain values in cases of iPP and iPP/EPR until the middle of the respective plastic plateaus. It could be actually attributed to a first step of reorganization of the initial crystalline texture previous to the main effect of macromolecules chains orientation induced by stretching which is then responsible of the decrease of F_{040}/I_{040}. This effect is not observable for iPP/EPR + μ-talc and in case of iPP/EPR stretched at the lowest true strain rate ($5 \times 10^{-4} \text{ s}^{-1}$). Influence of this last mechanical test parameter is the most evident for neat iPP; higher is the true strain rate; lower is the crystalline chains orientation all along stretching. Secondly, over the course of adding charges in the iPP matrix, Hermans’ orientation factors show that this major micromechanism of deformation of semi-crystalline polymers seems less and less important until its complete disappearance in case of iPP/EPR + μ-talc. Indeed, experimental results evidence that the magnitude of the crystalline chains orientation changes a lot depending on the material formulation. F_{040}/I_{040} in case of the neat iPP reaches close values of -0.5 whatever the strain rate which is characteristic of a highly fibrillar microstructure along the stretching direction l. The addition of the EPR nodules reduces much this micromechanism. Maximal value of F_{040}/I_{040} is around of -0.25. Finally, experimental results demonstrate that presence of μ-talc particles in the modified iPP/EPR polymer seems to inhibit almost totally the crystalline chains orientation of the iPP matrix.

3.3. Raman spectroscopy

Fig. 6 presents the variations of the ratio $l_973\text{ cm}^{-1}/l_988\text{ cm}^{-1}$ as a function of the true strain for the three studied materials and for at least two true strain rates. Apart from the initial disorientation phenomenon previously observed by WAXS, a similar description of the evolutions of the $l_973\text{ cm}^{-1}/l_988\text{ cm}^{-1}$ ratio as for F_{040}/I_{040} is available regarding the influences of the materials formulation and the true strain rate; orientation micromechanism seems to disappear adding organic and mineral fillers and in the same way the sensitivity towards the true strain rates decreases. Some differences between results of both techniques can be observed in case of iPP at the very low and high levels of true strain. The evolution of the Raman criterion keeps constant at the beginning of the stretching test whereas it was noticed a variation of the WAXS Hermans'
factor. In the inverse manner, \(\frac{f_{040}}{f_{000}} \) still increases at high true strain values whereas \(f_{040}/f_{000} \) reaches a plateau close to -0.5. For the three materials, the initial value of \(\frac{f_{040}}{f_{000}} \) is about 2. It means that the crystalline macromolecular chains present an initial orientation due to injection molding taking as the stretching direction Martin et al. [31], have already showed that in case of non-textured neat iPP, the initial value of the criterion is 1.5.

4. Discussion

Macromolecular chains orientation is a main micromechanism of deformation of polymers upon stretching. In this paper, it was measured in situ at the Desy beamline of PETRA III Synchrotron (Hamburg) simultaneously by WAXS and Raman spectroscopy for three different polymer blends. Both experimental techniques gave the quantification of the evolution of the crystalline chains orientation in real time during a uniaxial tensile test. As highlighted on Fig. 7, they show good correlations one to the other whatever the studied iPP blend cover a wide range of true strain.

Even if the two evolutions of the orientation factors determined by Raman spectroscopy and WAXS are similar on a wide range of deformation for all the studied polypropylene blends, singularities can be noticed at low and high true strain values especially for iPP and iPP/EPR.

i) Results diverge at lower strains due to the better sensitivity of the WAXS orientation factor to characterize the probe plane distribution of the crystalline macromolecules deduced from the intensity profile of crystallographic planes identified in the iPP monoclinic crystals (Fig. 8 a)). In the opposite, Raman spectroscopy only gets vibrational signal from the iPP molecular bonds when they are oscillating in the same direction as the Raman laser polarization (Fig. 8 b)). However, the valence angle value of the C–C bond (109°28′) in the iPP carbon skeleton and the helical helix 3 of the macromolecule are sources of errors which could be responsible of the lack of accuracy of this technique since the laser is strictly polarized in the stretching direction. So Raman spectroscopy cannot be sensitive enough to detect the small magnitude of orientation. That is the reason why the residual melt flow orientation induced at the time of injection molding of the studied polymer plates is only detectable from 2D WAXS patterns.

At the early stages of deformation, the Hermans’ orientation factor tends to zero. It denotes the prior macromolecular reorientation by the gliding lamellae and the tie molecules stretching. The addition of fillers and especially \(\mu \)-talc particles is reducing the orientation induced by the conformation process and then this last effect too.
Fig. 5. In situ evolutions of the Hermans' factor $f_{(000)\beta}$ as a function of the axial true strain of a) iPP; b) iPP/EPR and c) iPP/EPR + 7 wt. % talc stretched at 22 °C.

Fig. 6. In situ evolutions of the crystalline chains orientation determined by Raman spectroscopy at the ambient temperature as a function of the true strain rates in case of a) iPP, b) iPP/EPR and c) iPP/EPR + 7 wt. % talc.
ii) Results move apart at the highest strain values due to the better accuracy of the Raman measurements despite the decrease of the analyzed volume of matter in the RVE during stretching. The orientation factor linearly increases until the end of the mechanical test. In the case of WAXS measurements, the Hermans’ factor is affected by an important diffusive effect. Patterns reveal well the development of the so-called smectic mesophase [2,34] which presents a similar crystalline structure to α’s but with a lot of imperfections. This is the reason why the diffraction peaks of the WAXS patterns are enlarged as illustrated in Fig. 9 for iPP and iPP/EPR. This diffusion phenomenon is responsible of the lack of X-rays scattering precision in addition to the over whole intensity decrease. The mesophase is weakly observable in case of iPP/EPR + µ-talc [27] due to the predominance of the volume damage micromechanism of deformation in case of filled polypropylene matrices. The

![Fig. 7. Correlations between the evolutions of the normalized orientation factors determined by Raman spectroscopy and 2D WAXS at the ambient temperature as a function of the true strain rates in case of a) iPP, b) iPP/EPR and c) iPP/EPR + 7%wt. µ-talc.](image)

![Fig. 8. a) α monocline crystals of iPP (Cylinders represent the macromolecules), b) macromolecule segment of the helical helix of iPP [33].](image)
macromolecules orientation keeps low or highly located in the polymer fibrils.

The three isotactic polypropylene blends exhibit singular true mechanical behaviors in uniaxial tension depending on the type of fillers as revealed by Figs. 2 and 3. The introduction of EPR nodules inside the iPP matrix reduces drastically the yield and plastic stresses in comparison to the neat polymer. Addition of \(\mu \)-talc improves the viscoelastic resistance of the high impact polypropylene, whereas the plastic stress becomes and stays inferior to the neat matrix. Even the stress hardening stage is less pronounced for this last blend. It was observed in Fig. 2 b) that volume strain increases with the amount and the diversity of the added fillers. The iPP/ EPR + \(\mu \)-talc blend shows the most predominant effect.

As described by Ponçot [39] and Ponçot et al. [42], volume strain was taken into account to determine the true intrinsic mechanical behaviors of polymer materials without voids. The true stress and the true strain are recalculated using the equations previously established in order to obtain the true intrinsic stress and the true intrinsic strain which represent the true intrinsic mechanical behavior of the solid polymer without cavities. The corrected mechanical curves are then presented in Fig. 10. No significant change happens before the materials plasticity since volume strain keeps low. At the largest strain values, similar slopes of the stress hardening are observed between the three different polymer blends. Stress hardening is usually attributed to a highly fibrillar microstructure where macromolecules are wholly aligned along the stretching direction (l). Consequently, in both cases (iPP/EPR and iPP/EPR + \(\mu \)-talc), the fibrils located between two adjacent voids should be made of highly oriented macromolecular chains of iPP.

Indeed, first step of plasticity in case of polymers filled with core–shell elastomer nodules is their own destruction upon stretching what results in the development of 45° oriented dilational shear bands as presented in Fig. 11 [24, 26, 54, 13, 56, 35, 39]. As a result, the iPP fibrils located between two adjacent destroyed nodules should be then composed with highly oriented macromolecular chains along the stretching direction.

When iPP/EPR blends are filled with mineral particles, many authors have demonstrated that whatever the considered fillers and the cohesion level with the iPP matrix, the first micro-mechanism of deformation involved during stretching is cavitation due to the mineral particles decohesion with the polymer matrix [43, 12, 28, 39]. In the same way as previously discussed, the iPP fibrils located between two adjacent voids should be then composed

Fig. 9. Equatorial WAXS diffractograms evolution of a) iPP and b) iPP/EPR as a function of stretching.

Fig. 10. Comparison of the true intrinsic mechanical behaviors of iPP, iPP/EPR and iPP/ EPR + 7\% wt. \(\mu \)-talc at ambient temperature and constant true strain rate of 5.10\(^{-3}\) s\(^{-1}\) [42].

Fig. 11. Representation of the dilational shear bands which is developed during uniaxial stretching of iPP/EPR blend [39]. The tensile direction (l) is vertical.
with highly oriented macromolecular chains along the stretching direction.

However, both techniques show a weak orientation effect during stretching for iPP/EPR and iPP/EPR + μ-talc (Figs. 5 and 6), whereas regarding the true intrinsic mechanical behaviors (relative to the iPP main matrix), similar stress hardening magnitude are observed for all three materials whatever their formulation. It can be discussed in terms of analysis volume of both techniques. In case of WAXS, the beam cross section was 150 μm × 150 μm = 0.022 mm². For Raman spectroscopy, the volume of the waist was 0.16 mm³ which corresponds to a diameter of about 80 μm and a circular cross section of about 0.021 mm² [11]. These two dimensions are largely bigger than the micro-fibrils and voids as revealed by scanning electron microscopy observations resumed in Fig. 12. The volume fraction of highly oriented crystalline macromolecular chains is then really weak in comparison of those made of voids and undamaged iPP matrix. That is the reason why it cannot be detected by both used experimental techniques.

5. Conclusion

The coupling system of VideoTraction™, WAXS and Raman spectroscopy especially designed to establish the narrow relationship between polymer blends microstructure evolution and mechanical behaviors and properties was used at the DESY laboratory of PETRA III synchrotron. The work focused on neat and filled iPP matrix. The modifications of the mechanical properties due to the gradual complexity of formulations (addition of EPR nodules and μ-talc particles) were explained in terms of influence of the micro-mechanisms of deformation during a uniaxial stretching at true strain rates. Good correlations are obtained between orientation factors determined by WAXS and Raman spectroscopy. Singularities were highlighted: WAXS is more efficient at lower strains to observe the prior reorientation of the crystalline chains, however at the time of plasticity the signal is interfered by the development of a crystalline mesophase; Raman spectroscopy is not sensitive to the reorientation phenomenon at low strain values due to the initial laser polarization in the stretching direction, however it enables to follow the orientation until the end of the mechanical test. The true intrinsic mechanical behaviors are then determined and give finally the real mechanical behavior of blends evicting the inside voids. Similar strain hardenings were obtained whatever the blend when the volume strain correction is applicable. However, macromolecular orientation levels are totally different. It was explained by the dimensions of the analysis volume of the used experimental techniques which are too large to locally measure the orientation gathered right in the micro-fibrils, “alone” matter between two adjacent voids. The more elevated is the volume strain; the lower is the measured macromolecular orientation whereas similar stress hardening slopes are obtained.

Acknowledgment

The P07 – High Energy Materials Science beamline of PETRA III synchrotron facility at the DESY laboratory (Hamburg–Germany). The spin off ProViSySy Engineering® of the University of Lorraine.

References
