Factorization in Double Parton Scattering: Glauber Gluons.

Jonathan Gaunt, DESY

Light Cone 2015, Italy, 21 September 2015

Based on work in progress together with Markus Diehl, Daniel Ostermeier, Peter Plößl and Andreas Schäfer
Outline

• What is double parton scattering (DPS), and why is it interesting/important?

• Proposed factorisation formulae for DPS. Ingredients for proving a factorisation formula, a la Collins-Soper-Sterman (CSS). Necessity for the cancellation of so-called Glauber gluons to achieve factorisation.

• Demonstration of the cancellation of Glauber gluons in double Drell-Yan at the one-gluon level in a simple model.

• All-order proof of the cancellation of Glauber modes, using light-cone perturbation theory.
What is Double Parton Scattering?

Double Parton Scattering (DPS) = when you have two separate hard interactions in a single proton-proton collision

In terms of total cross section for production of AB, DPS is power suppressed with respect to single parton scattering (SPS) mechanism:

\[\frac{\sigma_{DPS}}{\sigma_{SPS}} \sim \frac{\Lambda^2}{Q^2} \]

Why then should we study DPS?

1. DPS can compete with SPS if SPS process is suppressed by small/multiple coupling constants (same sign WW, H+W production).
2. DPS populates the final state phase space in a different way from SPS. In particular, it tends to populate the region of small \(q_A, q_B \) – competitive with SPS in this region.
3. DPS becomes more important relative to SPS as the collider energy grows, and we probe smaller \(x \) values where there is a larger density of partons.
4. DPS reveals new information about the structure of the proton – in particular, correlations between partons in the proton.

Bandurin, Golovanov, Skachkov, JHEP 1104 (2011) 054
Factorisation Formulae for Double Parton Scattering

We know that in order to make a prediction for any process at the LHC, we need a factorisation formula (always hadrons/low energy QCD involved).

It's the same for double parton scattering. Postulated form for double parton scattering cross section based on parton model intuition:

\[
\sigma_{D}^{(A,B)} = \frac{m}{2} \sum_{i,j,k,l} \int \Gamma_{h}^{ik}(x_1, x_2, b; Q_A, Q_B) \Gamma_{h}^{jl}(x'_1, x'_2, b; Q_A, Q_B) \\
\times \hat{\sigma}_{ij}^{A}(x_1, x'_1) \hat{\sigma}_{kl}^{B}(x_2, x'_2) dx_1 dx_1' dx_2 dx_2' d^2b
\]

Symmetry factor

Two-parton generalised PDF (2pGPD)

Parton level cross sections

\(b = \) separation in transverse space between the two partons

Assuming further factorisation of 2pGPD

\[
\Gamma_{h}^{ij}(x_1, x_2; b) = D^{i}_{p}(x_1) D^{j}_{p}(x_1) \int d^2\tilde{b} F(\tilde{b} + b) F(\tilde{b})
\]

\[
\sigma_{D}^{(A,B)} = \frac{\sigma_{S}^{(A)}}{\sigma_{eff}} \sigma_{S}^{(B)}
\]

DPS 'pocket formula'. This is often used in phenomenological analyses and experimental studies of DPS.
Factorisation formulae for DPS: $q_T << Q$

For small final state transverse momentum ($q_i << Q$), differential DPS cross section postulated to have the following form: Diehl, Ostermeier and Schafer (JHEP 1203 (2012))

$$\frac{d\sigma_D^{(A,B)}}{d^2 q_1 d^2 q_2} = \frac{m}{2} \sum_{i,j,k,l} \int \Gamma^i_k(x_1, x_2, k_1, k_2, b) \Gamma^j_l(x'_1, x'_2, \bar{k}_1, \bar{k}_2, b)$$

$$\times \hat{\sigma}^A_{ij}(x_1, x'_1) \hat{\sigma}^B_{kl}(x_2, x'_2) dx_1 dx'_1 dx_2 dx'_2 d^2b$$

$$\times \prod_{i=1,2} \int d^2 k_i d^2 \bar{k}_i \delta(k_i + \bar{k}_i - q_i)$$

(Neglecting a possible soft factor + dependence of the 2pGTMDs on rapidity regulator)

To what extent we prove these formulae hold in full QCD? Let's focus on the double Drell-Yan process to avoid complications with final state colour.
Establishing factorisation – the CSS approach

How does one establish a leading power factorisation for a given observable?

Here I review the original Collins-Soper-Sterman (CSS) method that has already been used to show factorisation for single Drell-Yan

Collins, pQCD book

To obtain a factorisation formula, need to identify IR leading power regions of Feynman graphs – i.e. small regions around the points at which certain particles go on shell, which despite being small are leading due to propagator denominators blowing up.

More precisely, need to find regions around pinch singularities – these are points where propagator denominators pinch the contour of the Feynman integral.
Pinch singularities in Feynman graphs correspond to physically (classically) allowed processes.

Coleman-Norton theorem

Also need to do a power-counting analysis to determine if region around a pinch singularity is leading
Momentum Regions

Scalings of loop momenta that can give leading power contributions:

1) Hard region – momentum with large virtuality (order Q)

2) Collinear region – momentum close to some beam/jet direction

3) (Central) soft region – all momentum components small and of same order

\[k \sim Q \left(1, 1, 1\right) \]

\[k \sim Q \left(1, \lambda^2, \lambda\right) \quad \text{(for example)} \]

\[k \sim Q \left(\lambda^n, \lambda^n, \lambda^n\right) \]
4) **Glauber region** – all momentum components small, but transverse components much larger than longitudinal ones

\[|k^+ k^-| \ll k_T^2 \ll Q^2 \]

Canonical example:

\[k \sim Q \left(\lambda^2, \lambda^2, \lambda \right) \]

Soft + Glauber particles
Deriving a factorisation formula that includes Glauber gluons is problematic.

Starting picture (colourless V)
- Collinear to proton A
- Single parton + extra scalar gluon attachments into hard
- Soft + Glauber particles

If blob S only contained **central soft**, then we could strip soft attachments to collinear J blobs using **Ward identities**, and factorise soft factor from J blobs.

Eikonal line in direction of J
Glauber Gluons and Factorisation

Simple example:

\[
\frac{1}{(p - k)^2} = \frac{\tilde{2}p \cdot k + k^2}{-2p \cdot k}
\]

This manipulation is **NOT POSSIBLE** for Glauber gluons – two terms in denominator are of **same order** in Glauber region

How do we get around this problem?

One approach: try and show that that contribution from the Glauber region **cancels** (already used by CSS in the single Drell-Yan case)

Possibility of factorisation formulae including **Glaubers**? (Glaubers and central soft treated differently). **Not yet developed.** But work ongoing by Stewart, Rothstein

We'll take the first approach, and see if the Glauber modes cancel for double Drell-Yan.
One-gluon model calculation: Lowest-order diagrams

One loop model calculation

'Parton-model' process:

Real corrections:

\[\propto [Tr(t^A)]^2 = 0 \]
One-gluon model calculation: Lowest-order diagrams

Virtual corrections:

\[l^+ \overline{k}_2^- + \ldots + i\epsilon \]

\[-l^+ \overline{k}_1^- + \ldots + i\epsilon \]

\(l^+ \) only is trapped small – \(l \) can be freely deformed away from origin (into region where \(l \) is collinear to \(P' \)).

\('Topologically factored graphs'\)

Neither \(l^+ \) nor \(l \) is trapped small

Very similar to situation in SIDIS – no Glauber contribution there too.

More detailed checks that Glauber contributions are absent in the one-loop calculation will be in the upcoming paper.

Jonathan Gaunt | Glauber Gluons and MPI | 28/04/15 | Slide 13
Can extend this to arbitrarily complex one-gluon diagrams in the model. Most of the time we can route t^* and t such that at least one of these components is not pinched.

- **Mainly -**
 - t pinch
 - Simplest diagram embedded in more complex structure
 - No t pinch
 - No t^+ pinch
 - No t^- pinch
 - No t^+ pinch

- **Mainly +**
 - t pinch
 - Simplest diagram embedded in more complex structure
 - No t^+ pinch
 - No t^- pinch

- **Both t, t^* pinched!**
Spectator-spectator interactions

Only type of exchange that is pinched in Glauber region is this 'final state' interaction between spectator partons. But we also have this type of pinched exchange in single Drell-Yan:

\[\begin{align*}
\text{Sum over cuts} & + \quad = 0 \\
\text{(Cutkosky rule)} &
\end{align*} \]

We can show that this Glauber exchange cancels after a sum over possible cuts of the graph, using exactly the same technique that is used for single scattering.
All-order analysis

This methodology is not really suitable to be extended to all-orders – for the all-order proof of Glauber cancellation in double Drell-Yan, we use a different technique based on light-cone perturbation theory.

This technique was applied by CSS for single Drell-Yan – here we apply it to double Drell-Yan.

Let us first review how it works for single Drell-Yan. In this talk, for simplicity, I won't discuss the issue of longitudinally polarised collinear gluons.
Glauber in SPS – all-order analysis

Steps of the proof (schematic):

1) **Partition** leading order region into one collinear factor A and the remainder R

\[P' \]

\[k + \sum_j \ell_j \]

\[P \]

Collinear parton

Soft/Glauber attachments

Partitioning of soft vertex attachments in A between amplitude and conjugate

All compatible cuts of A

In A can approximate

\[\ell_j \rightarrow \tilde{\ell}_j = (0, \ell_j^-, \ell_j^+) \]

even if this momentum is in the Glauber region

Amplitude and conjugate

\[
G_L = \int \frac{dk_1^+ d^2k}{(2\pi)^3} \int \frac{d^2\ell_j d\ell_j^-}{(2\pi)^3} \prod_{j=1}^{n} \sum_V \sum_{F_A \in A(V)} A^{F_A} + \cdots (k, r, \{\tilde{\ell}_j\}) \]

\[
\times \int \frac{d\ell_j^+}{(2\pi)} \sum_{F_R \in R(V)} R^{F_R} - \cdots (k^+, k, \{\ell_j\}) \]

All compatible cuts of R
Glauber in SPS – all-order analysis

\[G_L = \int \frac{d^3k_1}{(2\pi)^3} \int \frac{d^2\ell_j d\ell_j^-}{(2\pi)^3} \prod_{j=1}^{n} \sum_V \sum_{F_A \in \mathcal{A}(V)} A^{F_A} + \cdots \left(k, r, \{ \ell_j \} \right) \]

\[\times \int \frac{d\ell_j^+}{(2\pi)} \sum_{F_R \in \mathcal{R}(V)} R^{F_R} - \cdots \left(k^+, k, \{ \ell_j \} \right) \]

2) Let us assume \(R \) is independent of the partitioning \(V \) (will come back to this)

Then sum over \(V \) then acts only on \(A \):

\[\sum_V \sum_{F_A \in \mathcal{A}(V)} A^{F_A} \left(k, r, \{ \ell_j \} \right) = \sum_{\text{all } F_A} A^{F_A} \left(k, r, \{ \ell_j \} \right) \]
3) Consider this factor in lightcone ordered perturbation theory (LCPT) – this is like old-fashioned time ordered perturbation theory except ordered along the direction of the P-jet.

\[P^+ - \frac{k^2 + m^2}{2k^+} - \frac{k^2 + m^2}{2(P^+ - k^+)} + \imath \epsilon \]

Feynman graph

Denominator associated with state \(\xi \):

Total minus momentum entering state from left

Time orderings

On-shell minus momenta of lines in state
Glauber in SPS – all-order analysis

Active parton vertices

\[
\prod_{\xi<H} \frac{P^- + \sum_{j<\xi} \ell_j^- - \sum_{L\in\xi} \kappa_L + i\epsilon}{1}
\]

\[
\prod_{\xi'<\xi} \frac{P^- - \sum_{j>\xi} \ell_j^- - \sum_{L\in\xi} \kappa_L - i\epsilon}{1}
\]

\[
\sum_{F_A} \int_{-\infty}^{\infty} \frac{dk^-}{2\pi} F_T(\{\tilde{\ell}_j\})
\]

\[
= \int_{-\infty}^{\infty} \frac{dk^-}{2\pi} \sum_{c=1}^{N} \left\{ \prod_{f=c+1}^{N} \frac{P^- - k^- + \sum_{j>f} \ell_j^- - D_f - i\epsilon}{P^- - k^- + \sum_{j>f} \ell_j^- - D_f - i\epsilon} \right\} (2\pi) \delta\left(P^- - k^- - \sum_{j>c} \ell_j^- - D_c \right) \left\{ \prod_{f=1}^{c-1} \frac{1}{P^- - k^- - \sum_{j>f} \ell_j^- - D_f + i\epsilon} \right\}
\]

\[
= \int_{-\infty}^{\infty} \frac{dk^-}{2\pi} \left\{ i \prod_{f=1}^{N} \frac{P^- - k^- + \sum_{j>f} \ell_j^- - D_f - i\epsilon}{P^- - k^- + \sum_{j>f} \ell_j^- - D_f - i\epsilon} - i \prod_{f=1}^{N} \frac{1}{P^- - k^- - \sum_{j>f} \ell_j^- - D_f + i\epsilon} \right\}
\]

\[
= \begin{cases}
1 & \text{if } N = 1 \\
0 & \text{otherwise}
\end{cases}
\]

(LCPT version of Cutkosky rules)
All-order analysis for double Drell-Yan can be done using the same method as for single DY:

LCPT graphs for A in DPS:

\[
I_{T2} + \tilde{I}_{T2} = \int \frac{dk^-}{2\pi} \left(\frac{1}{-k^- + A + i\epsilon} + \frac{1}{k^- + B + i\epsilon} \right)
\]

\[
A = \frac{P^- - K^-}{2} - \sum_j \ell_j - D_f
\]

\[
B = \frac{P^- - \tilde{K}^-}{2} - \tilde{D}_f
\]
Glauber in DPS – all-order analysis

Repeat for k' in conjugate – end up with the following picture:

Just one external vertex in amplitude and conjugate – diagram looks essentially identical to SPS A and cancellation of Glaubers proceeds as for SPS.
How can we show independence of R on V?

Use light-cone perturbation theory, except ordered in the opposite direction, for R

$$\prod_{j=1}^{n} \int \frac{d\ell_j^+}{2\pi} \sum_{F_R \in \mathcal{R}(V)} R^{F_R}(k_1^+, k_2^+, k_3^+, r, \{\ell_j\})$$

Note we integrate over all ℓ^+

Then can tie ends of all soft lines + one/two partons entering hard scatterings together in amplitude/conjugate

Then no attachments into final state allowed (give zero)...

...and considering two partitionings, we can always find graphs with matching initial state factors

(n.b this is actually a reduced R, excluding hard scatterings)
Basic reason why Glauber modes cancels for double Drell-Yan, just as it does for single Drell-Yan – spacetime structure of pinch surfaces for single and double scattering are rather similar:

More details will be in upcoming paper
Conclusions

• A proof of cancellation of Glauber gluons is an important step towards the factorisation proof for an observable.

• We have demonstrated that for double Drell-Yan, Glauber gluons are cancelled at all orders.