Transverse momentum spectra of b jets in pPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

The CMS Collaboration

Abstract

We present a measurement of b jet transverse momentum (p_T) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35 nb$^{-1}$ collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon-nucleon collisions and are compared to a reference obtained from PYTHIA simulations of pp collisions. The PYTHIA-based estimate of the nuclear modification factor is found to be 1.22 ± 0.15 (stat+syst pPb) ± 0.27 (syst PYTHIA) averaged over all jets with p_T between 55 and 400 GeV/c and with $|\eta_{\text{lab}}| < 2$. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.

Submitted to Physics Letters B
1 Introduction

By colliding heavy nuclei at ultra-relativistic energies, sufficiently large energy densities are reached to form a quark-gluon plasma (QGP), a state which is characterized by an effective deconfinement of quarks and gluons \[1\, 2\]. Hard-scattered partons have been predicted to suffer energy loss as they traverse the QGP, primarily via collisional and radiative processes \[3\, 4\]. This energy loss is commonly thought to be the mechanism responsible for the observed suppression of high transverse momentum (\(p_T\)) hadrons and jets in nucleus-nucleus collisions relative to proton-proton (pp) collisions \[5\, 6\]. This suppression phenomenon, otherwise known as “jet quenching”, was discovered at the RHIC experiments at BNL \[7\, \ldots\, 14\] and has been investigated further using fully reconstructed jets at the CERN LHC \[15\, \ldots\, 18\]. Studies of parton energy loss are expected to reveal the fundamental properties of the QGP.

The quenching of jets in heavy ion collisions should depend on the flavor of the fragmenting parton \[5\]. For example, under the assumption that radiative energy loss is the dominant mechanism, gluon jets are expected to quench more strongly than quark jets, owing to the larger color factor for gluon emission from gluons than from quarks \[19\]. There are also theoretical predictions that radiative energy loss may not be dominant for heavy quarks, including models based on collisional energy loss of quarks within the medium and models favoring an interpretation based on mesonic recombination and disassociation within the medium, e.g. Refs. \[20\, 21\]. It is expected that there should be some mass-dependence of partonic energy loss at low momentum, and therefore, b quark jet (b jet) energy loss might be different from that of light quark jets \[22\, 23\]. At high-\(p_T\), however, the CMS collaboration has shown that b jet suppression in PbPb is consistent with that of light quark jets above 80 GeV/c \[16\].

Here we present the first measurement of b-tagged jets in proton-lead (pPb) collisions. While significant quenching effects are not anticipated since none were found for inclusive jets in pPb collisions \[24\, 25\], this study can provide information about potential nuclear initial-state effects. Therefore, these measurements may provide a factorization of cold nuclear matter effects from medium suppression effects for jets in PbPb collisions. Such a differentiation between initial-state and quenching effects as a function of flavor can place constraints on the energy loss mechanisms of partons in the hot and dense medium. This is especially important in light of the CMS measurement of the nuclear modification factor of charged particles in pPb collisions, which indicates surprisingly large initial-state effects \[26\]. Measurements of dijets in pPb have also shown that a theoretical description of dijet yields as a function of pseudorapidity requires next-to-leading order effects from nuclear parton distribution functions (nPDFs) \[24\, 25\]. Therefore, a measurement of b jets differentially in pseudorapidity can provide an additional probe of these nPDF effects.

We present measurements of b jet production in pPb collisions at a nucleon-nucleon center-of-mass energy of \(\sqrt{s_{\text{NN}}} = 5.02\) TeV, recorded with the CMS detector, using an integrated luminosity of about 35 nb\(^{-1}\) delivered by the LHC. The cross section for b jets is measured and compared to pp cross sections simulated using the PYTHIA event generator \[27\], tune Z2 \[28\]. The resulting estimated nuclear modification factors \((R_{pA}^{\text{PYTHIA}})\) are compared to a prediction based on perturbative QCD (pQCD) \[29\].

2 Detector and event selection

The CMS detector has excellent capabilities to perform b jet identification (b tagging) as demonstrated in Ref. \[30\]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. The tracker has a pseudorapidity coverage of $|\eta_{\text{lab}}| < 2.4$, while the calorimetry covers $|\eta_{\text{lab}}| < 3$. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [31].

The event selection is identical to previous pPb jet analyses [24, 26], and includes the reconstruction of a primary interaction vertex, a careful removal of any noise artifacts from the hadronic calorimeter, along with a requirement that the primary interaction vertex is within 15 cm of the nominal interaction point along the beam axis.

In this analysis a new trigger combination algorithm is used, allowing for the maximization of statistical precision over a very large range of jet p_T. Triggers with thresholds ranging from 20 through 100 GeV/c are combined. Except for the 100 GeV/c trigger, these triggers are prescaled, meaning only a fraction of the total number of events are recorded. In each event, the jet with the maximum online raw jet p_T (i.e. the largest jet p_T seen by any of the five triggers) is found. If the highest-threshold trigger that should have identified the jet is absent (prescaled away), the whole event is rejected. Otherwise, all jets in the event are assigned a weight based on the prescale value of that highest-threshold trigger. The resulting spectrum is fully efficient above $\approx 30 $ GeV/c.

As described, e.g. in Ref. [24], the difference in the charge-to-mass ratio of protons and lead nuclei results in asymmetric beam energies for the two colliding species, which leads to a rapidity shift of 0.465 units between the nucleon-nucleon center-of-mass frame and the laboratory frame. In addition, after the data corresponding to an integrated luminosity of 20.9 nb$^{-1}$ were collected, the circulation directions of the proton and lead beams were reversed. This analysis will use η_{CM} for the center-of-mass frame and η_{lab} for the lab frame pseudorapidities, where positive η will always refer to the beam orientation where the proton beam direction is toward positive z. In this orientation, $\eta_{\text{lab}} = \eta_{\text{CM}} + 0.465$.

This analysis requires that all jets must have $-2.5 < \eta_{\text{CM}} < 1.5$, which ensures that all jets fragment primarily within the tracker acceptance of $|\eta_{\text{lab}}| < 2.4$. Finally, the background energy from the underlying pPb event is estimated in narrow ranges of pseudorapidity, as described in Ref. [32], and is subtracted from the jet. After the underlying event subtraction, jets must have a reconstructed $p_T > 55$ GeV/c and a transverse momentum before jet energy corrections greater than 25 GeV/c and must be found in an event where a single-jet trigger fires. This requirement is made in order to properly merge events from multiple triggers, as discussed earlier in this section.

In order to estimate the kinematic and resolution properties of jets, simulated dijet events are generated with PYTHIA version 6.424, tune Z2 [27]. These dijets are then embedded into a minimum bias pPb background event simulated by the HIJING heavy ion event generator, version 1.383 [33].
3 Analysis procedure

3.1 Jet reconstruction

Jets are reconstructed offline primarily from the energy deposits in the calorimeter towers, clustered by the anti-k_T algorithm [34, 35] with a size parameter of 0.3. The constituent particles of the jet are reconstructed using the particle flow event algorithm, which identifies each individual particle with an optimized combination of information from the various elements of the CMS detector [36]. The raw jet energy is obtained from the sum of the tower energies, and the raw jet momentum by the vectorial sum of the constituent particle momenta, which results in a nonzero jet mass. The raw jet energies are then corrected to establish a uniform response of the calorimeter in η and a calibrated absolute response in p_T. The final particle-flow-based jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40%, 12%, and 5% obtained when the calorimeters alone are used for jet clustering.

Jet energy corrections are derived from simulation, and are confirmed with in situ measurements of the energy balance in dijet and photon+jet events. Jet momentum is found from simulation to be within 1% to 2% of the true jet momentum over the whole p_T spectrum and detector acceptance used in this analysis. Additional selection criteria are applied to each event to remove spurious jet-like features originating from isolated noise patterns in certain HCAL regions.

3.2 Tagging b jets

Identification of b jets is based on kinematic variables related to the relatively long lifetime and large mass of B hadrons. Charged tracks associated with jets are used to reconstruct secondary vertices from B hadron and/or subsequent charm hadron decays from the $b \rightarrow c$ cascade. The primary discriminator used in this analysis to identify b jets takes advantage of the displaced secondary vertex. This secondary vertex based algorithm is called the “simple secondary vertex” (SSV) tagger and is described in detail in Ref. [30]. Effectively, jets are assigned a discriminator value based on the secondary vertex flight distance significance, which is the ratio of the distance between the primary and secondary vertex to its uncertainty. Using this discriminator, the contribution of b jets is enhanced by requiring that secondary vertices are far from the primary vertex. The SSV selection value used in this analysis is 2.0, requiring that the secondary vertex is two standard deviations away from the primary vertex. This is chosen to give a misidentification rate on the order of 1% for light-flavor jets and 10% for charm jets, based on simulation. The corresponding b tagging efficiency is about 65% for both pp and pPb collisions, which use identical reconstruction procedures. This is in contrast to the PbPb b jet analysis at CMS where the b tagging efficiency is about 45% due to the need for a dedicated regional track reconstruction owing to the very large multiplicities reached in central collisions [16].

The b tagging efficiency is obtained by simply counting the numbers of b jets before and after tagging in simulation, but is cross-checked using a data-driven method from the output of a second b tagging algorithm: the jet probability (JP) algorithm. The advantage of this second tagger is that it does not rely upon the reconstruction of a secondary vertex [30]. Instead, the JP tagger calculates the compatibility of each track in the jet cone with the primary vertex using a three-dimensional impact parameter significance. In essence, the less compatible the jet tracks are with the primary vertex, the greater the likelihood of the jet being from a b quark fragmentation. Tracks may also have a negative impact parameter, which arises when they are found to be displaced from the primary vertex on the opposite side of the vertex from the
Figure 1: Distributions of the JP tagger discriminator before (left) and after (right) applying the SSV tagger selection. Closed black points are data, while the colored histograms denote contributions from simulated b, c, and light-flavor jets in red, green and blue, respectively, obtained from a fit to data. Statistical uncertainties from data are in black, while statistical uncertainty from the templates are shown in dark green.

jet. These tracks mainly come from primary particles with an improperly measured impact parameter due to finite vertex resolution effects or from poorly measured track kinematic parameters. Since these types of tracks are essentially randomly associated with the vertex, they are not used to tag jets, but instead can be used to calibrate the tagger. Randomly associated tracks should have no correlation to the vertex as a function of displacement, so the total distribution of these tracks as a function of track displacement should be flat. If it is not, the tagger is calibrated by applying a weighting function in order to flatten the spectrum [30]. Once the JP tagger is calibrated, discriminator values are obtained by calculating the sum of the negative logarithm of all track impact parameters, normalized by the factorial of the number of tracks associated with the jet.

Distributions of the JP tagger discriminator are plotted before and after applying the SSV selection defined earlier. By using an unbinned maximum likelihood fit to the JP distributions, the three flavor contributions from simulations are simultaneously fit to the data. From these fits, the SSV b tagging efficiency can be extracted based on Eq. (1), where C_b is the fraction of b jets from simulation that have a JP discriminator value, f_{tagged}^b is the purity of the SSV >2 tagged sample, f_{untagged}^b is the purity before tagging, and $N_{\text{jets}}^{\text{untagged}}$ and $N_{\text{jets}}^{\text{tagged}}$ are the number of jets before and after the SSV selection, respectively. Example distributions of the JP tagger discriminator before and after SSV tagging in the range $90 < p_T < 110 \text{ GeV/c}$ are shown in Fig. 1.

The efficiency found by applying the SSV tagger to JP-tagged events in data and calculating the efficiency directly from simulation are compatible to within 5–20%, where the difference is taken as a systematic uncertainty.

$$
\epsilon_{\text{SSV}} = \frac{C_b f_{\text{tagged}}^b N_{\text{jets}}^{\text{tagged}}}{f_{\text{untagged}}^b N_{\text{jets}}^{\text{untagged}}} \quad (1)
$$

The b tagging efficiency of the SSV tagger is shown as a function of the misidentification probability of light-flavor and charm jets on the left in Fig. 2. The efficiency and purity of the taggers are very similar in pp and pPb collisions due to the identical reconstruction methodology used
3.2 Tagging b jets

Figure 2: The left plot shows the likelihood of misidentifying a light-flavor (circles and dotted lines) or charm (squares and dashed lines) jet as a b jet, as a function of the b tagging efficiency. Shown is the SSV tagger for pPb (purple) and pp (green) collisions. The right plot shows a template fit to the secondary vertex invariant mass distribution in pPb collisions for jets with \(90 < p_T < 110 \text{ GeV}/c\). Closed black points are data, while the colored histograms denote distributions of b, c, and light-quark jets in red, green and blue, respectively, extracted from the fit to data. Statistical uncertainties from data are shown as black vertical bars, while statistical uncertainties from the templates are shown as dark green vertical bars around the sum of the templates.

For both collision types. Though the JP tagger has a higher b tagging efficiency than the SSV tagger due to the fact that the JP tagger does not require the existence of a secondary vertex, the SSV tagger is the primary method of b jet identification in this analysis for two reasons. First, the SSV tagger is more robust against light-flavor and charm jet background due to the secondary vertex requirement. Second, the JP tagger can be calibrated against data, which is essential to providing a data-driven estimate of the b tagging efficiency, therefore the JP tagger is better suited as a reference than the SSV tagger.

For each jet \(p_T\) bin, the b jet purity is extracted via a template fit. For each secondary vertex, an invariant mass is calculated using the individual track energies and momenta. Then, secondary vertex mass distributions from light, charm, and b jets in the PYTHIA+HIJING simulation are fit to those in data. The shapes of the different flavor components of the distributions are fixed via the Monte Carlo simulations (MC), but the relative normalizations of each component are allowed to float independently. While all jet flavors have significant contributions, the b jet contribution to the secondary vertex mass dominates above about 2 GeV/\(c^2\), allowing for an accurate fit to data. An example of such fitting is shown on the right in Fig. 2.

For each tagger, a b jet yield can be calculated for a given \(p_T\) bin: \(N_b = N_f_b / \epsilon\), where \(N_b\) is the number of b-tagged jets, \(f_b\) is the purity of the sample, derived from the secondary vertex mass fits, and \(\epsilon\) is the tagger efficiency, determined from simulation. After tagging, the jet resolution effects on the b jet \(p_T\) spectra are unfolded using a singular value decomposition (SVD) matrix inversion procedure \[37\], as implemented in the ROOUNFOLD package \[38\]. The pPb spectra are normalized by the total integrated luminosity (35 nb\(^{-1}\)) and divided by the mass number of lead (\(A = 208\)), which is the effective enhancement of jet production due to geometrical effects.
from the heavier nuclei, as predicted by the Glauber model \[39\].

\[
R_{pA}^{\text{PYTHIA}} = \frac{1}{A} \frac{d^2 \sigma_{\text{jet}}^{\text{PYTHIA}} / dp_T d\eta}{d^2 \sigma_{\text{jet}}^{\text{PYTHIA}} / dp_T d\eta}.
\]

The formula used to calculate the nuclear modification factor \(R_{pA}^{\text{PYTHIA}}\) is defined in Eq. (2). The \(\eta_{CM}\)-dependent \(R_{pA}^{\text{PYTHIA}}\) is obtained by dividing the jet cross section in pPb (scaled with the lead ion mass, \(A\)) by the jet cross section obtained from a pp reference. As there is no pp data available at \(\sqrt{s_{NN}} = 5.02\) TeV, this reference is obtained from a PYTHIA calculation “\(\sigma_{\text{jet}}^{\text{PYTHIA}}\)”.

4 Systematic uncertainties

The systematic uncertainties on the pPb yield fall into four general categories: b tagging, jet reconstruction, and scaling uncertainties due to unfolding and the luminosity uncertainty. The b tagging uncertainties have five primary subcomponents. The first source of uncertainty comes from the difference between calculating the efficiency (\(\epsilon\)) using the JP tagger (Eq. 1) \[30\] and extracting \(\epsilon\) directly from simulation. This is the dominant systematic uncertainty at high \(p_T\) and accounts for about 50% of the total uncertainty. A second source is obtained by varying the SSV tagger discriminator selection such that \(\epsilon\) differs by about 10%, which accounts for about 35% of the total systematic uncertainty for jet \(p_T\) larger than about 100 GeV/c and 10% below 100 GeV/c. Next, the charm jet normalization is fixed to the light-flavor jet normalization, rather than allowing it to float independently in the template fits. This accounts for about 7% of the total uncertainty and is independent of \(p_T\). Fourth, a data-derived (charm+light) background template produced from jets with small JP values is used. This contribution is roughly 5% of the total uncertainty for jet \(p_T\) larger than 100 GeV/c and 50% below 100 GeV/c. The final tagging uncertainty is found by varying the gluon splitting contribution in the b and c jet templates by 50%. This is the smallest contribution to the total systematic uncertainty (5%). The total systematic uncertainty on the b jet tagging varies from about 15 to 20% depending on the jet \(p_T\). The uncertainty is evaluated via the quadratic sum of all systematic variations of the tagging procedure, which influence the extracted b tagging purity and efficiency values.

The jet reconstruction procedure has uncertainties totaling around 8–15% for the pPb spectra stemming from closure tests between data and MC. These uncertainties arise from the jet energy resolution (JER) and jet energy scale (JES). The resolution uncertainty is about 10%, which decreases as a function of jet \(p_T\), while the scale uncertainty is about 3–4%, depending on jet \(p_T\). The uncertainty stemming from the jet unfolding procedure is evaluated by varying the SVD regularization parameter and the presumed prior spectrum. The pPb to pp normalization has about 5% uncertainty due to the unfolding. Finally, the uncertainty on the pPb integrated luminosity is 3.6% \[40\]. These uncertainties are all summed in quadrature with the tagging uncertainties to obtain the total uncertainty on the pPb b jet spectra.

The pp reference cross section has two sources of systematic uncertainty. As no pp data at 5 TeV yet exists, and since there are too few published measurements of b jet cross section to allow for an interpolated reference, we are forced to rely on simulation, but can make some reasonable assumptions regarding the expected agreement of the simulated reference with data. These two sources of uncertainty are a 20% uncertainty based on the discrepancy between existing b jet measurements and PYTHIA simulations at 2.76 \[16\] and 7 TeV \[41\], and an 8.5% uncertainty based on the b jet cross section difference between the Z2 and D6T \[42\] PYTHIA tunes. The discrepancies between PYTHIA and data at 2.76 and 7 TeV are roughly constant in \(p_T\) and \(\eta\),
except for the p_T region well below the reach of this analysis, where the deviation becomes quite large. The data-to-simulation discrepancy is added in quadrature with the difference between the D6T and Z2 tune p_T distributions at both 2.76 and 7 TeV so that the difference in tune is accounted for in the overall pp uncertainty. This 22% overall pp uncertainty is shown as the red band around unity in Fig. 3 (right panel) and in Fig. 5.

Lastly, the jet and b tagging systematic uncertainties for R_{pA}^{PYTHIA} are obtained by varying the pPb data simultaneously with the pp simulation in order to ensure any correlated systematics are cancelled out. A partial cancellation of the uncertainties exists, but as the generator values are used for the pp reference in the analysis, the residual pPb unfolding uncertainties do not cancel, as would be the case with a pp measurement from data. It should also be noted that due to the template fitting procedure and unfolding, there is a partial correlation between the statistical and systematic uncertainties for the η-dependent result.

5 Results

The b jet p_T spectra in pPb are shown on the left in Fig. 3 for several η_{CM} selections, along with cross sections from the PYTHIA pp reference (histograms). We observe consistency between the pPb data and the PYTHIA pp reference, indicating a lack of η-dependent effects. This can be made explicit by calculating the R_{pA}^{PYTHIA} for each η_{CM} selection, as defined in Eq. (2). The right side of Fig. 3 shows the R_{pA}^{PYTHIA} measurements for the same four η_{CM} selections as on the left. The average values are consistent with unity within uncertainties.

The b jet fraction can be extracted by dividing the b jet cross section by the inclusive jet cross section. This is shown in Fig. 4, where we observe consistent results between the pPb data and the PYTHIA simulation within systematic uncertainties. These systematic uncertainties are calculated by noting that the uncertainties from the jet energy scale, unfolding procedure, and the luminosity are highly correlated between the samples with and without implementing b tagging, and we therefore assign the b tagging uncertainties as the total uncertainty on the fraction.

Figure 5 shows the pseudorapidity-integrated R_{pA}^{PYTHIA}. Fitting a constant to this distribution returns a value of $R_{pA}^{\text{PYTHIA}} = 1.22 \pm 0.15$ (stat + syst pPb) ± 0.27 (syst PYTHIA), which indicates that the b jet yield in pPb is consistent with the pp PYTHIA simulation, especially considering the 22% uncertainty on just the PYTHIA reference. The measurement does not, however, exclude an enhancement in R_{pA} as large as the one observed in the charged particle measurement from CMS at high p_T [26]. In addition, Fig. 5 shows the comparison of the measured R_{pA}^{PYTHIA} to predictions from a pQCD model that includes modest initial-state energy-loss effects [29]. The model and data are roughly consistent within the total systematic uncertainties from both PYTHIA and the pPb data.

This result can be compared to the recent study of B meson production in pPb from the CMS collaboration [43]. We find good agreement between the two analyses, noting that the b jet R_{pA}^{PYTHIA} value is consistent with the observed R_{pA}^{FONLL} values for all B mesons over the entirety of the 10–60 GeV/c p_T range used in the meson analysis.

6 Conclusions

In summary, the first measurements of b jet production at 5.02 TeV have been presented over a p_T range from 55–400 GeV/c and a pseudorapidity window of $-2.5 < \eta_{CM} < 1.5$. A size-
Conclusions

Figure 3: The b jet cross section as a function of p_T is shown for various pseudorapidity selections for pPb collisions, scaled by the mass number of lead (filled boxes), and compared to PYTHIA predictions of b jet cross sections in pp shown as bare histograms on the left. In addition, R_{PA}^{PYTHIA} measurements for the same four η_{CM} ranges are shown on the right. Positive η corresponds to the direction of the proton beam. Statistical uncertainties are represented using vertical bars, while systematic uncertainties are shown as colored bands on the left and filled boxes on the right. The pp reference uncertainties are shown separately as red boxes around unity on the right panel.
Figure 4: The b jet fraction is shown for pPb data as filled black circles surrounded by filled boxes for systematic uncertainties, which are highly correlated to the b jet R_{pA}^{PYTHIA} uncertainties. A simulation from the Z2 tune of $PYTHIA+HIJING$ at $\sqrt{s_{NN}} = 5.02$ TeV is also shown as open blue boxes.

Figure 5: The b jet R_{pA}^{PYTHIA} as a function of jet p_T is shown as points with filled boxes for systematic uncertainties. The pp reference and integrated luminosity uncertainties are shown as red and green bands around unity, respectively. A pQCD prediction from Huang et. al. \cite{29} is also shown.
able jet production enhancement from cold nuclear matter effects is not expected at such large p_T, a conclusion which the data supports. In addition, the observed value of $R_{\text{PYTHIA}}^{pA} = 1.22 \pm 0.15 \text{(stat + syst pPb)} \pm 0.27 \text{(syst PYTHIA)}$ suggests that jet energy loss effects are not significant in the b jet events used in this analysis. We find that the pseudorapidity-integrated and pseudorapidity-dependent R_{PYTHIA}^{pA} values are consistent both with unity and with the enhancement observed by CMS for charged particles at high p_T. We also find that the η-dependence of this result is very small, indicating that any nPDF effects are smaller than the uncertainties. Overall, these results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions. Future measurements of b jets in pp collisions at 5.02 TeV will reduce the large systematic uncertainties from the current PYTHIA reference, allowing for a more precise measurement of b jet energy modification in pPb collisions.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLECIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MO and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845.
References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, V. Knünz, A. König, M. Krammer1, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady2, B. Rahbaran, H. Rohringer, J. Schieck1, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesb, A. De Souza Santosb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona8, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abad, J.C. Ruiz Vargas

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger10, M. Finger Jr.10

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim11,12, Y. Assran13, A. Awad14,15, M. El Sawy16,15, A. Mahrous11, A. Radi15,14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. KAADISTIK, M. Murumaa, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Universitée Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Toriaishvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

\textbf{University of Hamburg, Hamburg, Germany}

\textbf{Institut für Experimentelle Kernphysik, Karlsruhe, Germany}

\textbf{Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece}

\textbf{University of Athens, Athens, Greece}

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

\textbf{University of Ioánnina, Ioánnina, Greece}

\textbf{Wigner Research Centre for Physics, Budapest, Hungary}

G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horváth21, F. Sikler, V. Veszprémi, G. Vesztergombi22, A.J. Zsigmond

\textbf{Institute of Nuclear Research ATOMKI, Debrecen, Hungary}

N. Beni, S. Czellár, J. Karancsi23, J. Molnar, Z. Szillasi

\textbf{University of Debrecen, Debrecen, Hungary}

M. Bartók24, A. Makovec, P. Raics, Z.L. Trocsányi, B. Ujvari

\textbf{National Institute of Science Education and Research, Bhubaneswar, India}

P. Mal, K. Mandal, N. Sahoo, S.K. Swain

\textbf{Panjab University, Chandigarh, India}

\textbf{University of Delhi, Delhi, India}

Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma
Chonbuk National University, Jeonju, Korea
J.A. Brochero Cifuentes, H. Kim, T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
S. Song

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
A. Bylinkin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskiy, O. Kodolova, V. Korotkikh, I. Lokhnt, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kvitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E.A. Albayrak, E. Gultan, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, S. Sen, F.I. Vardarlı

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak
Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, M. Verzetti

The Rockefeller University, New York, USA
L. Demortier

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
M. Foerster, G. Riley, K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
4: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
50: Also at Cag University, Mersin, Turkey
51: Also at Piri Reis University, Istanbul, Turkey
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Ozyegin University, Istanbul, Turkey
54: Also at Izmir Institute of Technology, Izmir, Turkey
55: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
56: Also at Marmara University, Istanbul, Turkey
57: Also at Kafkas University, Kars, Turkey
58: Also at Yildiz Technical University, Istanbul, Turkey
59: Also at Hacettepe University, Ankara, Turkey
60: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
61: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
62: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
63: Also at Utah Valley University, Orem, USA
64: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
65: Also at Argonne National Laboratory, Argonne, USA
66: Also at Erzincan University, Erzincan, Turkey
67: Also at Texas A&M University at Qatar, Doha, Qatar
68: Also at Kyungpook National University, Daegu, Korea