Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

The ATLAS Collaboration

Abstract

Results of a search for new phenomena in events with large missing transverse momentum and a Higgs boson decaying to two photons are reported. Data from proton–proton collisions at a center-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb$^{-1}$ have been collected with the ATLAS detector at the LHC. The observed data are well described by the expected Standard Model backgrounds. Upper limits on the cross section of events with large missing transverse momentum and a Higgs boson candidate are also placed. Exclusion limits are presented for models of physics beyond the Standard Model featuring dark-matter candidates.
Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

ATLAS Collaboration
(Dated: June 4, 2015)

Results of a search for new phenomena in events with large missing transverse momentum and a Higgs boson decaying to two photons are reported. Data from proton–proton collisions at a center-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb$^{-1}$ have been collected with the ATLAS detector at the LHC. The observed data are well described by the expected Standard Model backgrounds. Upper limits on the cross section of events with large missing transverse momentum and a Higgs boson candidate are also placed. Exclusion limits are presented for models of physics beyond the Standard Model featuring dark-matter candidates.

PACS numbers: 14.80.Bn

Although the existence of dark matter (DM) is well established, nearly nothing is known of its underlying particle nature [1]. Many DM candidates have been proposed, and attempts made to connect them to physics beyond the Standard Model (SM) at the scale of electroweak symmetry breaking [2] that would naturally accommodate the observed relic density [3].

Collider searches for weakly interacting dark matter rely on the inferred observation of missing transverse momentum [4] E_T^{miss} recoiling against a visible final-state object X, which may be a hadronic jet [5] [6], photon (γ) [7] [8], or W/Z boson [9] [11]. The discovery of a Higgs boson [12] [13] (H) creates a new opportunity to search for beyond-the-SM (BSM) physics giving rise to $H + E_T^{\text{miss}}$ signatures [14]. In contrast to the aforementioned probes, the visible H boson is unlikely to be radiated from an initial-state quark or gluon. This has the important consequence that the $H + E_T^{\text{miss}}$ signature directly probes the structure of the effective DM–SM coupling; see Fig. 1.

If the mass of the DM particle is less than half of the Higgs boson mass m_H, the Higgs boson may decay directly to DM. Such decays have been searched for using LHC data, and null results provide powerful constraints on the invisible branching ratio of the Higgs boson in several different production modes including WH or ZH [11] [15] [16], and qqH [17] [18]. However, the mass of the DM particle may be larger than $m_H/2$, in which case these searches are not sensitive, and approaches such as analysis of $H + E_T^{\text{miss}}$ events are required.

Two approaches are commonly used to model generic processes yielding a final state with a particle X recoiling against a system of noninteracting particles. One option is to use nonrenormalizable operators in an effective field theory (EFT), which is agnostic about the details of the theory at energies beyond the experimental sensitivity. Alternatively, simplified models that explicitly include the particles at higher masses can be used. The EFT approach is more model-independent, but is not valid when the typical momentum transfer scale of the high-mass particles that have been integrated out. Simplified models do not suffer from these concerns, but include more assumptions by design and are therefore less generic. The two approaches are thus complementary and both are considered here.

In this Letter, results are reported from a search for $H + E_T^{\text{miss}}$ events in data collected by the ATLAS detector from pp collisions, mediated by electroweak bosons (H, Z, γ) or new mediator particles such as a Z' or scalar singlet S. The gray circle denotes an effective interaction between DM, the Higgs boson, and other states.

FIG. 1: Schematic diagram for production of DM particles χ in association with a Higgs boson in pp collisions, mediated by electroweak bosons (H, Z, γ) or new mediator particles such as a Z' or scalar singlet S. The gray circle denotes an effective interaction between DM, the Higgs boson, and other states.
photons, with leading (subleading) $E_T > 35$ (25) GeV.

A photon is reconstructed as a cluster of energy with $|\eta| < 2.37$ deposited in the electromagnetic calorimeter, excluding the poorly instrumented region $\eta \in [1.37, 1.56]$. Clusters without matching tracks are classified as unconverted photon candidates. The photon energy is corrected by applying an energy calibration derived from $Z \rightarrow e^+e^-$ decays in data and cross-checked with $J/\psi \rightarrow e^+e^-$ and $Z \rightarrow \ell\ell\gamma$ decays in data [21]. Identification requirements are applied in order to reduce the contamination dominantly from π^0 or other neutral hadrons decaying to two photons. The photon identification is based on the profile of the energy deposit in the first and second layers of the electromagnetic calorimeter. Photons have to satisfy the ‘tight’ identification criteria of Ref. [22]. They are also required to be isolated, i.e. the energy in the calorimeters in a cone of size $\Delta R = \sqrt{(|\Delta\eta|^2 + (|\Delta\phi|^2)} = 0.4$ around the cluster barycenter, excluding the energy associated with the photon cluster, is required to be less than 6 GeV. This in-cone energy is corrected for the leakage of the photon energy and for the effects of multiple pp interactions in the same or neighboring bunch crossings superimposed on the hard physics process (referred to as pileup interactions) [23]. Finally, for each photon the scalar sum of the transverse momenta p_T of tracks originating from the diphoton vertex with $p_T > 1$ GeV and ΔR(track,cluster) < 0.2 must be less than 2.6 GeV. The diphoton production vertex is selected from the reconstructed collision vertices using a neural-network algorithm as described in Ref. [22].

The momenta imbalance in the transverse plane is obtained from the negative vector sum of the reconstructed and calibrated electrons, muons, photons and jets and is referred to as missing transverse momentum E_T^{miss}. The symbol E_T^{miss} is used for its magnitude. Calorimeter energy deposits are associated with a reconstructed and identified high-p_T object in a specific order: photons with $p_T > 10$ GeV, electrons with $p_T > 10$ GeV, and jets with $p_T > 20$ GeV. Deposits not associated with any such objects are also taken into account in the E_T^{miss} calculation [24] using an energy-flow algorithm that considers calorimeter energy deposits as well as ID tracks [24]. The energy resolution is typically 11% near the threshold at 100 GeV for the considered signal scenarios.

Quality requirements are applied to photon candidates in order to reject those arising from instrumental problems. In addition, quality requirements are applied in order to remove jets arising from detector noise or out-of-time energy deposits in the calorimeter from cosmic rays or other noncollision processes [25].

Selected events are required to have a Higgs boson candidate consisting of two photons with diphoton invariant mass $m_{\gamma\gamma} \in [105, 160]$ GeV with transverse momenta satisfying leading (subleading) $p_T^{\gamma} > 0.35(0.25)m_{\gamma\gamma}$. In addition, large missing transverse momentum is required, $E_T^{\text{miss}} > 90$ GeV, as well as large transverse momentum of the $\gamma\gamma$ system, $p_T^{\gamma\gamma} > 90$ GeV in order to suppress background events where E_T^{miss} is caused by mismeasurement of the energies of identified physics objects. These selection requirements were derived by optimizing the expected upper limits on $H + E_T^{\text{miss}}$ production for the set of models described below.

Contributions to the $\gamma\gamma + E_T^{\text{miss}}$ sample from SM processes include those that produce a Higgs boson in association with undetected particles (predominantly ZH with $Z \rightarrow \nu\nu$ and WH with $W \rightarrow \ell\nu$) as well as non-resonant diphoton production ($\gamma\gamma, W\gamma\gamma, Z\gamma\gamma, W\gamma$ and $Z\gamma$ production where an electron is misidentified as a photon, and photon+jet production in which the jet is misidentified as a photon.

Samples of simulated events are used in order to measure the efficiency of the selection for dark-matter models, as well as to estimate the contribution of SM $H + E_T^{\text{miss}}$ processes. Contributions from other background processes are estimated from $m_{\gamma\gamma}$ sidebands in the data.

Following the notation of Ref. [13], a set of EFT models are considered in which the effective operator Lagrangian term can be written as $\chi[H]^{2}$, $\tilde{\chi}(\bar{\chi}\gamma^{\mu}H)^{2}$, $\tilde{\chi}^{T}(\partial^{\mu}H)(D_{\mu}H)$, or $\tilde{\chi}\chi_{B}\bar{\mu}_{\mu}H^{T}D^{\mu}H$, where the DM field χ is a scalar in the first case and a fermion in the remaining cases and $B_{\mu\nu}$ is the $U(1)_{Y}$ field strength tensor. The interactions of SM and DM particles are described by two parameters: the DM particle mass m_{χ} and the suppression scale A of the heavy mediator that is integrated out of the EFT. In a theory that is valid to arbitrary energies (ultraviolet complete), the contact interaction would be replaced by an interaction via an explicit mediator V.

In addition, simplified models [14] with a massive vector (Z'), or a scalar (S) intermediate boson are tested. All $H + E_T^{\text{miss}}$ DM models are generated with MADGRAPH5 [27] version 1.4.8.4, with showering and hadronization modeled with PYTHIA8 [28] version 1.6.5 using the AU2 parameter settings [29]; the MSTW2008LO [30] parton distribution function (PDF) set is used. Values of m_{χ} from 1 to 1000 GeV are considered. Production of ZH and WH is modeled with PYTHIA8 using CTEQ6L1 PDFs [31]. Samples are normalized to cross sections for WH and ZH production calculated at next-to-leading order (NLO) [32], and next-to-next-to-leading order (NNLO) [33] in QCD, respectively, with NLO electroweak corrections [34] in both cases.

Differing pileup conditions as a function of the instantaneous luminosity are taken into account by overlaying simulated minimum-bias events generated with PYTHIA8 onto the hard-scattering process such that the observed distribution of the average number of interactions per bunch crossing is reproduced. The simulated samples are processed with a full ATLAS detector simulation [35] based on GEANT4 [36] and a simulation of the trigger system.
To distinguish contributions from processes that include \(H \to \gamma \gamma \) decays from those that contribute to the continuum background, a localized excess of events is searched for in the \(m_{\gamma \gamma} \) spectrum near the Higgs boson mass, \(m_H = 125.4 \text{ GeV} \). Probability distribution functions that describe the \(H \to \gamma \gamma \) resonance or the continuum background are defined in the range 105–160 GeV as described below. The contributions from each source are then estimated using an unbinned maximum-likelihood fit to the observed \(m_{\gamma \gamma} \) spectrum.

The \(m_{\gamma \gamma} \) spectra of the signal models of \(H + \text{DM} \) production and SM Higgs boson background processes are modeled with a double-sided Crystal Ball function; the width and peak positions are fixed to values extracted from fits to simulated samples. An exponential function, \(e^{am_{\gamma \gamma}} \) with free parameter \(a \) is used to describe the \(m_{\gamma \gamma} \) distribution of the continuum background. The chosen continuum fit function is validated using simulated samples of the irreducible background processes and in three data samples adjacent to the signal region, but with relaxed requirements on \(E_T^{\text{miss}} \), on \(p_T^{\gamma} \), or on photon identification. Results of the fit to data in the signal region are shown in Fig. 2.

Systematic uncertainties from various sources affect the number of SM Higgs boson events in the resonant background, the predicted shape and location of its peak, as well as the efficiency of the selection for the signal models considered.

The uncertainty on the integrated luminosity, 2.8%, is derived following the same methodology as that detailed in Ref. 38 using beam-separation scans. Uncertainties on the efficiency of the photon isolation requirement, photon identification requirement, and trigger selection are measured in an inclusive SM Higgs boson sample to be 2.8%, 2.1%, and 0.2%, respectively. Uncertainties in the photon energy scale and resolution lead to respective uncertainties of 11% and 0.3% in the position and width of the \(H \to \gamma \gamma \) peak. Additional uncertainties on the jet energy scale and resolution as well as the calibration of unclustered hadronic recoil energy contribute to uncertainty in the \(E_T^{\text{miss}} \), leading to 1.2% uncertainty from the \(E_T^{\text{miss}} \) and \(p_T^{\gamma} \) requirements. The impacts on the selection efficiency of the uncertainties on the levels of initial-state and final-state radiation are assessed by varying the PYTHIA8 parameters, as in Ref. 10; these are found to be typically at the level of 1%. The total uncertainty on the selection efficiency for peaking SM Higgs backgrounds and signal models is 4.0%.

The theoretical uncertainties on the \(WH \) and \(ZH \) production cross sections come from varying the renormalization and factorization scales and from uncertainties on the parton distribution functions 30 39 41. The Higgs boson branching fractions are taken from Refs. 12 43 and their uncertainties from Refs. 44 45. The total theoretical uncertainty on the \(H + E_T^{\text{miss}} \) contribution is 6%.

The number of events observed in the data corresponds to a 1.4 \(\sigma \) deviation using the asymptotic formula in Ref. 40. As the events observed these data do not include a statistically significant BSM component, the results are interpreted in terms of exclusions on models that would produce an excess of \(H + E_T^{\text{miss}} \) events. Upper bounds, detailed below, are calculated using a one-sided profile likelihood ratio and the \(CL_S \) technique 17 48, evaluated using the asymptotic approximation 16, which was ensured to be valid for the available number of events.

The most model-independent limits are those on the fiducial cross section of \(H + E_T^{\text{miss}} \) events, including SM and BSM components, \(\sigma \times A \), where \(\sigma \) is the cross section and \(A \) is the fiducial acceptance. The latter is defined using a selection identical to that defining the signal region but applied at particle level, where \(E_T^{\text{miss}} \) is the vector sum of the momenta of the noninteracting particles, photon isolation requirements are not applied, and a simpler requirement on photon pseudorapidity \(|\eta| < 2.37 \) is made. The limit on \(\sigma \times A \) is derived from a limit on the visible cross section \(\sigma \times A \times \epsilon \), where \(\epsilon \) is the reconstruction efficiency in the fiducial region. An estimate \(\epsilon = 56\% \) is computed using the simulated signal samples described above with no quark or gluon produced from the main interaction vertex; the efficiencies vary across the set of models by less than 10%. The observed (expected) upper limit on the fiducial cross section is 0.70 (0.43) fb at 95% confidence level (CL). These limits are applicable to any model that predicts \(H + E_T^{\text{miss}} \) events in the fiducial region and has similar reconstruction efficiency \(\epsilon \).

Limits on specific models of BSM \(H + E_T^{\text{miss}} \) production depend on the prediction of the \(H + E_T^{\text{miss}} \) component produced via \(ZH \) or \(WH \); calculations of this theoretical quantity will improve with time and may depend on the details of a specific BSM theory. Following the pro-
the SM-like and BSM components are indistinguishable, requires knowing how a change in the SM-like component and uncertainty, as shown in Fig. 3. This approach requires knowing how a change in the central value and uncertainty of the theoretical calculation, which allows later reinterpretation for any modified prediction and uncertainty, as shown in Fig. 3. This approach requires knowing how a change in the SM-like component modifies the best-fit BSM component; in this case where the SM-like and BSM components are indistinguishable, \(\Delta N_{\text{BSM}} = -\Delta N_{\text{SM-like}} \). The limits on the parameters of the specific BSM models considered in this Letter are calculated using the prediction and uncertainty for the SM component as described above.

Limits on DM production are derived from the cross-section limits at a given DM mass \(m_\chi \), and expressed as 95% CL limits on the suppression scale \(\Lambda \) or coupling parameter \(\lambda \) for the effective field theory operators; see Fig. 4 for limits for \(\chi^\dagger \partial^\mu \chi H^\dagger D_\mu H \) and \(\tilde{\chi}^\gamma \chi B_{\mu \nu} H^\dagger D^\mu D^\nu H \) operators. For the lowest \(m_\chi \) region not excluded by results from searches for invisible Higgs boson decays near \(m_\chi = m_H/2 \), values of \(\Lambda \) up to 6, 60, and 150 GeV are excluded for the \(\chi^\dagger \gamma_\mu \gamma_\nu H^2 \), \(\chi^\dagger \partial^\mu \chi H^\dagger D_\mu H \), and \(\tilde{\chi}^\gamma \chi B_{\mu \nu} H^\dagger D^\mu D^\nu H \) operators, respectively; values of \(\lambda \) above 25.6 are excluded for the \(|\chi|^2/H^2 \) operator. As discussed above, the effective field theory model becomes a poor approximation of an ultraviolet-complete model containing a heavy mediator \(V \) when the momentum transferred in the interaction, \(Q_{\text{tr}} \), is comparable to the mass of the intermediate state \(m_V = \Lambda \sqrt{g_q g_\chi} \) [53, 54], where \(g_q \) and \(g_\chi \) represent the coupling of \(V \) to SM and DM particles, respectively. To give an indication of the impact of the unknown ultraviolet details of the theory, limits are computed in which only simulated events with \(Q_{\text{tr}} = m_\chi < m_V \) are retained; these limits are shown for values of \(\sqrt{g_q g_\chi} = 1 \) or \(4\pi \) in Fig. 4. This procedure is referred to as truncation. In addition, limits are derived on coupling parameters for simplified models as shown in Fig. 5. For a vector-mediated model, limits are placed on the coupling \(g_q \) of the mediator to quarks, assuming maximal coupling \(g_q \) to dark matter. For the scalar-mediated model, limits are placed on the parameter \(\kappa \times \sin(\theta_{\text{mix}}) \), where \(\sin(\theta_{\text{mix}}) \) is the mixing angle between the scalar S boson and the Higgs boson, and \(\kappa \) is a scaling constant; however, current calculations [14] of the \(gg \to HS \) production mode may be overestimated due to approximations made in evaluating the top-quark loop.

FIG. 3: Profile likelihood ratio (\(\lambda \)) as a function of \(\sigma_{\text{BSM, fid}} \), the fiducial cross section for production of a BSM \(H + \text{DM} \) process in the \(\gamma \gamma + E_T^{\text{miss}} \) channel is provided with the SM component fixed to the central value of the theoretical calculation, which allows later reinterpretation for any modified prediction and uncertainty, as shown in Fig. 3. This approach requires knowing how a change in the SM-like component modifies the best-fit BSM component; in this case where the SM-like and BSM components are indistinguishable, \(\Delta N_{\text{BSM}} = -\Delta N_{\text{SM-like}} \). The limits on the parameters of the specific BSM models considered in this Letter are calculated using the prediction and uncertainty for the SM component as described above.

Limits on DM production are derived from the cross-section limits at a given DM mass \(m_\chi \), and expressed as 95% CL limits on the suppression scale \(\Lambda \) or coupling parameter \(\lambda \) for the effective field theory operators; see Fig. 4 for limits for \(\chi^\dagger \partial^\mu \chi H^\dagger D_\mu H \) and \(\tilde{\chi}^\gamma \chi B_{\mu \nu} H^\dagger D^\mu D^\nu H \) operators. For the lowest \(m_\chi \) region not excluded by results from searches for invisible Higgs boson decays near \(m_\chi = m_H/2 \), values of \(\Lambda \) up to 6, 60, and 150 GeV are excluded for the \(\chi^\dagger \gamma_\mu \gamma_\nu H^2 \), \(\chi^\dagger \partial^\mu \chi H^\dagger D_\mu H \), and \(\tilde{\chi}^\gamma \chi B_{\mu \nu} H^\dagger D^\mu D^\nu H \) operators, respectively; values of \(\lambda \) above 25.6 are excluded for the \(|\chi|^2/H^2 \) operator. As discussed above, the effective field theory model becomes a poor approximation of an ultraviolet-complete model containing a heavy mediator \(V \) when the momentum transferred in the interaction, \(Q_{\text{tr}} \), is comparable to the mass of the intermediate state \(m_V = \Lambda \sqrt{g_q g_\chi} \) [53, 54], where \(g_q \) and \(g_\chi \) represent the coupling of \(V \) to SM and DM particles, respectively. To give an indication of the impact of the unknown ultraviolet details of the theory, limits are computed in which only simulated events with \(Q_{\text{tr}} = m_\chi < m_V \) are retained; these limits are shown for values of \(\sqrt{g_q g_\chi} = 1 \) or \(4\pi \) in Fig. 4. This procedure is referred to as truncation. In addition, limits are derived on coupling parameters for simplified models as shown in Fig. 5. For a vector-mediated model, limits are placed on the coupling \(g_q \) of the mediator to quarks, assuming maximal coupling \(g_q \) to dark matter. For the scalar-mediated model, limits are placed on the parameter \(\kappa \times \sin(\theta_{\text{mix}}) \), where \(\sin(\theta_{\text{mix}}) \) is the mixing angle between the scalar S boson and the Higgs boson, and \(\kappa \) is a scaling constant; however, current calculations [14] of the \(gg \to HS \) production mode may be overestimated due to approximations made in evaluating the top-quark loop.
In conclusion, a search for DM produced in association with a Higgs boson decaying to two photons has been conducted. Prior to these results, no bounds have been placed by collider experiments on the $H \rightarrow \gamma \gamma$ channel. In addition, upper limits are placed on monojet searches, and the LUX Collaboration searches, and the LUX Collaboration respectively.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DSNRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFIA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[4] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar θ angle as $\eta = -\ln \tan(\theta/2)$. The transverse energy is defined by $E_T = E \sin \theta$.
Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, København, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
121 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
123 National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
124 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
126 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
128 Czech Technical University in Prague, Praha, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
130 State Research Center Institute for High Energy Physics, Protvino, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom

b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

c Also at Novosibirsk State University, Novosibirsk, Russia

d Also at TRIUMF, Vancouver BC, Canada

e Also at Department of Physics, California State University, Fresno CA, United States of America

f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland

Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal

Also at Tomsk State University, Tomsk, Russia

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Also at Università di Napoli Parthenope, Napoli, Italy

Also at Institute of Particle Physics (IPF), Canada

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia

Also at Louisiana Tech University, Ruston LA, United States of America

Also at Institucio Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain

Also at Department of Physics, National Tsing Hua University, Taiwan

Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia

Also at CERN, Geneva, Switzerland

Also at Georgian Technical University (GTU), Tbilisi, Georgia

Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan

Also at Manhattan College, New York NY, United States of America

Also at Hellenic Open University, Patras, Greece

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at School of Physics, Shandong University, Shandong, China

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at International School for Advanced Studies (SISSA), Trieste, Italy

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia

Also at National Research Nuclear University MEPhI, Moscow, Russia

Also at Department of Physics, Stanford University, Stanford CA, United States of America
aj Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ak Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
al Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
am Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased