Inclusive Deep-Inelastic Scattering at HERA

Vladimir Chekelian (MPI for Physics, Munich)
on behalf of the H1 and ZEUS Collaborations

Completion of the HERA inclusive DIS cross section measurements:

1. NC at $E_p = 460, 575$ GeV and model independent F_L measurements

2. NC measurements at highest $x \to 1$

3. Combination of all HERA I+II NC&CC inclusive measurements (HERAPDF2.0)
Deep-Inelastic Scattering (DIS)

Neutral Current (NC): \(e^+p \rightarrow e^+X\)

Charged Current (CC): \(e^+p \rightarrow \nu X\)

\[Q^2 = -q^2 = -(k-k')^2\] virtuality of \(\gamma^*, Z^0, W\)

\[x = Q^2/2(Pq)\] Bjorken \(x\)

\[y = (Pq)/(Pk)\] inelasticity

\[Q^2 = sxy\] \(s=(k+P)^2\)

H1+ZEUS in total 1 fb\(^{-1}\)
- about equally shared between \(e^+\) and \(e^-\), positive and negative \(P_e\)
- special running at low proton energy for \(F_L\)

ICHEP 2014
Valencia 4.07.2014
1. NC cross section measurements at high y and low $E_p=460, 575$ (and 920) GeV

<table>
<thead>
<tr>
<th>Data Set</th>
<th>x Grid from</th>
<th>to</th>
<th>Q^2/GeV2 Grid from</th>
<th>to</th>
<th>\mathcal{L} pb$^{-1}$</th>
<th>e^+/e^-</th>
<th>\sqrt{s} GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERA II $E_p=575$ GeV data sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1 NC high Q^2</td>
<td>0.00065</td>
<td>0.65</td>
<td>35</td>
<td>800</td>
<td>5.4</td>
<td>e^+p</td>
<td>252</td>
</tr>
<tr>
<td>H1 NC low Q^2</td>
<td>0.0000279</td>
<td>0.0148</td>
<td>1.5</td>
<td>90</td>
<td>5.9</td>
<td>e^+p</td>
<td>252</td>
</tr>
<tr>
<td>ZEUS NC nominal</td>
<td>0.000147</td>
<td>0.013349</td>
<td>7</td>
<td>110</td>
<td>7.1</td>
<td>e^+p</td>
<td>251</td>
</tr>
<tr>
<td>ZEUS NC satellite</td>
<td>0.000125</td>
<td>0.013349</td>
<td>5</td>
<td>110</td>
<td>7.1</td>
<td>e^+p</td>
<td>251</td>
</tr>
<tr>
<td>HERA II $E_p=460$ GeV data sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1 NC high Q^2</td>
<td>0.00081</td>
<td>0.65</td>
<td>35</td>
<td>800</td>
<td>11.8</td>
<td>e^+p</td>
<td>225</td>
</tr>
<tr>
<td>H1 NC low Q^2</td>
<td>0.0000348</td>
<td>0.0148</td>
<td>1.5</td>
<td>90</td>
<td>12.2</td>
<td>e^+p</td>
<td>225</td>
</tr>
<tr>
<td>ZEUS NC nominal</td>
<td>0.000184</td>
<td>0.016686</td>
<td>7</td>
<td>110</td>
<td>13.9</td>
<td>e^+p</td>
<td>225</td>
</tr>
<tr>
<td>ZEUS NC satellite</td>
<td>0.000143</td>
<td>0.016686</td>
<td>5</td>
<td>110</td>
<td>13.9</td>
<td>e^+p</td>
<td>225</td>
</tr>
</tbody>
</table>

ZEUS: NC “nominal” and “satellite”: DESY-14-053
measurements at $E_p=460, 575, 920$ GeV
NC at high y for $E_p = 460, 575$ (and 920) GeV

Experimental challenge: large γp background at high y (low scattered electron energy)

H1:
E_e down to 3 GeV

→ **“soft electron identification”:**
optimal use of information on shower shape in LAr calorimeter, momentum matching with the track, dE/dx

→ accept only electron candidates with the **“right electric charge”** and use the **“wrong charge”** events for estimation of remaining background.

ZEUS:
E_e down to 6 GeV

→ **“backward tracking”:** use hits in the tracking detectors

→ remaining bkg is subtracted using MC predictions verified from 6m–tagger and γp enriched sample (agreement within 10%)
A model independent measurement of F_L using data at $E_p=460, 575$ and 920 (820) GeV

$\rightarrow F_L$ and F_2 can be determined in a model independent way at each x and Q^2

$$\sigma_{NC}(x, Q^2, y) = F_2(x, Q^2) - f(y) F_L(x, Q^2), \quad f(y) = y^2/(1+(1-y)^2)$$

an example: $Q^2=60$ GeV2 and 6 values of x

Measurements at $E_p=820$ GeV (ZEUS97) are included in fits

H1: high Q^2 460/575 together with 460/575 data at low Q^2 (Spacal) and 920 e^+p data from HERA II
\(F_L \) and \(F_2 \) measurements as a function of \(Q^2 \) and \(x \)

using a \(\chi^2 \) minimisation technique accounting for correlations across all measurements

\(H1 \) Collaboration

\(F_L \) measurements are extended to \(Q^2 = 800 \) GeV\(^2\)
Longitudinal structure function F_L

F_L is a pure QCD effect sensitive to gluon density

\[
F_L(x, Q^2) = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 (1 - \frac{x}{z}) \cdot xg \right]
\]

approximate relation between F_L and gluon (order of α_s, with $a=1$)

\[
xg(x, Q^2) \approx 1.77 \frac{3\pi}{2\alpha_s(Q^2)} F_L(ax, Q^2)
\]

Consistency of the H1 and ZEUS FL data was checked accounting for corr. errors: $\chi^2/ndf=11/8$ (p-value=20%).

$R = \frac{\sigma_L}{\sigma_T} = F_L/(F_2 - F_L) = 0.23 \pm 0.04$ (H1, $1.5 \leq Q^2 \leq 800$ GeV2)

$R = 0.105 + 0.055 - 0.037$ (ZEUS, $9 \leq Q^2 \leq 110$ GeV2)

ICHEP 2014
Valencia 4.07.2014

V. Chekelian
Inclusive DIS at HERA
2. Integrated $e^\pm p$ NC cross section at high $x \to 1$

NC events at high Q^2 have about 100% acceptance and efficiency for the scattered electron but at highest x the hadronic final state disappears in the beam pipe and there are no means to measure x

ZEUS measured the integrated $e^\pm p$ NC cross sections at $x \to 1$ using events without jets at x above x_{edge}.

$$\int_{x_{\text{edge}}}^{1} \frac{d^2\sigma(x, Q^2)}{dx dQ^2} dx$$

NC $e^\pm p$ cross section at highest x

\rightarrow there is sensitivity to PDFs at high $x \rightarrow 1$. These integrated measurements are not used so far in the QCD fits (and in the combination below)

ICHEP 2014
Valencia 4.07.2014
V. Chekelian
Inclusive DIS at HERA
3. Combination of all inclusive NC and CC $e^\pm p$ data from H1 and ZEUS

41 data sets from H1 and ZEUS (1 fb$^{-1}$): $0.045 \leq Q^2 \leq 50000$ GeV2, $6 \times 10^{-7} \leq x \leq 0.65$

21 data sets from HERA I ($E_p=920$ and 820 GeV) and
20 data sets from HERA II (12/4/4 sets for $E_p=920/575/460$ GeV)

Combination of the H1 & ZEUS incl. unpolarized NC and CC data include expert knowledge in the treatment of the correlations between individual data sets.

→ precise, complete and easy in use
→ reduction of stat. and syst. uncertainties

1. HERA I data: JHEP 1001:109,2010 HERAPDF 1.0
2. HERA I and preliminary HERA II data HERAPDF 1.5

HERAverager (wiki-zeuthen.desy.de/HERAverager) is used for the cross section averaging,
162 corr. syst. sources are treated as multiplicative,
the following χ^2 definition is used:

$$
\chi^2_{exp,ds} (m, b) = \sum_{i,d} + \sum_{j,b} = \sum_i \frac{[(m_i - \sum_j m_j b_j - \mu)^2]}{\delta_{i,stat}^2 + (\delta_{i,unco} m_i)^2 + \sum_j b_j^2}
$$

Three additional procedural errors:
- multiplicative vs. additive
- correlation over all data sets of photoproduction bkg and hadronic energy scale uncertainties
Averaging of all NC and CC HERA I+II data

2927 cross sections are combined to 1307 points with 165 correlated systematic errors

\rightarrow up to 6 measurements are combined into one averaged point
\rightarrow good consistency of the input data sets ($\chi^2/\text{ndf} = 1685/1620$)
Pulls for different samples

H1 and ZEUS preliminary

\[p_{i,k} = \frac{\mu_{i,k} - \mu_{i,\text{ave}}(1 - \sum_j \gamma_{j,i,k} b_{j,\text{ave}})}{\sqrt{\Delta_{i,k}^2 - \Delta_{i,\text{ave}}^2}} \]

→ everywhere consistent with expected one sigma gaussian
Comparison of combinations
HERA I+II vs. HERA I

\[\sigma^-(x,Q^2) \]

\[\sigma^{+}(x,Q^2) \]

→ significant improvements in precision at high \(Q^2 \) (especially for e^{-} p NC&CC) and at high \(y \): about 1% precision in the best measured regions

ICHEP 2014
Valencia 4.07.2014
V. Chekelian
Inclusive DIS at HERA
H1 and ZEUS preliminary

Combined NC and CC data set from HERA (HERAPDF2.0)

e^+p NC&CC ($E_p = 920$ GeV), e^+p NC ($E_p = 820, 575, 460$ GeV), corresponding to 1 fb$^{-1}$

\rightarrow 165 correlated syst. err.; $0.045 \leq Q^2 \leq 50000$ GeV2, $6 \times 10^{-7} \leq x \leq 0.65$

$\sqrt{s} = 318$ GeV

Fixed Target

HERA NC $e^\pm p$ (prel.) 0.4 fb$^{-1}$

HERA NC $e^\pm p$ (prel.) 0.5 fb$^{-1}$

$\sqrt{s} = 318$ GeV

NLO, $Q^2_{\text{min}} = 3.5$ GeV2

$e^\pm p$ NC&CC ($E_p = 920$ GeV), $e^\pm p$ NC ($E_p = 820, 575, 460$ GeV), corresponding to 1 fb$^{-1}$

\rightarrow for QCD analysis of the combined data (HERAPDF2.0) see talk of Katarzyna Wichmann

ICHEP 2014

Valencia 4.07.2014

V. Chekelian

Inclusive DIS at HERA
Conclusions

H1 and ZEUS completed inclusive DIS cross section measurements at HERA

- e^+p NC cross sections measurements at low $E_p=460$ and 575 GeV and a model independent determination of F_L.
- ZEUS $e^±p$ NC measurements at high $x\rightarrow 1$

All inclusive $e^±p$ NC and CC cross sections at $E_p=920$, 820, 575 and 460 GeV are combined in one coherent HERA data set which is used as a sole input to the HERAPDF 2.0 QCD fits