Serial Femtosecond Crystallography of G Protein–Coupled Receptors
Wei Liu et al.
Science 342, 1521 (2013);
DOI: 10.1126/science.1244142

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of January 20, 2014):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/342/6165/1521.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2013/12/19/342.6165.1521.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/342/6165/1521.full.html#related

This article cites 36 articles, 8 of which can be accessed free:
http://www.sciencemag.org/content/342/6165/1521.full.html#ref-list-1

This article appears in the following subject collections:
Biochemistry
http://www.sciencemag.org/cgi/collection/biochem
Serial Femtosecond Crystallography of G Protein–Coupled Receptors

Wei Liu,1 Daniel Wacker,1 Cornelius Gati,2 Gye Won Han,3 Daniel James,5 Dingjie Wang,4 Garrett Nelson,3 Uwe Weierstall,3 Vsevolod Katritch,4 Anton Barty,5 Nadia A. Zatsepina,6 Dianfan Li,7 Marc Messerschmidt,4 Sébastien Boutet,4 Garth J. Williams,5 Jason E. Koglin,6 M. Marvin Seibert,8,9 Chong Wang,4 Syed T. A. Shah,4 Shibom Basu,4 Raimund Fromme,4 Christopher Kupitz,4 Kimberly N. Rendek,4 Ingo Grothjohann,5 Petra Fromme,7 Richard A. Kriyan,7,8 Kenneth R. Beyerlein, Thomas A. White,9 Henry N. Chapman,2,6,9 Martin Caffrey,1 John C. H. Spence,3 Raymond C. Stevens,1 Vadim Cherezov*1

X-ray crystallography of G protein–coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.

1Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. 2Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany. 3Department of Physics, Arizona State University, Tempe, AZ 85287, USA. 4School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin, Dublin 2, Ireland. 5SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. 6Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Upssala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden. 7Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA. 8Department of Physics, University of Hamburg, 22761 Hamburg, Germany. 9Center for Ultrafast Imaging, 22607 Hamburg, Germany.

*Corresponding author. E-mail: vcherezov@scripps.edu

Nonetheless, crystallographic studies of GPCRs remain difficult because many of them produce only microcrystals. Most GPCR structures to date have been obtained by using crystallization from the membrane-mimetic environment of a lipidic cubic phase (LCP) (6, 7). LCP crystallization has proven successful for obtaining high-resolution structures of a variety of membrane proteins, including ion channels, transporters, and enzymes, in addition to GPCRs (8, 9). This method leads to highly ordered crystals that are, however, often limited in size. Microfocus x-ray beams of high intensity (~1011 photons/s/μm2) and long exposures (~5 s) are typically required in order to obtain sufficient intensity for high-resolution data from weakly diffracting microcrystals. The high-radiation doses induce severe radiation damage and require merging data from multiple crystals in order to obtain complete data sets of sufficient quality. Accordingly, sub-10-μm GPCR crystals are currently not suitable for high-resolution data collection, even at the most powerful synchrotron microfocus beamlines (7, 10).

Serial femtosecond crystallography (SFX) (11), which takes advantage of x-ray free-electron lasers (XFEL), has recently demonstrated great promise for obtaining room-temperature high-resolution data from micrometer- and sub-micrometer–size crystals of soluble proteins, with minimal radiation damage (12, 13). The highly intense (~2 mJ, 1012 photons per pulse) and ultrashort (~50 fs) x-ray pulses produced by XFELs enable the recording of high-resolution diffraction snapshots from individual crystals at single orientations before their destruction. SFX data collection, therefore, relies on a continuous supply of small crystals intersecting the XFEL beam in random orientations—typically provided by a fast-running liquid microjet (12)—which is incompatible with streaming highly viscous gel-like materials such as LCP and requires tens to hundreds of milligrams of crystallized protein for data collection (17). For many membrane proteins, including most human membrane proteins, obtaining such quantities is not practical.

protein–coupled receptors (GPCRs) represent a highly diverse superfamily of eukaryotic membrane proteins that mediate cellular communication. In humans, ~800 GPCRs respond to a variety of extracellular signaling mol-
We have modified the SFX data collection approach (Fig. 1) and obtained a room-temperature GPCR structure at 2.8 Å resolution using only 300 µg of protein crystallized in LCP. SFX experiments were performed at the Coherent X-ray Imaging (CXI) instrument of the Linac Coherent Light Source (LCLS) (14). LCP-grown microcrystals (average size of 5 by 5 by 5 µm) (fig. S1) of the human serotonin 5-HT2B receptor (16) bound to the agonist ergotamine were continuously delivered across a ~1.5-µm-diameter XFEL beam by using a specially designed LCP injector. LCP with randomly distributed crystals was extruded through a 20- to 50-µm capillary into a vacuum chamber (10⁻⁴ torr) at room temperature (21°C) (17) and a constant flow rate of 50 to 200 nL/min and was stabilized by a co-axial flow of helium or nitrogen gas supplied at 20 to 30 bar. We recorded single-pulse diffraction patterns (fig. S2) using 9.5-keV (1.3 Å) x-ray pulses of 50 fs duration at a 120 Hz repetition rate by means of a Cornell-SLAC pixel array detector (CSPAD) (18) positioned at a distance of 100 mm from the sample. The XFEL beam was attenuated to 3 to 6% so as to avoid detector saturation. The average x-ray pulse energy at the sample was 50 µJ (3 × 10¹⁰ photons/pulse), corresponding to a radiation dose of up to 25 megagrams per crystal. A total of 4,217,508 diffraction patterns were collected within 10 hours by using ~100 µL of crystal-loaded LCP, corresponding to ~0.3 mg of protein. Of these patterns, 152,651 were identified as crystal hits (15 or more Bragg peaks) by the processing software Cheetah (http://www.desy.de/~barty/cheetah/), corresponding to a hit rate of 3.6%. Of these crystal hits, 32,819 patterns (21.5%) were successfully indexed and integrated by CrystFEL (19) at 2.8 Å resolution (table S1). The structure was determined through molecular replacement and refined to Rwork/Rfree = 22.7/27.0%. Overall, the final structure (fig. S3) has a well-defined density for most residues, including the ligand ergotamine (fig. S4).

We compared the XFEL structure of the 5-HT2B receptor/ergotamine complex (5-HT2B-XFEL) with the recently published structure of the same receptor/ligand complex obtained by means of traditional microcrystallography at a synchrotron source [Protein Data Bank (PDB) ID 4IB4; 5-HT2B-SYN] (21). Synchrotron data were collected at 100 K on cryo-cooled crystals of a much larger size (average volume, ~10⁻⁴ µm³) than those used for the XFEL structure (average volume, ~10⁻² µm³) (fig. S1). Other differences between data collection protocols are listed in table S1. Both data sets were processed in the same spacegroup C2221, which is expected given the very similar crystallization conditions. However, the lattice parameters for the room-temperature XFEL crystals are slightly longer in the a and b directions and slightly shorter in the c direction, resulting in a 2.1% larger unit cell volume. Concomitant with these lattice changes, we observed a ~2.5° rotation of...
hydrogen bond with the main chain carbonyl of Ile110. In the 5-HT2B-SYN structure, however, a water-stabilized kink was found at this location, which results in the two structures deviating by 2.0 Å (at Cα atom of Thr114) at the tip of helix II and up to 3.4 Å (at O atom of Phe117) in ECL1.

Although absolute B- (or temperature) factor values can be affected by errors associated with experimental conditions, their distribution generally represents the relative static and dynamic flexibility of the protein in the crystal (22). Because both structures were obtained from similar samples and at similar resolutions, we analyzed their B-factor distributions so as to study the effect of the different temperatures on the thermal motions of the receptor. The average B-factor for the receptor part in the room-temperature 5-HT2B-XFEL structure (88.4 Å²) is 21 Å² larger than that in the cryo 5-HT2B-SYN structure (67.2 Å²), which is consistent with larger thermal motions at higher temperature and possible effects of Bragg terminations in both structures (20). The distribution of B-factors highlights a more rigid core of the seven transmembrane helices in comparison with loops, with more pronounced B-factor deviations observed in the room-temperature 5-HT2B-XFEL structure (Fig. 3 and fig. S6). N terminus, intracellular loop 2 (ICL2), ECL1, and part of ECL2 between helix IV and the Cys128–Cys207 disulfide bond show much larger deviations in B-factors (50 to 100 Å²) between the two structures as compared with the average difference of 21 Å². These parts of the structure are not involved in direct interactions with the ligand ergotamine, but their mobility may affect the kinetics of ligand binding and interactions with intracellular binding partners (23). In contrast, ICL1, part of ECL2 between the Cys128–Cys207 disulfide bond and helix V, and ECL3 display just an average increase in the B-factors, suggesting that the relative range of their thermal fluctuations was adequately captured in the cryo structure. As previously established with cryocrystallography, one of the most pronounced differences between the two subtypes of serotonin receptors, 5-HT2B, and 5-HT1B, occurs at the extracellular tip of helix V and ECL2, which forms an additional helical turn stabilized by a water molecule in 5-HT2B (21). This additional turn pulls the extracellular tip of helix V toward the center of the helical bundle and was suggested to be responsible for the biased agonism of ergotamine at the 5-HT2B receptor. The 5-HT2B-XFEL structure confirms the rigid structural conformation of ECL2, stabilized by a comprehensive network of hydrogen bonds, involving residues Lys193, Glu196, Arg213, Asp216, and a lipid OLC (monoolein) (fig. S7); however, no ordered water molecule was observed, emphasizing that water is more disordered and probably does not play a substantial structural role at this location.

Several side chains have partly missing electron density in both room-temperature and cryo structures (table S2). Such lack of density is most likely related to disorder of the corresponding side chains (such as residues at the N terminus, ECL2, and ICL2) (Fig. 2A). Two disulfide bonds, Cys128–Cys207 and Cys350–Cys353, are intact and well resolved in both structures; however, the B-factor increase in the 5-HT2B-XFEL structure compared with 5-HT2B-SYN for each of these disulfide bonds (11.1 and 5.7 Å², respectively) is lower than that of the average B-factor increase (21 Å²). Several side chains have different rotamer conformations between the two structures (Fig. 2D and table S3), which is consistent with a partial remodeling of the side chain conformational distribution upon cryo-cooling observed in soluble proteins (24). Several interactions involving charged residues appear stronger and better defined in 5-HT2B-XFEL compared with the 5-HT2B-SYN structure (table S4). This strengthening of the charged interactions at higher temperatures potentially can be explained...
by a decrease in the dielectric constant of water with temperature, reducing the desolvation penalty (25, 26). In particular, the salt bridge between Glu319 and Lys247 is well defined in the 5-HT$_{2B}$-XFEL structure but appears broken in the cryo 5-HT$_{2B}$-SYN structure (Fig. 2B). Because GPCR activation has been associated with large-scale structural changes in the intracellular parts of helices V and VI, this salt bridge may play a role in the receptor function and is likely to be more accurately resolved and represented in the 5-HT$_{2B}$-XFEL structure recorded at room temperature.

Overall, the observed differences likely originate from effects related to thermal motions, cryocoating (24), and radiation damage (27). Thus, the XFEL source enables access to a room-temperature GPCR structure, which more accurately represents the conformational ensemble for this receptor under native conditions. Because dynamics are an integral part of GPCR biology, the use of XFEL to accurately determine GPCR structural details at room temperature can make an important contribution to understanding the structure-function relationships in this superfamily.

References and Notes

15. Materials and methods are available as supplementary materials on Science Online.

mTOR Inhibition Alleviates Mitochondrial Disease in a Mouse Model of Leigh Syndrome

Simon C. Johnson,1 Melena E. Yanos,1,2 Ernst-Bernhard Kayser,3 Albert Quintana,4 Maya Sangesland,5 Anthony Castanza,3 Lauren Uhde,3 Jessica Hui,3 Valerie Z. Wall,1 Arni Gagnidze,6 Kelly Oh,3 Brian M. Wasko,3 Frensida J. Ramos,3 Richard D. Palmiter,4 Peter S. Rabinovitch,3 Philip G. Morgan,3 Margaret M. Sedensky,5 Matt Kaeberlein3

Mitochondrial dysfunction contributes to numerous health problems, including neurological and muscular degeneration, cardiomyopathies, cancer, diabetes, and pathologies of aging. Severe mitochondrial defects can result in childhood disorders such as Leigh syndrome, for which there are no effective therapies. We found that rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, robustly enhances survival and attenuates disease progression in a mouse model of Leigh syndrome. Administration of rapamycin to these mice, which are deficient in the mitochondrial respiratory chain subunit Ndufs4 [NADH dehydrogenase (ubiquinone) Fe-S protein 4], delays onset of neurological symptoms, reduces neuroinflammation, and prevents brain lesions. Although the precise mechanism of rescue remains to be determined, rapamycin induces a metabolic shift toward amino acid catabolism and away from glycolysis, alleviating the buildup of glycolytic intermediates. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.

Leigh syndrome is a clinically defined disease resulting from genetic defects that disrupt mitochondrial function. It is the most common childhood mitochondrial disorder, affecting 1 in 40,000 newborns in the United States (1). Leigh syndrome is characterized by...