First light on $3d$ photoionization of multiply charged xenon ions: a new photon-ion merged beam setup at PETRA III

S. Ricza, S. Schippersa 1, T. Buhra, K. Holstea, A. Borovik Jr.a, J. Hellhunda, H.-J. Schäfera, D. Schurrya, K. Mertensb, M. Martinsb, R. Fleschc, G. Ulrichc, E. Rühle, J. Lowera, T. Jahnea, D. Metzd, L. Schmidtd, M. Schöfflerd, J. B. Williamsd, R. Dörnerd, L. Glasere, F. Scholze, J. Seltmanne, J. Viefhause, A. Dornf, A. Wolff, J. Ullrichg, and A. Müllera 2

aInstitut für Atom- und Molekülphysik, Universität Giessen, 35392 Giessen, Germany
bInstitut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
cInstitut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
dInstitut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
eFS-PE, DESY, 22607 Hamburg, Germany
fMax-Planck-Institut für Kernphysik, Heidelberg, 69117 Heidelberg, Germany
gPhysikalisch Technische Bundesanstalt, 38116 Braunschweig, Germany

Synopsis

A photon-ion merged beam endstation has been set up at the variable polarization XUV-beamline P04 of PETRA III in Hamburg. In a commissioning experiment first results could be obtained for multiple photoionization of Xe$^{q+}$ ions ($q=1,2,...,5$) at photon energies around the $3d$ ionization threshold.

The Photon-Ion Spectrometer at PETRA III, PIPE, is an experimental setup for studying interactions of photons with charged particles [1, 2]. Target species are provided in the form of ion beams. Ion masses up to $q \times 50000$ u at energies of $q \times 2.4$ keV can be accommodated for q-fold charged ions. Possible target species are atomic and molecular ions or electrically charged clusters, fullerenes, biomolecules and nanoparticles. Photoionization and photofragmentation will be studied. Photo-ions, photo-fragments, photo-electrons and photon-induced fluorescence light will be observed. PIPE is a permanent endstation of the Variable Polarization XUV beamline P04 at PETRA III.

P04 is designed to provide synchrotron radiation at energies 250 eV to 3000 eV with a photon flux of 10^{12} photons per second at 0.01% bandwidth; 10^{13} photons per second are possible at lower resolution. The photon beam diameter in the merged-beam interaction region of PIPE is less than 1 mm. In a first experiment relative cross sections were determined for several channels of multiple ionization

$$h\nu + \text{Xe}^{q+} \rightarrow \text{Xe}^{(q+n)+} + n \text{e}^-, n = 2, 3, 4, 5$$ (1)

associated with Koster-Cronig and Auger cascades following the initial creation of a 3d vacancy. An example for the experimental results obtained is shown in figure 1. Along the xenon isonuclear sequence the resonance structure drastically changes from broad features at the $3d$ edge for Xe$^{7+}$ ions to relatively narrow resonances at the higher charge states.

Figure 1. Photoionization yield of Xe$^{7+}$ ions produced from Xe$^{5+}$ parent ions by synchrotron radiation with energies near the $3d$ ionization threshold.

Substantial financial support by the Bundesministerium für Bildung und Forschung (BMBF) has made this work possible.

Permanent address: ATOMKI, Debrecen, Hungary

References

1E-mail: Stefan.E.Schippers@iamp.physik.uni-giessen.de
2E-mail: Alfred.Mueller@iamp.physik.uni-giessen.de