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Abstract

In my thesis I present our work on the bottom-baryon light-cone distribution ampli-
tudes (LCDAs) and on the [bq][b̄q̄]-tetraquarks. For the former we extended the known
LCDAs for the ground state baryon Λb to the entire b-baryon ground state multiplets and
included s-quark mass-breaking e�ects. The LCDAs form crucial input for the calculations
of characteristic properties of b-baryon decays. In this context they can for example be used
in the calculation of form factors for semileptonic �avor-changing neutral-current (FCNC)
decays. For the [bq][b̄q̄]-tetraquarks, we calculated the tetraquark mass spectrum for all
quarks q = u, d, s, c in a constituent Hamiltonian quark model. We estimated the electronic
width by introducing a generalized Van Royen-Weisskopf formula for the tetraquarks, and
evaluated the partial hadronic two-body and total decay widths for the tetraquarks with
quantum numbers JPC = 1−−. With this input, we performed a Breit-Wigner �t, including
the tetraquark contributions, to the inclusive Rb-spectrum measured by BaBar. The ob-
tained χ2/d.o.f. of the BaBar Rb-scan data is fairly good. The resulting �ts are suggestive
of tetraquark states but not conclusive. We developed a model to describe the transitions
e+e− → Yb → Υ(nS)(π+π−, K+K−, ηπ0), in which Yb is a 1−− tetraquark state. The model
includes the exchange of light tetraquark and meson states. We used this model to �t the
invariant-mass and helicity spectra for the dipionic �nal state measured by Belle and used
the results to estimate the spectra of the channels e+e− → Yb → Υ(nS)(K+K−, ηπ0). The
spectra are enigmatic in shape and magnitude and defy an interpretation in the frame-
work of the standard bottomonia, requesting either an interpretation in terms of exotic
states, such as tetraquarks, or a radical alteration of the, otherwise successful, QCD-based
bottomonium-model. The tetraquark hypothesis describes the current data well. Our �ts
yield a good χ2/d.o.f ≈ 1.5 of the Belle data and show a clear resonant structure originat-
ing from the 0++ states. Additionally the 2++ state f2(1270) contributes to the transition
Yb → Υ(1S)π+π−. The predictions for the spectra are distinct from what is expected
for the known bottomonia, thus providing speci�c tests for our tetraquark interpretation.
More precise data from not only the Super-B factories at KEK and Frascati, but also from
a recent run of the Belle experiment in the �rst half of 2010 will provide further stringent
tests. If our predictions are con�rmed by experiments our dynamical model will be the
�rst theoretical work giving rise to the discovery of tetraquarks with a hidden bb̄ content.



Zusammenfassung

In der vorliegenden Doktorarbeit präsentiere ich unsere Analyse auf dem Gebiet der
Bottom-Baryon Lichtkegeldistributionsamplituden (LCDAs) und der [bq][b̄q̄]-Tetraquarks.
Für erstere können wir die bereits bekannten LCDAs des Multiplets der Grundzustands-
baryonen Λb auf die Gesamtheit aller bottombaryonischen Grundzustandsmultiplets unter
Einbindung der Strange-Quark Massenbrechungse�ekte verallgemeinern. Die LCDAs sind
unverzichtbare Eingangsgröÿen für die Berechnung der charackteristischen Eigenschaften
der bottombaryonischen Zerfälle. Für die [bq][b̄q̄]-Tetraquarks haben wir die Tetraquark-
massenspektren für alle Quarks q = u, d, s, c in einem hamiltonischen Konstituentenquark-
modell berechnent. Wir haben für Tetraquarks mit den Quantenzahlen JPC = 1−− die
elektronische Zerfallsbreite mit einer, für Tetraquarks, generalisierten Van Royen-Weisskopf
Formel abgeschätzt, sowie die partielle, als auch die totale, hadronische Zweiteilchen-
Zerfallsbreite berechnet. Mit diesen Kenngröÿen führten wir eine Breit-Wigner Aus-
gleichungsrechnung, unter Einbeziehung der Tetraquark Beiträge, an das, von BaBar
gemessene, Rb-Massenspektrum durch. Das erhaltene χ2 ist gut. Die resultierenden Pa-
rameterabschätzungen sind zwar suggestiv, allerdings nicht eindeutig. Zur Beschreibung
der e+e− → Yb → Υ(nS)(π+π−, K+K−, ηπ0) Übergänge entwickelten wir ein Modell,
in dem das Tetraquark Yb mit den Quantenzahlen 1−− beiträgt. Unser Modell berück-
sichtigt den Austausch leichter Tetraquark- und Meson-Zustände. Weiterhin benutzen
wir dieses Modell für eine Ausgleichungsrechnung der Invarianten-Massen- und Helizitäts-
Spektren der von Belle gemessenen dipionischen Endzustände und benutzen die Ergebnisse
für eine Abschätzung der Spektren für den Prozess e+e− → Yb → Υ(nS)(K+K−, ηπ0).
Die gemessenen Spektren sind rätselhaft in Gestalt und Gröÿenordnung und widerset-
zen sich einer Interpretation im Rahmen der bereits bekannten Bottomonium-Zustände
und verlangen damit nach einer Interpretation durch exotische Zustände, wie beispiels-
weise Tetraquarks, oder einer radikalen Änderung des, sonst sehr erfolgreichen, QCD
basierten Bottomonium-Modells. Unser Modell beschreibt die verfügbaren Daten hinge-
gen sehr gut. Unsere Ausgleichungsrechnung für die Belle Daten ergab einen guten Wert
von χ2/#Freiheitsgerade ≈ 1.5 und wies eine deutlich resonante Struktur mit Ursprung
in den 0++ Zuständen auf. Zusätzlich trägt der 2++ Zustand f2(1270) bei dem Übergang
Yb → Υ(1S)π+π− bei. Unsere Vorhersagen der Spektren sind immanent- und deswei-
teren gut unterscheidbar von den erwarteten Spektren der bekannten Bottomonia-Familie
und stellen damit hervorragende Tests unserer Tetraquark-Interpretation zur Verfügung.
Präzisere Daten der Super-B Fabriken am KEK und in Frascati, aber auch von einer in
der ersten Hälfte des Jahres 2010 unternommenen Messung am Belle Experiment werden
weitere wichtige Tests liefern. Sollte unsere Folgerung von den Experimenten bestätigt
werden, wäre unser Modell die erste theoretische Arbeit, die Anlass zur Entdeckung der
Tetraquarks mit verstecktem bb̄ Quarkgehalt gegeben hat.



Acknowledgments

Foremost I want to thank my supervisor Ahmed Ali for his support and guidance. I very
much enjoyed the years during my PhD thesis and the many discussions, in which I had
the opportunity to broaden my knowledge in �avor physics thanks to his help and his
patience. I am grateful for the support of Prof. Gustav Kramer and Prof. Jan Louis,
who wrote me several letters of recommendation and to Gustav Kramer and Joachim
Bartels for refereeing my dissertation and my disputation. I am thankful to the many
collaborators, Alexander Parkhomenko, Ishtiaq Ahmed, Muhammad Jamil Aslam, Satoshi
Mishima, Wei Wang, Yuming Wang and Aoife Bharucha in the past and present works for
the nice atmosphere, the opportunity to discuss ideas and to always have someone with an
observant eye. Without all these people physics would be pointless for me.

I enjoyed my stay at DESY also thanks to the many nice people and o�ce mates
Marco Drewes, Sebastian Mendizabal (vamos chile mierda, weon! - at this point also
thanks to Paola Arias), Hao Zou, Cecelie Hector and Sergei Bobrovskyi. During the last
years I was (and still am) honored to call many other people friends. I am thankful to
Stellan Bohlens, Benjamin Lutz, Tim Köppen, Rüdiger Beissert, Hagen Triendl, Thomas
Danckaert, Martin Hentschinski, Tobias Kasprzik, Ste�en Fiedler, Johannes Henkel and
Flame for the awesome times. To Aoife Bharucha , Stellan Bohlens, Marco Drewes and
Tobias Kasprzik I am thankful for proofreading my thesis. Also I want to thank Je�
Hanneman and Chuck Schuldiner along with the people from 2nd-sight for the music and
my art teacher Klaus Kehren and the people from the art studio for the inspiring moments
and for having the opportunity to free my mind.

Ich möchte auch meiner Familie danken, von der ich weiss, dass sie immer für mich da
ist, wenn ich sie brauche, und die mich immer unterstützt hat. Ich danke meinen Eltern
Heike und Werner Hambrock, meinen Groÿeltern Ruth und Arthur Feldmann, meinem
Onkel Claus Feldmann und seiner Frau Jutta. Vor allem wünsche ich meiner kleinen
Kusine Marie, die jetzt die Jüngste in unserer Familie ist, für ihr zukünftiges Leben
Zufriedenheit und alles Gute.

Insbesondere möchte ich Sarah Andreas danken, für ihre Unterstützung und ihre Mühe
sich durch meine unfertige Arbeit zu lesen, für ihre Zuwendung und ihre Bereitschaft ihr
Leben mit mir zu teilen, ihre Liebe und vor allem einfach dafür, dass sie da ist .



iv



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 HQET in the heavy-quark limit 3

2 b-baryon LCDAs 7

2.1 A compendium of LCDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Nonlocal light-cone operators . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Local operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Switching heavy-quark spin on . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 The LCDA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 [bq][b̄q̄]-tetraquarks 27

3.1 What are tetraquarks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Tetraquarks: experimental evidence and history . . . . . . . . . . . . . . . 32

3.3 Our work for tetraquarks in the bottom sector . . . . . . . . . . . . . . . . 35

3.4 Mass spectrum of bottom diquark-antidiquark states . . . . . . . . . . . . 40

3.4.1 Lowest lying [bq][b̄q̄] ground states with LQQ̄ = 0 . . . . . . . . . . . 43

3.4.2 Excited higher mass [bq][b̄q̄] states with LQQ̄ = 1 . . . . . . . . . . . 45

3.5 Isospin breaking and e+e− decay widths of the JPC = 1−− tetraquarks . . 48

3.6 Y[bq] decay modes and total decay widths . . . . . . . . . . . . . . . . . . . 51

3.7 Analysis of the BaBar Rb energy scan . . . . . . . . . . . . . . . . . . . . . 55

3.8 Analysis of the Belle data on e+e− → Yb → Υ(1S)(π+π−, K+K−, ηπ0) . . . 58

3.8.1 Model for the process e+e− → Yb → Υ(nS)PP ′ . . . . . . . . . . . 60

3.8.2 Fit to the Υ(1S)π+π− data . . . . . . . . . . . . . . . . . . . . . . 67

3.8.3 Predictions for e+e− → Υ(1S)K+K− and e+e− → Υ(1S)ηπ0 . . . . 69

4 Conclusions and outlook 73



vi CONTENTS

A Summary of de�nitions and useful relations 79

A.1 The Dirac �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 The gluon �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.4 Master integrals for renormalization . . . . . . . . . . . . . . . . . . . . . . 83

B b-baryon LCDAs 85

B.1 The Borel transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.2 QCD sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.3 Non-local vertex calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.3.1 Vertex calculations lowest order in gs . . . . . . . . . . . . . . . . . 88

B.3.2 Vertex calculations �rst order in gs . . . . . . . . . . . . . . . . . . 89

B.3.3 Local vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.4 Renormalization of the b-baryon LCDAs . . . . . . . . . . . . . . . . . . . 91

B.4.1 Lorentz structure of the one-loop diagrams . . . . . . . . . . . . . . 92

B.5 QCD sum rule results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.6 Numerical results for the LCDAs . . . . . . . . . . . . . . . . . . . . . . . 99

C Tetraquarks 101

C.1 Tetraquark interpolating currents . . . . . . . . . . . . . . . . . . . . . . . 101

C.2 Derivation of the Van Royen-Weisskopf formula . . . . . . . . . . . . . . . 102

C.2.1 Heavy qq̄-quarkonia . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.2.2 Heavy QQ̄-tetraquarks . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.3 Kinematics and phase space . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.4 Background and resonance contributions . . . . . . . . . . . . . . . . . . . 112

C.4.1 Continuum contribution . . . . . . . . . . . . . . . . . . . . . . . . 112

C.4.2 Scalar-resonance contribution S → ππ . . . . . . . . . . . . . . . . 115

C.4.3 f2(1270) contribution f2(1270) → ππ . . . . . . . . . . . . . . . . . 120

C.4.4 Isospin decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.5 Helicity amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.6 Decay constant for the η meson . . . . . . . . . . . . . . . . . . . . . . . . 125

C.7 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.8 Tables for Chap. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



Introduction

This work is concerned with two special topics in heavy-�avor physics: bottom baryon
light-cone distribution amplitudes (LCDAs) and hidden bottom tetraquarks. The former
describe quark distributions inside single bottom b-baryons. They are needed in the calcu-
lations of weak decays in the context of which they are crucial as input in any dynamical
model. Weak decays are needed in the determination of the unitary triangle, which is an
essential part in the exploration of the validity of the standard model. The attention in �a-
vor physics has so far mostly been focused on the meson sector. Especially in b-physics, the
B-factory experiments BaBar and Belle have concentrated on the production and decays of
the bb̄ resonances, Υ(1S), . . . ,Υ(5S), with Υ(4S) and Υ(5S) yielding precise measurements
of the B± and B0

d B̄
0
d meson characteristics (for a review see for example [1] and references

therein). In the future, experiments at the LHC, in particular LHCb, will measure not
only the properties of these mesons, but also the copiously produced Bs-mesons and the
b-baryons. The LHCb experiment will provide a huge amount of data, pushing the preci-
sion in this �eld of research to the next level. The expected high statistic measurements
provide the opportunity to extend the important progress in the B-meson sector achieved
over the last decades to the, relatively unexplored, b-baryon sector. Baryons moreover pro-
vide access to the exploration of di�erent spin interactions as available from the mesons.
Chap. 2, summarizes the work I did on this �eld of research together with Ahmed Ali and
Alexander Parkhomenko.

Tetraquarks are the second topic of my thesis. They are exotic 4-quark hadrons com-
posed of a diquark and an antidiquark, which are bound by attractive QCD forces. A
large number of hadrons and their decays have been measured and analyzed theoretically.
Especially in the past several years an impressive number of new hadronic states in the
mass region of the charmonia have been discovered. Several aspects of the current data are
enigmatic in the sense that these states do not fall in line with the known mesons, and so
far they have de�ed unambiguous theoretical interpretation. This charmonium-like exotic
hadrons [2], called X, Y and Z, in the literature, which have been measured in a number
of experiments [3�18], in particular, BaBar, Belle, CLEO and CDF revived the search for
exotic particles. Three di�erent frameworks have been suggested to accommodate these
exotic states: (i) D−D∗ molecules, containing a hidden cc̄ pair (cq̄)(c̄q) [19�23,23�32]; (ii)
cc̄g hybrids [33, 34]; and (iii) bound diquark-antidiquark or tetraquark states [35�42]. All
these interpretations stretch the current understanding of bound states in QCD, which is
mainly restricted to the qq̄ mesons and the qqq baryons.

The tetraquarks are also testing grounds for the dynamics of diquarks. Diquarks may
play a role in a number of phenomena, such as color superconductivity or in hadronization
processes. The proof of the existence of tetraquarks, and hence also the diquarks, will
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extend our knowledge of the nature of strong interactions and enormously enlarge the
quark model of Gell-Mann and Zweig by the diquarks as new hadron constituents, adding
new forms of hadronic interaction and a diversity of bound states. Thus, a quantitative
understanding of the exotic mesons, and their kith and kin, in the lighter and heavier cc̄
and bb̄ sectors, is of utmost importance. In Chap. 3, I present an overview over my studies
of the tetraquarks in the bottom sector, which I performed together with Ahmed Ali, two
summer visitors at DESY, Ishtiaq Ahmed and M. Jamil Aslam, and Satoshi Mishima. We
have calculated the bb̄-tetraquark masses using a constituent quark model and estimated
their decay widths. In particular, we have concentrated on the production and decays of
the orbital excited P -wave states, having the quantum numbers JPC = 1−−. They can be
produced in e+e− annihilation, and we have used our theoretical estimates of the masses
and decay widths to search for them in both the BaBar and Belle data in the region above
10.54 GeV [43]. We have also worked out a dynamical model to understand the measured
dipionic transitions involving the decays of Yb → (Υ(1S),Υ(2S))π+π−, where Yb is a bb̄
bound tetraquark state [44]. Moreover, the model is used to provide testable predictions
for the transition Yb → Υ(1S)(K+K−, ηπ0). With our work we were able to present a case
for the �rst tetraquark candidates observed in the bottom sector. The analysis of the data
of the recent Belle running in the �rst half of 2010 will hopefully tell us in the near future
if our tetraquark interpretation is con�rmed.

In Chap. 1 I give a brief account of the theoretical background. Since the two main
topics in this work are only remotely related, the common theoretical background is kept
short and every part has a short introduction on its own. Chap. 2 presents my work on
the LCDAs, and Chap. 3 is dedicated to the hidden bottom tetraquarks. In Chap. 4 I
conclude and give an outlook over expected results and outline promising future works.

Various details can be found in the appendices. App. A contains a summary of used
formulas and conventions. The details for the LCDAs and the tetraquarks can be found
in App. B and C, respectively.



Chapter 1

HQET in the heavy-quark limit

The two topics in my thesis have in common, that both involve one or more bottom-quarks
plus lighter ones combined in a hadronic bound state. Here I introduce the e�ective �eld-
theory approach to describe such states. The arguments and formulas presented in this
thesis are to some extent valid for all heavy charm and bottom-quarks (labeled c and
b respectively). Since throughout my work I am only concerned with the latter ones, I
refrain from introducing di�erent notations for heavy-quark �elds and discuss everything
by explicitly referring to the b-quark. Note, that the top-quarks play a special role among
the heavy-quarks: Due to its large mass the top-quark has an extremely short lifetime. In
consequence it decays faster than the actual hadronization process. Accordingly, there are
no top-quark bound states.

Naturally two or more energy scales are involved in the heavy-light-quark dynamics,
the heavy-quark mass and the lower QCD scale. The heavy-quark e�ective theory or
short HQET was developed to deal with scenarios of this type. It is a useful tool to handle
heavy-quarks in an e�ective �eld theory approach. It is surprising what the few and simple
derivations in this short chapter provide in insight in the �eld of heavy-�avor physics. The
results discussed here will be needed throughout this thesis.

HQET is based on an expansion in the inverse heavy-quark mass 1/mb, or more pre-
cisely, in the dimensionless quantity Λ/mb, where Λ is a characteristic hadronic energy
scale in a certain problem, typically Λ ' O(few hundred MeV). It is assumed, that the
b-quark mass is su�ciently larger in comparison with all other present energy scales. In
QCD bound states Λ is typically given by the con�nement energy ΛQCD or the con�nement
radius 1/ΛQCD. Sizes of hadronic states are usually of order 1 fm, which corresponds to
ΛQCD ≈ 200 MeV. As one can see, in the bottom sector with Λ/mb ≈ O(1/10) an ex-
pansion in this parameter converges in general quite fast. Therefore I consider only the
leading order in the heavy-quark expansion, in whichmb →∞, and hence the b-quark mass
becomes a non-dynamical constant quantity. This approximation is called the heavy-quark
limit. Neither in this chapter nor in the whole work I go beyond this approximation. For
a textbook about this topic see for example [45].

The b-quark part of the QCD Lagrangian is given by

LQCD = Q̄(i /D −m)Q+ . . . , (1.0.1)

where Q denotes the heavy b-quark �eld, and the dots denote all other QCD interaction
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terms, such as light-quark and gluonic interactions. The color SU(3), abbreviated as
SU(3)C , covariant derivative is given by Dµ = (∂µ − iAµ), where Aµ = gsA

a
µta is the

gluon �eld, gs is the color charge, which is related to the strong coupling constant via
g2
s/4π = αs and ta are the generators of the SU(3)C . The index a runs over the adjoint gluon
representation from 1 to 8. The indices for the fundamental triplet quark representation
are left implicit. Assuming as stated earlier, that all momenta are much smaller than mb,
the momentum pb for a heavy-quark moving with velocity v is written as

pb = mbv + p̃, with v2 = 1, (1.0.2)

in which p̃ is the residual momentum with |p̃µ| � mb, which vanishes in the heavy-quark
limit. By choice of reference frame the b-quark is moving slowly with velocity v and hence
this approximation violates Lorentz invariance. That this approximation works indeed well
in practice can be seen at the meson mass spectrum, in which it is observed, that the meson
mass of the heavy mesons is close to the constituent heavy-quark mass, which implies a
slow moving heavy-quark. If convenient one can also consider the b-quark at rest with
vµ = (1, 0, 0, 0) and perform a Lorentz boost with velocity v afterwards (for the Lorentz
boost see App. C.3). According to Eq. (1.0.2), the b-quark is on-shell in the heavy-quark
limit because |p̃|/mb → 0 and hence the heavy b-quark �eld ful�lls the non-relativistic
on-shell condition

/vQ = Q. (1.0.3)

The lower spinor components of Q, which are the negative energy solutions, vanish since
this equation projects out half of the components of the heavy-quark spinor, restricting it
to be a particle without antiparticle component. This can easiest be seen choosing the rest
frame vµ = (1,~0), in which Eq. (1.0.3) becomes

(γ0 − 1)Q = 0, with (1.0.4)

γ0 − 1 = −2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 in the Dirac representation. (1.0.5)

Obviously the matrix kernel is two dimensional. Because particles and antiparticles have
di�erent parity and γ0 is the parity operator in spinor space this equation expresses, that
the antiparticle components of the heavy-quark spinor are projected out.

With the use of Eq. (1.0.2) the fermion propagator can be expanded in the inverse of
the heavy-quark mass. In zeroth order the b-quark propagator is then given by

mb +mb/v + /̃p

(mbv + p̃)2 −m2
b + iε

=
1 + /v

2

1

p̃.v + iε
+O(1/mb). (1.0.6)

With the help of

∞∫
−∞

e−iωt

(−ω − iε)n
dω

2π
=

in

Γ(n)
tn−1Θ(t), (1.0.7)
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Figure 1.1: Schematic picture of the simpli�cations arising in the heavy-quark limit for a
bound state containing a single b-quark. The heavy-quarks is put on-shell and the coupling
to the light-quark cloud is independent of the heavy-quark spin.

the b-quark propagator in coordinate space is obtained:

i < T{Q(x)Q̄(0)} > =
1 + /v

2

∫
dtδ4(x− vt), (1.0.8)

and the b-quark behaves like a classical pointlike source moving with velocity v and Lorentz
structure (1 + /v)/2.

The heavy-quark propagator provides enough information to determine the spin depen-
dent interaction of the b-quark. By using the simple identity

1− /v

2
γµ

1− /v

2
=

1− /v

2
vµ

1− /v

2
, (1.0.9)

which is present whenever a gluonic interaction is sandwiched between two b-quark prop-
agators in the heavy-quark limit, the coupling of the b-quark and the gluon �eld can be
simpli�ed by

µa
=̂ igtaγµ −→ igtavµ =̂

µa

. (1.0.10)

Throughout this work the heavy-quark is represented by a thick line. Eq. (1.0.10) is also
true for external states because the on-shell condition (1.0.3) for the external �elds allows
for the insertion of the same projector. An equivalent statement is, that the heavy-quark
spin can be rotated arbitrarily or switched o� (super�avor symmetry). The simpli�cations
arising from the Eqs. (1.0.3) and (1.0.10) are pictured in Fig. 1.1 for a hadronic bound
state containing one b-quark.

The Lagrangian, describing the b-quark in the heavy-quark limit, which corresponds to
the properties in Eq. (1.0.9) and (1.0.10) is given by

LQCDv = Q̄viv.DQv + . . . , (1.0.11)

where the index v is a reminder of the Lorentz frame in which the Lagrangian is de�ned.



6 HQET in the heavy-quark limit

The simple expressions obtained in the heavy-quark limit, especially Eqs. (1.0.3)
and (1.0.10), lead to far-reaching simpli�cations. Anticipatory of what is coming in the fol-
lowing chapters, let me name two of them: Due to the spin decoupling the number of twist
ordered wave functions reduces by a factor of four (the degrees of freedom of the heavy-
quark spinor), as will be shown in Chap. 2. The spin decoupling gives us an argument at
hand, that there might be vector-like heavy-diquarks even though there is evidence, that
they do not exist in the light-quark sector, which is discussed in Chap. 3.



Chapter 2

b-baryon LCDAs

In this chapter, I discuss the calculation of single bottom baryon light-cone distribution

amplitudes, or short LCDAs. First I will give a short overview about the nature of the single
bottom-baryons, in which context their LCDAs are needed and which role the LCDAs play
in decay processes. Then I present the work I did together with Ahmed Ali and Alexander
Parkhomenko. Our analysis is similar to the work of Ball, Braun and Gardi [46], in which
the case of Λb-baryon is presented. We generalized their work to describe all ground
state b-baryons, including higher spin states, and incorporated �avor SU(3), or shorthand
SU(3)F , breaking e�ects by taking the mass of the s-quark into account. Both approaches,
our and [46], are based on HQET in the heavy-quark limit and QCD sum-rules.

The b-baryons will be copiously produced at the LHC and their decays will be measured
at the LHCb experiment. Of special interest are the decays in which the b-quark inside the
baryon decays weakly and the baryon undergoes a transition to a di�erent hadronic �nal
state. These �avor changing decays may give new perspectives on the determination of
the unitary triangle and therefore provide some hints on new physics beyond the standard
model in the same fashion decays of heavy mesons did during the last decades. As is
pointed out in [46], the advantage of baryons over mesons is the di�erent spin assignment
of its constituent quarks, which will provide new understanding of high energetic spin
interactions. Our generalizations to the full ground state multiplets will provide new input
for this analysis, and the calculated SU(3)F breaking e�ects might further be of interest for
studying strange-quark properties. Especially the Ξ-resonances include three di�erent mass
quarks, the bottom, the strange and one light u or d quark are of relevance. They might give
interesting insights on the nature of the strange-quark propagating in QCD background
and give some hints on the validity of quark condensate models. Comparison with the
kaon or Bs system will show to what extent the condensates are universal quantities.

First I introduce the framework of the LCDAs and discuss their de�nition by non-
local operators in Sec. 2.1 and 2.2. In Sec. 2.3 and 2.4 I discuss the local limit of the
operators and show how to restore Lorentz invariance, which is broken in the heavy-quark
limit. The calculations of the correlation functions, which are de�ned as matrix elements
of the non-local and local operators are performed subsequently in 2.5 followed by their
renormalization in 2.7. At the end I present the results in 2.8. Tedious calculations and
reviews of the used techniques for this chapter are sourced o� to App. B for clearer reading.
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Figure 2.2: Fixed initial state kinematics of an e+e− accelerator on the left side compared
with the decaying b-baryon with initial state momentum distribution provided by the
LCDAs on the right side. The initial state kinematics for the former is trivial, while the
initial state kinematics for the latter, i.e. the parton distributions, can only be obtained
approximately.

2.1 A compendium of LCDAs

A b-baryon consists of three valence-quarks, a single bottom-quark and two light-
quarks q, which are in this chapter representatives of the light-�avor SU(3)F
group and can thus be an up, down or a strange-quark (q = u, d, s).

Figure 2.1: Weak decay of a heavy
hadronic state I into a �nal hadronic
bound state III. The interaction region
II is perturbative and can be calculated
on partonic level.

The b-quark inside the baryon can decay by cou-
pling weakly to a W -boson, involving the ele-
ments of the CKM matrix Vub or Vcb. In sim-
pli�ed words the weakly decaying b-baryons are
small accelerators running at an energy region
of a few GeV. While the e+e− machines have a
very simple asymptotic kinematic (two almost
massless fermions at �xed center of mass en-
ergy

√
s are moving towards each other along

the beam axis with pe+ = (
√
s, 0, 0,

√
s)/
√

2
and pe− = (

√
s, 0, 0,−

√
s)/
√

2), the baryons
are more complicated. A schematic picture, in
which the initial state kinematics of an e+e− ac-
celerator is compared with the initial state kine-
matics of a weakly decaying b-baryon, is given
in Fig. 2.2, in which the momenta pi of the
quarks which leave the baryon during its decay
are not �xed as the momenta of the electrons
and positrons in the storage rings. They are distributed in phase space with certain proba-
bilities. To calculate the b-baryon decays, this probability distributions need to be known.
The purpose of the light-cone distribution amplitudesis to provide these distributions. How-
ever, since they can be arbitrarily complicated, models such as LCDAs are to some extent
limited, as will be discussed in the following.
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Since the binding energy is of order ΛQCD < 1GeV, the hadronic bound states are
non-perturbative objects. However, when the b-quark decays the energy is larger than
the con�nement scale, involving a perturbative part called hard scattering kernel or short
HSK, see Fig. 2.1. The energy scale of the decay is given by the mass di�erence of the
heavy b-quark and the lighter quark produced in its weak decay. For a b-quark decaying
in a light-quark (u, d, s), the energy is approximately of the order of the b-quark mass
mb ≈ 4 − 5 GeV. For perturbation theory to be applicable at partonic level, the high
energetic, or hard part, has to be separated from the low energy bound states, and the
state has to be split in its partonic components. This means, that the incoming baryonic
state |Hb〉 has to be rewritten in the partonic basis, i.e. the Fock-State basis

|Hb〉 =
∑
I

|PI〉 〈PI | Hb〉 , (2.1.1)

in which the formal sum over I includes summation and integration over all possible quan-
tum numbers characterizing the states. The Fock state |PI〉 depends on the partonic
momenta and polarizations and is weighted by the probability (or wave function) 〈PI | Hb〉
for �nding the state |PI〉. The process shown in Fig. 2.1 can thus formally be written as

|Hb〉 =
∑
I

〈�nal state|HSC |PI〉 〈PI | Hb〉 . (2.1.2)

If there are hadronic particles left in the �nal state, a similar expansion in their Fock
states needs to be performed, and the partonic amplitude, which includes the interaction
described by the HSK, can be calculated using Feynman rules. The formal sum is performed
afterwards, and thus the Feynman amplitude is convoluted with the wave functions.

Figure 2.3: Lightcone approximation. nµ
is a light-like vector and t1 and t2 are the
coordinate projections of the light-quark
coordinates on the light-like axis. The
origin coincides with the b-quark (big
blue sphere). This constellation gives the
dominant contribution to the wave func-
tion.

A hadron consists of in�nitely many partonic
states, containing valence-quarks, sea-quarks,
gluons and other elementary particles. Since one
can not account for all of them, some approxi-
mation has to be made. The simplest possibility
is to adopt the valence-quark approximation by
taking into account only the valence-quark state
〈P0| = 〈bqq|, which is the lowest order term in
the Fock state basis. Furthermore, the domi-
nant contribution of the wave functions is orig-
inating from the part, where the light-quarks
propagate near the light-cone (for a review see
[47]Chap. 4). In leading order in the expansion
of the light-quarks in the vicinity of the light-
cone, the quarks are aligned along a light-like
direction nµ (n2 = 0) hence the �L� in LCDA.
Choosing the b-quark to be in the origin of the
coordinate frame, the dynamics is described by
the projections ti of the light-quark coordinates
on the axes along nµ, shown in Fig. 2.3.



10 b-baryon LCDAs

To calculate the LCDAs, one needs to give a meaning of the rather formal de�nition of
the wave function in Eq. (2.1.1) in the valence-quark approximation

〈P0| Hb〉 = 〈q1q2b| Hb〉 (2.1.3)

in a quantitative way. However, it is not possible to use creation and annihilation operators
to get hadron-to-vacuum transition matrix elements of the form

〈q1q2b| Hb〉 = 〈0| q1(nt1)q2(nt2)b(0) |Hb〉 (2.1.4)

in a straightforward manner. To ensure SU(3)C gauge invariance, gauge factors

E(x, y)i
′

i = P{ e
−igs

yR
x
dzµAc

µ(z)tci′
i} , (2.1.5)

the so called Wilson lines have to be included. In this expression P indicates path ordering,
gs is the strong coupling constant, nµ is the above de�ned light-like vector, and Aµ is the
gluon �eld. In the light-cone gauge with A+ = 0 the Wilson lines vanish because they
ful�ll E(tin, tjn)i

′
i = δi

′
i . The necessity of the Wilson lines can be easily understood in

the language of gauge theory and its principle of locality. An object needs to be locally
gauge invariant, here under the color SU(3)C . If the baryon state is de�ned through non-
local operators, one needs to take care, that the baryon is not de�ned at several spacetime
points at the same time. The gauge links ensure that all colored objects are transported
to the one spacetime point where the baryon is then properly de�ned. By convenience this
will be the coordinate of the bottom-quark. Including index and coordinate structure, the
operators are given by

〈q1q2b| Hb〉 = εijk 〈0| q1(t1n)αi′q2(t2n)βj′b(0)γkE(t1n, 0)i
′

iE(t2n, 0)j
′

j |Hb〉 , (2.1.6)

where α, β and γ are spinor indices, i, i′, . . . are color indices. For abbreviation, color
indices and Wilson lines are henceforth left implicit.

In a nutshell one can say, that the LCDAs give the probability to �nd a certain given
light-like coordinate distribution inside the baryon and are de�ned through the non-local
light-ray operators in Eq. (2.1.6).

The heavy-quark limit is adopted for the following calculations, thus the mass of the
heavy-quark is assumed to be arbitrary large. Thereby contributions proportional to ΛQCD

mb

are neglected, as discussed in Chap. 1. Two major simpli�cations arise in this limit.
The heavy-quark can be set on mass-shell, moving with a constant velocity vµ. Thus
it becomes an external color source and obeys the non-relativistically normalized Dirac
equation (1.0.3). The second important simpli�cation arises due to the reason, that the spin
dependent interactions of the light-quarks with the heavy quark enter with a factor ΛQCD

mb

and thus can be neglected, according to the heavy-quark spin symmetry in Eq. (1.0.10).
In this way another half of the components of the heavy-quark spinor is projected out.

Without the heavy-quark limit the bound state of three quarks transforms under a
representation of the spin(3, 1). The spin(3, 1) is given by the double covering of the spin
group SU(2) ⊕ SU(2). Every fermion spinor is composed of two two-component Weyl
spinors and transforms under the fundamental representation {0, 1

2
}⊕{1

2
, 0}. Hence, every
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valence-quark transforms as a four component spinor. Because there are three valence-
quarks, the third tensor product of the fundamental representation gives the multiplets of
a three-quark state. In conclusion, the correlator

〈0| q1αq2βbγ |Hb〉 , (2.1.7)

with spinor indices α, β and γ can be expanded in a 43 = 64 dimensional covariant basis
CI
αβγ with I = 1, . . . , 64, which has been done in [48]. The present case simpli�es in the

heavy-quark limit, since, due to the discussed symmetries, all spinor degrees of freedom
of the heavy-quark have been projected out. One �nds, that the tensor product in the
spinor space is in this limit merely a normal product of the light-quark system with the
heavy-quark:

CI
αβγ → BJ

αβ × ψγ, J = 1, . . . , 16. (2.1.8)

Hence, the b-baryons are not characterized by the overall spin, but by the

Figure 2.4: The SU(3)F �avor multiplets of the
bottom-baryons. The �avor SU(3)F triplet with spin-
parity JP = 1/2+ and scalar light-quark current (jp =
0+) is shown to the left, and the heavy-quark doublet
with spin-parity (JP = 1/2+, JP = 3/2+) and vector
light-quark current (jp = 1+) is shown to the right.
Isospin and strangeness are given by I and S respec-
tively.

spin of the light-quark system.
Therefore there are no spin 1/2
or spin 3/2, but scalar spin 0
or vector spin 1 b-baryons, see
Fig. 1.1. The Lorentz structure of
the baryon is equal to the struc-
ture of the product of an on-shell
spinor ψγ with a light scalar me-
son (sl = 0) in the case of Λ0

b and
a vector meson (sl = 1) in the case
of Σb. The meson structure has al-
ready been discussed in [49].

The ground state SU(3)F
baryon multiplets considered in
this work are pictured in Fig. 2.4,
in which the two di�erent multi-
plets are characterized by the spin
parity jp of the light-quark sys-
tem. In the state with jp = 0+

the spin wave-function is antisym-
metric, while Fermi statistics of the baryon state and antisymmetry in color space require
antisymmetric �avor wave-function. This results in a baryonic state with isospin I = 0
constructed from the light u- and d-quarks which is called the ΛQ-baryon (the overall
spin-parity is JP = 1/2+). When the light-quark state has quantum numbers jp = 1+,
the baryons come in doublets (with overall spin-parity JP = 1/2+, JP = 3/2+). The spin
part for these baryons of the baryon wave-function is symmetric, which requires symmetry
of the wave-function in �avor space. In the case of light u- and d-quarks this gives two
degenerate states with isospin I = 1, which are called ΣQ- and Σ∗

Q-baryons. Inclusion
of the s-quark increases the number of heavy baryons in the multiplet, characterized by
strangeness S. If S = −1, there are two baryonic states ΞQ and Ξ′Q with JP = 1/2+ and



12 b-baryon LCDAs

Ξ∗Q-baryon with JP = 3/2+. For S = −2, the baryons with JP = 1/2+ and JP = 3/2+ are
called ΩQ and Ω∗

Q respectively.

To �nd an explicit Lorentz-invariant expression for the basis in (2.1.8), BJ
αβ can be

expanded in γ-matrices. The only Lorentz-invariant possibilities in the expansion are the
metric gµν and the following antisymmetric tensors

tensor degrees of freedom
1 1
γµ 4
γ[µγν] = −iσµν = 1

2
εµνρσσ

ρσγ5 6
γ[µγνγρ] = −iεµνρσγσγ5 4
γ[µγνγργσ] = −iεµνρσγ5 1

, (2.1.9)

where the notation γ[µγν] = 1
2
(γµγν − γνγµ), etc. has been adopted. Note, that the third

(fourth) grade tensors are equal to the �rst (zeroth) grade tensors with opposite parity due
to duality. In total 5 tensors 1, γµ, σµν(' σµνγ5), γµγ5 and γ5 with combined 42 = 16
degrees of freedom have to be taken into account in the expansion. The parity of each
considered baryonic state needs to be positive, and the parity operator for a three-spinor
object is obtained by acting on each spinor index with γ0:

BJ
αβ × ψγ

parity−→ (γ0B̃
JγT0 )αβ × (γ0ψ̃)γ = (γ0B̃

Jγ0)αβ × ψγ. (2.1.10)

The tilde indicates the parity transformation. A more convenient basis is obtained by
multiplying each element with the charge conjugation matrix C, which is in the Pauli-
Dirac representation given by C = iγ2γ0. Hence, Eq. (2.1.7) can be expanded in the basis
in (2.1.9) with unknown coe�cient functions φi:

〈0| q1αq2βbγ |Hb〉 =
1

4
(φ1Cγ5 + φ2µCγ5γ

µ + φ3µνCσ
µν + φ4µCγ

µ + φ5C)αβ ψγ. (2.1.11)

By taking the trace and using the orthogonality of the matrices every coe�cient function is
de�ned by an interpolating operator. As example I show how the �rst coe�cient function
φ1 is projected on its corresponding interpolating current:

〈0| q1Cγ5q2bγ |Hb〉=
1

4
(γT5 C

T )βα(φ1Cγ5 + φ2µCγ5γ
µ + φ3µνCσ

µν + φ4µCγ
µ + φ5C)αβ ψγ,

= φ1ψγ, (2.1.12)

where the second and the fourth traces vanish because they include an odd number of γ
matrices, the third because σµν is antisymmetric and the last one because the trace of
γ5 is 0. In this way all of the basis elements are orthogonal with respect to each other
and the Dirac structure can be moved to the light-quark currents, projecting out the
corresponding coe�cient function. According to (2.1.10) the light-quark currents have the
following transformation properties:

q1Cγ5q2 q1Cγ5γµq2 q1Cσµνq2 q1Cγµq2 q1Cq2
scalar vector tensor pseudovector pseudoscalar

(2.1.13)
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In summary the b-baryon in the approximations made here is composed of a scalar
on-shell b-quark surrounded by o�-shell light-quarks, moving on the light-cone. The latter
are in spinor space the same objects as mesons. The wave functions giving the parton
distributions on the light cone are according to Eq. (2.1.12) de�ned by corresponding
matrix elements.

2.2 Nonlocal light-cone operators

The explicit form of the baryonic operators de�ned in (2.1.6) is derived in this section. The
operators for the jp = 0+ triplet are known and given in [46]Eq. 1. This section is about
the sextet in Fig. 2.4.

According to the discussion in the previous section, the Rarita-Schwinger vector-spinor
Rµ

γ describing the j
p = 1+ baryon sextet can be written as a product Rµ

γ → εµuγ of the
heavy-quark spinor uγ and the polarization vector εµ of the light-quark system, described
by Eq. (2.1.8) or Fig. 1.1. This is the e�ect of spin decoupling of light and heavy degrees of
freedom in the heavy-quark limit. The properties of uγ and εµ are shortly reviewed, while
detailed information can be found in [50]Eqs. 2.12, 2.13. Afterwards the baryonic currents are
constructed.

The spin sum is given by

2∑
i=1

uiūi = P+ and
3∑
i=1

ε∗iµ ε
i
ν = −gµν + vµvν , (2.2.1)

with P+ = (1 + /v)/2 and normalization

−gµν
∑

Tr
[
uε∗µεν ū

]
= 6, (2.2.2)

which corresponds to the number of degrees of freedom (3 from the light-quark polarization
vector, since it has to ful�ll the transversality condition vµεµ = 0 leaving 3 degrees of free-
dom, times 2 from the heavy-quark on-shell spinor). The polarization vector is normalized
as εµε∗µ = 1.

The currents are non-local objects, aligned along a light-like direction nµ, with coor-
dinates tinµ for the i-th quark. For simplicity the baryon is de�ned in the frame of the
b-quark Qγ = Q(0)γ, and the Wilson lines are omitted. Their in�uence will be discussed
whenever necessary. Including the light-cone coordinate dependencies one �nds for the
non-local light-cone operators, which de�ne the LCDAs and were discussed in Sec. 2.1,
that they can be written as

〈0| q1(t1)CΓµq2(t2)×Qγ(0) |Hb〉 =
3∑
i=1

fHb
ψΓ
i (t1, t2)ε

(i)µ × uγ (2.2.3)

in the heavy-quark limit. Here Γµ symbolizes all possible spinor structures allowed by
Lorentz symmetry, Hb represents a baryon state of the sextet in Fig. 2.4, fHb

is the bary-
onic decay constant and ψΓ

i are the distribution amplitudes corresponding to the current
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de�ned by Γµ. The maximal number of independent structures is 16, as discussed in the
previous section. Taking into account the currents in Eq. (2.1.13) and the two Lorentz
vectors vµ and nµ, the maximal basis in Lorentz space is obtained. In total there are 8 lin-
ear independent structures, nµ1, γµ, nµ/v, nµ/n, −iσµv, −iσµn, −inµσnv and εµvnργργ5.
The notation nµvνσµν ≡ σnv, etc. is used to shorten the expressions. The most gen-
eral three-quark current in HQET is, corresponding to the Rarita-Schwinger vector-spinor,
given by the direct product (not the spin tensor product, in which spin coupling terms like
q1Cσ

µνq2.(γνQ)γ, . . . are present) of the light-quark current times the heavy-quark �eld Q.

Since the quarks are aligned along the light-like direction nµ, it is convenient for the
description of the quark dynamics to work in the light-cone basis, where a vector aµ is
decomposed as

aµ =
1

2
(a−nµ + a+n̄µ) + a⊥µ , (2.2.4)

in which nµ = (1, 0, 0,−1) and n̄µ = (1, 0, 0, 1) are light-cone vectors with n2 = n̄2 = 0,
nµn̄

µ = 2, and a⊥µ refers to the remaining two spacelike dimensions, which are perpendicular
to both nµ and n̄µ. The scalar product of two vectors aµ and bµ is given by

aµb
µ =

1

2
(a+b− + a−b+) + a⊥µ b

⊥µ. (2.2.5)

The coe�cients of the decomposed kinematical vectors

vµ =
1

2
(

1

v+

nµ + v+n̄µ),

εµ =
1

2
ε(

1

v+

nµ − v+n̄µ) + ε⊥µ, (2.2.6)

have been chosen in a way to ful�ll the conditions v2 = 1, εµε∗µ = 1 and the transversality
condition vµε

µ = 0. By the choice of the coordinate frame, vµ has no perpendicular
components. Accordingly ε⊥µ is called transversal and ε‖µ ≡ εµ− ε⊥µ parallel polarization.
They ful�ll the conditions ε‖µε

µ
⊥ = 0, ε‖µε

µ
‖ = −ε2, ε⊥µε

µ
⊥ = ε2−1 and nµεµ = −εv+. The

scalar variable ε is the measure for the amount of parallel polarization.

Eq. (2.2.3) splits in linear independent parallel and transversal parts:

〈0| q1(t1)Γµq2(t2)Qγ |Hb〉 = fHb
(ψΓ

‖ (t1, t2)ε
µ
‖ + ψΓ

⊥(t1, t2)ε
µ
⊥)uγ. (2.2.7)

Thus the parallel operators

wµ

v+

〈0| (q1(t1)C/nq2(t2))Qγ |Hb〉 = ψn(t1, t2)f
(2)
Hb

εµ‖uγ,

iwµ 〈0| (q1(t1)Cσn̄nq2(t2))Qγ |Hb〉 = 2ψnn̄(t1, t2)f
(1)
Hb

εµ‖uγ,

wµ 〈0| (q1(t1)Cq2(t2))Qγ |Hb〉 = ψ1(t1, t2)f
(1)
Hb

εµ‖uγ,

−v+w
µ 〈0| (q1(t1)C/̄nq2(t2))Qγ |Hb〉 = ψn̄(t1, t2)f

(2)
Hb

εµ‖uγ, (2.2.8)
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and transversal operators

i

v+

〈0| (q1(t1)Cσ µ
n⊥ q2(t2))Qγ |Hb〉 = ψ⊥n(t1, t2)f

(2)
Hb

εµ⊥uγ,

〈0| (q1(t1)Cγµ⊥q2(t2))Qγ |Hb〉 = ψ⊥(t1, t2)f
(1)
Hb

εµ⊥uγ,

i 〈0| (q1(t1)Cσn̄nγµ⊥q2(t2))Qγ |Hb〉 = 2ψ⊥5(t1, t2)f
(1)
Hb

εµ⊥uγ,

iv+ 〈0| (q1(t1)Cσ µ
n̄⊥ q2(t2))Qγ |Hb〉 = ψ⊥n̄(t1, t2)f

(2)
Hb

εµ⊥uγ, (2.2.9)

can be identi�ed. The following notations have been used, γµ⊥ = γµ − 1
2
(/nn̄µ + /̄nnµ),

{γµ⊥, /n} = {γµ⊥, /̄n} = 0 with γµ‖ = −wµ /w, σ µ
n⊥ = i

2
(/nγ

µ
⊥ − γµ⊥/n). The vector wµ =

1
2
( 1
v+
nµ−v+n̄

µ) is the only possible normalized combination of nµ and vµ, which ful�lls the
transversality condition vµwµ = 0. All currents inherit this property from the polarization
vector in the Rarita-Schwinger vector-spinor. Note, that there is no interpolating current
involving γµ‖ , since γ

µ
‖ = wµ /w. As a result such currents are linear combinations of the

parallel currents de�ned in (2.2.8).

The twist is given by an expansion in v+ (see for comparison [51]Eq. 2.5). The leading,
subleading and subsubleading twist is proportional to 1/v+, 1 and v+, respectively. Similar
to the case of light vector mesons (see for example [49]Tab. 2) one gets in the baryon case:

twist 2 3 4
parallel polarization ψn ψ1, ψn̄n ψn̄

transversal polarization ψ⊥n ψ⊥, ψ5⊥ ψ⊥n̄
. (2.2.10)

The argument for the twist ordering is the following. Based on the choice of basis for vµ,
the orientation of the currents with respect to v induces a kinematical di�erence. The
light-cone vectors n̄ and n di�er only in their direction in their spacial coordinates along
the z-direction. According to Eq. (2.2.6) vµ = −(1/v+ − v+, 0, 0, 1/v+ + v+)/2. Hence
the characteristic feature is, with which three-velocity the baryon moves along the z-axis.
In conclusion the importance (or twist) can be characterized by v+. However, this is
not necessarily the conventional de�nition of �twist=dimension−spin�. To give a rough
estimate by assuming, that the baryon moves with 0.5 times the light speed, where the
kinetic energy of a particle is about 20% of its mass and can to some extent still be treated
in a nonrelativistic way, see for example [45]p. 11. In this case v+ is approximately 0.6 and
so the importance of the wave functions normalized with respect to leading twist, only
concerning the parameter v+, is about 1, 0.6 and 0.4 for twist 2, 3 and 4.

The functions de�ned in (2.2.8) and (2.2.9) are normalized to give the corresponding
decay constants f (1)

Hb
and f (2)

Hb
in the local limit, in which ψ(0, 0) ≡ 1, which after Fourier

transform (ti → ωi and ω1 = uω, ω2 = ūω) leads to the following normalizations:

∞∫
0

dω1

∞∫
0

dω2ψ(ω1, ω2) =

∞∫
0

ωdω

1∫
0

duψ(ω, u) = 1. (2.2.11)

Here ωi are the light-like momenta of the light-quarks qi, ω = ω1 + ω2 is the total light-
like momentum of the light-quark system and u ∈ [0, 1], ū = 1 − u are the momentum
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fractions of the light-quarks. Eq. (2.2.11) indicates that the LCDAs are constructed in a
way, such that the energy scale is given by the constants f (1)

Hb
and f (2)

Hb
, while the coordinate

dependencies are kept in the functions ψ. Hence the two decay constants are determined
by the interpolating operators (2.2.8) and (2.2.9) in the local limit. Only two linear inde-
pendent local operators survive in this limit as shown in the following section. Splitting
the energy dependence from the coordinate dependencies leads to the advantage, that the
decay constants can be calculated at higher orders than the more complicated distribution
amplitudes. The decay constants fΛ ≈ 0.03GeV3 and fΣ ≈ 0.038GeV3 are known at NLO
in the SU(3)F limit [52]p. 1, Tab. 2, while the SU(3)F breaking e�ects are only known at
LO. The decay constants f (1)

Hb
and f (2)

Hb
coincide approximately at the renormalization scale

µ ≈ 1 GeV [46].

2.3 Local operators

The local interpolating operators, which will later on be used to approximate the baryon
state in the sum rule calculations are given by the local limit of the operators de�ned
in (2.2.8) and (2.2.9), see also [52]Eq. 2. For example, the combination of the twist 2 and
twist 4 matrix elements in local limit de�nes the decay constant f (2)

Hb
:

1

2

(
ψn(0, 0) + ψn̄(0, 0)

)
f

(2)
Hb

εµ‖uγ = f
(2)
Hb

εµ‖uγ

= 〈0|
(
q1(0)Cγµ‖ q2(0)

)
Qγ(0) |Hb〉 . (2.3.1)

Finally, the only surviving gamma structures in the local limit are γµ⊥C
−1 and /vγ

µ
⊥C

−1

as transversal currents and γµ‖C
−1 and /vγ

µ
‖C

−1 as parallel ones. The most general local
Interpolating current is then given by a linear combination:

J̄Γ′γ(x) =
[
q̄1(x)Γ

′q̄2(x)
]
Q̄γ(x), (2.3.2)

where Γ′ = (A1+B/v)γ
µ
⊥/‖C

−1 and A ∈ [0, 1], B = 1−A. Following [46], the arbitrariness
in the choice of the local current, i.e. the variation in A, will later be adopted as an error
estimate, and I will give the result for A = 1/2, which corresponds to a constituent quark
model current that has maximal overlap with the ground state baryons in the constituent
quark model picture, in which all quarks are on-shell [52]p. 5, Sec. 3.3.

2.4 Switching heavy-quark spin on

The heavy-quark spin has no �xed direction in the heavy-quark limit and can be rotated at
will. The heavy-quark vector-spinor ψεµuγ is therefore neither transforming as a 3/2, nor a
1/2 quantity because Lorentz invariance is explicitly broken. One has to restore the proper
Lorentz-invariant behavior by �xing the heavy-quark spinor with respect to the direction
of the polarization vector εµ. This can be done by using the transformation properties of
a spin 3/2 Rarita-Schwinger vector-spinor R3/2µ

γ [50]Eq. 2.9 and [45]p. 10:

(/vR3/2µ)γ = R3/2µ
γ, vµR

3/2µ
γ = 0, (γµR

3/2µ)γ = 0. (2.4.1)
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Figure 2.5: Action of the projec-
tors in Eq. (2.4.2), which rotate
the heavy-quark spin parallel to the
light-quark spin to restore Lorentz
invariance. The b-quark is indicated
by the blue sphere and the light di-
quark is indicated by the white oval.

Using [50]Eq. 2.10 I de�ne

(P3/2)
µ γ′

νγ =

[
δµν −

1

3
(γµ + vµ)γν

] γ′

γ

,

(P1/2)
µ γ′

νγ =

[
1

3
(γµ + vµ)γν

] γ′

γ

, (2.4.2)

which ful�ll the projection operator conditions P 2 =
P and P3/2 + P1/2 = 1. The action of the projectors
is depicted in Fig. 2.5. Now

ψεµuγ = ψR3/2µ
γ + ψR1/2µ

γ, (2.4.3)

with

R3/2µ
γ = (

[
εµ − 1

3
(γµ + vµ)/ε

]
u)γ,

R1/2µ
γ = (

[
1

3
(γµ + vµ)/ε

]
u)γ. (2.4.4)

One can check that R3/2µ
γ ful�lls (2.4.1), and R

1/2µ
γ is a spin 1/2 spinor with normalization

−gµν
∑

Tr
[
R̄3/2µR3/2ν

]
= 4 and − gµν

∑
Tr
[
R̄1/2µR1/2ν

]
= 2, (2.4.5)

corresponding to (2.2.2), where the 3/2 spinor gets 4 degrees of freedom and the 1/2
spinor gets 2. One should keep in mind, that this is a global rotation only to get the
proper transformation properties. The rotation of the heavy-quark spin will not a�ect the
following calculations, which are performed in the heavy-quark limit.

2.5 Correlation functions

Following the standard procedure of QCD Sum Rules, I calculate the matrix

Figure 2.6: Correlation function in QCD back-
ground. The quarks move from point x in the
QCD background (shaded regions) to the light-
like direction described by n (dashed line). The
b-quark is indicated by the thick black line.

elements de�ned in (2.2.8) and (2.2.9)
by approximating the baryonic state
|Hb〉 by the local current de�ned
in (2.3.2), i.e. |Hb(x)〉 ≈ J̄(x) |0〉.
Hence, the matrix elements in (2.1.6)
are de�ned on partonic level. The
corresponding correlation func-
tion is de�ned by ΠΓΓ′γγ′(ti, x) =
i 〈0|OΓγ(t1, t2)JΓ′γ′(x) |0〉, in which
OΓγ(t1, t2) can be any non-local oper-
ator de�ned in Eq. (2.2.8) and (2.2.9).
The coe�cient functions describe the
propagation of the quarks inside the
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baryon from point x to the light-cone,
which is parametrized through the light-quark projections ti, pictured in Fig. 2.6. The
double Fourier transform of the correlation function is then given by

ΠΓΓ′γγ′(ω1, ω2;E) = i

∞∫
−∞

dt1t2
(2π)2

ei(ω1t1+ω2t2)

∫
d4xe−iEv.x 〈0|OΓγ(t1, t2)JΓ′γ′(x) |0〉 . (2.5.1)

Inserting and contracting the quark �elds and performing the Fourier transformations
yields

ΠΓΓ′(ω, u;E)γγ′ = −i6
∫
dte−iEv.xS̃m=∞(x)γγ′Tr

[
ΓS̃d(ūω, t)Γ

′S̃Tu (uω, t)
]
. (2.5.2)

The propagators S̃, discussed later, are not free but describe the dynamical evolution of
the valence-quarks within the low energetic QCD background of the baryon.

The correlation functions must be proportional to the Lorentz structure given by the
spin sum (2.2.1), which will come out naturally, if the currents are de�ned correctly.

Figure 2.7: Topology of the sun-
rise type, which arise generically
in the calculation of correlation
functions of two local interpolat-
ing currents with n quark �elds.

The heavy-quark spin structure can be seen directly.
It is given by P+. The light-quark polarization
is given implicit inside the trace by Γ and Γ′.
For the transversal currents ΠΓΓ′γγ′(ω, u;E) it is
given by Π(ω, u;E).(−gµν + vµvν + ε‖µε‖ν/ε

2
‖)P+γγ′

and consequently ΠΓΓ′(ω, u;E)γγ′ is equal to
−Π(ω, u;E).(ε‖µε‖ν/ε

2
‖)P+γγ′ for the parallel cur-

rents. In this sense the scalar functions Π(ω, u;E)
are de�ned. They are identical for parallel and
transversal polarizations up to di�erent contribu-
tions of the local interpolating currents, which gives
Π⊥(ω, u;E)A,B = Π‖(ω, u;E)B,A. Since the LCDAs

are given for the central value A = B = 1/2, Π(ω, u;E), and therefore the distribution
functions ψ(ω, u) are the same for transversal and parallel polarization. The dependence
of the correlation functions of A and B is due to our choice of set of linear independent
operators for the non-local currents in (2.2.8) and (2.2.9). Rewriting the parallel currents
by introducing a di�erent basis, for example γµ‖ , would change the above described
symmetry in A and B.

The correlation functions are evaluated in the following by using con�guration space
techniques, instead of working in the more common momentum space. The reason is,
that the leading order sunrise-diagrams become very simple in coordinate space. Sunrise
diagrams, depicted in Fig. 2.7, are certain types of 1 → 1 multi-loop self energy diagrams.
For a review about the evaluation of diagrams of the sunrise type in coordinate space
see [53]. The non-local diagrams, which are necessary for the calculation of the LCDAs,
di�er in principle from the sunrise type, because they do not involve two local interpolating
currents, instead they are ripped open along a light-like line at the left side of the diagram
pictured in Fig. 2.6. Hence a more correct term might be lacerated sunrise diagram. But
despite the di�erence, con�guration space techniques work pretty good for this kind of
diagrams as well, as shown below.



2.5 Correlation functions 19

In the following I shortly introduce the di�erent propagators of light and heavy quarks
in con�guration space, which are needed for the calculation of the correlation functions.
In the heavy-quark limit the Fourier transform of the heavy-quark propagator (1.0.6) has
the very simple form of a classical pointlike particle with a non-relativistic on-shell Dirac
structure (1.0.8):

Sm=∞(x) =
1 + /v

2

∫
dtδ4(x− vt). (2.5.3)

To take the e�ects of the QCD background for the propagators of the light-quark �elds
into account, the methods of non-local condensates are used. The propagator is then given
by a sum of the free propagator Sq(x) and a universal non-perturbative part Cq(x):

S̃q(x) Sq(x) Cq(x)

= +
(2.5.4)

with 1

Sq(x) =
i

2π2

/x

x4
− m

4π2x2
, Cq(x) =

1

12
< q̄(x)q(0) >, (2.5.5)

in which color and spin indices are omitted since the color structure is simply given by the
Kronecker delta. For the non-local condensate we adopt the model proposed by [54,55]:

Cq(x) =< q̄q >

∞∫
0

dνeν(x)
2/4f(ν), f(ν) =

λa−2

Γ(a− 2)
ν1−ae−λ/ν , a− 3 = 4

λ

m2
0

, (2.5.6)

in which < q̄q > is the local condensate, m0 is the ratio of the mixed quark-gluon and
quark condensate and λ is the correlation length. For completeness I also give the Fourier
transformed operators (ti → ωi, ω1 = uω, ω2 = ūω), which are used in Eq. (2.5.2):

Sq(uω, t) = −iei
uωt
2v+

(2mqtv+ + uωtv+ /̄n+ 2i/n)

8πt2v2
+

,

Cq(uω, t) =
4π < q̄q >

tv+

e
i tuω
2v+ f(

2uωi

tv+

). (2.5.7)

The non-local condensate can be interpreted as the contribution of the quark, which de-
scends to the non-perturbative sea of particles, which populate the QCD background, at
one point and reemerges at a di�erent point. It is still a question to what extent this sea
is universal to the collective of all hadrons. Moreover, little is known about the shape of
these functions, and di�erent models, such as [56], have been proposed in the literature to
describe this non-perturbative behavior.

Inserting the propagators in QCD background, Eq. (2.5.2) reads diagrammatically

Π(ω, u;E) = + + + , (2.5.8)

1The factor 1
12 in the de�nition of the non-perturbative part is chosen in a way, that the expression is

normalized by taking the trace of color and spin, i.e. Tr[1spin]Tr[1color] = 4 · 3 = 12.
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in which the thin line corresponds to the light-quarks and the thick line corresponds to the
b-quark. There is no b-quark condensate term, since it is suppressed by 1/mb and hence
vanishes in the heavy-quark limit. The sum rule reads

|fHb
|2ψΓ

Hb
e−Λ̄Hb

/τ = B[Π](ω, u; τ, s0), (2.5.9)

in which B is the Borel transform, further explained in App. B.1, and s0 is the momentum
cuto� originating from the application of the quark-hadron duality. The QCD sum rules
are further explained in App. B.2. The Borel transform can easily be applied together with
the Fourier-Transform, since for a function f(t)

B

[∫
eiEtf(t)

]
E→τ

= if(i/τ) (2.5.10)

holds. As known, the Borel transform, given in Eq. (B.1.1), handles the UV-divergences
automatically, making renormalization rather easy; as a short reminder, the renormaliza-
tion condition is applied by adding a certain polynomial in E to remove the UV divergent
terms, which vanishes due to the derivative of arbitrary order in E in the Borel transform.

The momentum cuto� is applied by cutting o� the upper spectrum of the Laplace
transform L−1 of the perturbative contributions, i.e.

f(τ)
L−1

−→
∞∫
e−s/τ f̃(s)ds

cuto�−→
s0∫
e−s/τ f̃(s)ds. (2.5.11)

One has to be careful, however, what one calls perturbative since there might be mixed
perturbative and condensate contributions. Mixed contributions originate from diagrams,
in which one light-quark is described by the low energy condensates and the other light-
quark is described by the high energy perturbative propagator. We adopted the procedure
of [46], and call a distribution perturbative, when at least one perturbative term is present.
This procedure leads to plenty of incomplete Γ−functions, and it appears convenient to
introduce the function

Ea(x) ≡
1

Γ(a+ 1)

∫ x

0

dt tae−t = 1− Γ(a+ 1, x)

Γ(a+ 1)
, (2.5.12)

in which Γ(a + 1, x) =
∫∞
x
dt tae−t is the incomplete Γ-function. For a = N ∈ N this

function is reduced to the well-known form

EN(x) = 1− e−x
N∑
n=0

xn

n!
. (2.5.13)

In practical numerical estimations it is also helpful to use the relation

Ea(x) = Ea+1(x) +
xa+1 e−x

Γ(a+ 2)
, (2.5.14)

obtained from (2.5.12) after integration by parts, connecting a negative value of the pa-
rameter a in Ea(x) with a corresponding positive one.
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Inserting the propagators (2.5.5) and (2.5.7) in Eq. (2.5.2) and performing the Borel
and Fourier transform, the sum rules are obtained straightforward. I summarize our sum
rule results, where the leading twist transverse result is given here as example:

f
(2)
Hb

(
Af

(1)
Hb

+Bf
(2)
Hb

)
ψ̃SR2 (ω, u) e−Λ̄/τ =

3τ 4

2π4

[
Bω̂2 uū+ A ω̂ (m̂2u+ m̂1ū)

]
E1(2ŝω)e

−ω̂

−〈q̄1q1〉τ
3

π2
[Aω̂ū+Bm̂2] f(2τωu)E2−a(2ŝκ) e−ω̂

−〈q̄2q2〉τ
3

π2
[Aω̂u+Bm̂1] f(2τωū)E2−a(2ŝκ̄) e−ω̂

+
2B

3
〈q̄1q1〉 〈q̄2q2〉 τ 2 f(2τωu) f(2τωū)E3−2a(2ŝκκ̄) e−ω̂, (2.5.15)

in which ŝκ = ŝω−κ/2, ŝκ̄ = ŝω− κ̄/2, ŝκκ̄ = ŝω−κ/2− κ̄/2, and the short-hand notations

κ =
λ

2q1ωτ
, κ̄ =

λ

2q̄1ωτ
(2.5.16)

are used. The parallel result is obtained by A ↔ B. All results of di�erent twist can be
found in App. B.5.

The QCD sum rules given in (B.5.1) can not be used in calculations directly. The main
reason for this is, that the Sum Rules are build from a patchwork of di�erent contribu-
tions, the perturbative and the condensate parts. They show neither smooth behavior, nor
necessarily the correct asymptotic behavior, i.e. the asymptotic behavior of the perturba-
tive contribution. As a consequence one has to propose model functions, which are then
constrained by the sum rules. This is done in the next section.

2.6 The LCDA model

Figure 2.8: Model functions for the b-baryon
LCDAs, composed of an exponential part for the
heavy-light interaction and the Gegenbauer polyno-
mials for the light-light interaction.

In the parametrization, in which the
system is described by the total en-
ergy of the light-quark system ω and
the momentum fractions u, the fol-
lowing arguments become manifest.
The dynamics of the heavy-light sys-
tem is described with the same for-
malism, which has proven well for the
heavy-light meson dynamics. The
dynamics of the light-light system is
then described in the same way as
the light-light mesons. In conclu-
sion we choosed the multiplicative
ansatz from [46]. In this approach
the Gegenbauer polynomials Cη

n take
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the light-quarks into account and an exponential factor characterizes the dynamic of the
heavy-light system, as pictured in Fig. 2.8. It is more convenient to choose 3/2 Gegenbauer
polynomials for twist 2 but 1/2 for the other twist functions. The �rst three polynomials
are su�cient to account for the precision in this work. They are given by

Cη
0 (x) = 1, Cη

1 (x) = 2ηx, Cη
2 (x) = −x+ 2η(1 + η)x2. (2.6.1)

To obtain the model �t, I calculate momentum fraction integrals (the moments), which
are de�ned for an arbitrary function f(ω, u) as:

〈f(ω, u)〉HQ

k ≡
∫ 2s0

0

ωdω

∫ 1

0

du f(ω, u) ψ̃SR
k (ω, u). (2.6.2)

The model functions for the LCDAs of di�erent twist are:

ψ̃2(ω, u) = ω2u(1− u)
2∑

n=0

an
εn4

C
3/2
n (2u− 1)

|C3/2
n |

e−ω/εn , (2.6.3)

ψ̃3(ω, u) =
ω

2

2∑
n=0

an
εn3

C
1/2
n (2u− 1)

|C1/2
n |

e−ω/εn , (2.6.4)

ψ̃4(ω, u) =
2∑

n=0

an
εn2

C
1/2
n (2u− 1)

|C1/2
n |

e−ω/εn , (2.6.5)

in which the twist is indicated by the subscript numbers and |Cη
n| =

√∫ 1

0
du(Cη

n(2u− 1))2

with |C3/2
0 |2 = |C1/2

0 |2 = 1 , |C1/2
1 |2 = 1/3 , |C3/2

2 |2 = 6 , |C1/2
1 |2 = 1/5. The prefactors

in front of the sums (ω2u(1 − u), etc.) are determined by the corresponding perturbative
part in order to give the correct asymptotic behavior (compare the B term in the �rst line
in Eq. (B.5.1)). The moments of the functions (2.6.5), which are calculated with the use
of (2.6.2), are listed in Tab. 2.6.1. In the construction of the models for the LCDAs, we

Table 2.6.1: Moments for the model functions

twist 〈1〉 〈ω−1〉 〈C3/2
1 〉 〈ω−1C

3/2
1 〉 〈C3/2

2 〉 〈ω−1C
3/2
2 〉

2 a0 a0/3ε0 3a1/5 a1/5ε1 3a2/7 a2/7ε2

twist 〈1〉 〈ω−1〉 〈C1/2
1 〉 〈ω−1C

1/2
1 〉 〈C1/2

2 〉 〈ω−1C
1/2
2 〉

3 a0 a0/2ε0 a1 a1/2ε1 a2 a2/2ε2

4 a0 a0/ε0 a1 a1/ε1 a2 a2/ε2

have truncated the Gegenbauer expansion at the second non-asymptotic term and have
taken the limit s0 →∞ in the integral over ω. The change has negligible e�ect.

An example for the sum rules compared to the corresponding model �ts is given in
Fig. 2.9, in which one can see the patchwork of the di�erent continuum and free parts of
the propagators in Eq. (2.5.4). The moments
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Figure 2.9: Example for sum rules and model �ts. Shown is the twist 2 Σ contribution for
ω at a value u = 0.25. The model �t is given by the solid, black line. The shaded region is
the total sum rule contribution build of a perturbative part (yellow), two single condensate
terms (orange) and a double condensate contribution (red).

〈1〉=1 〈C3/2
1 /|C3/2

1 |〉=0.11+0.04
−0.03 〈C3/2

2 /|C3/2
2 |〉=0.33+0.17

−0.26

〈ω−1〉=1.54+0.58
−0.36 〈ω−1C

3/2
1 /|C3/2

1 |〉=0.14+0.08
−0.05 〈ω−1C

3/2
2 /|C3/2

2 |〉=0.24+0.21
−0.32

, (2.6.6)

and the model parameters

a0 = 1 a1 = 0.18+0.07
−0.05 a2 = 0.78+0.4

−0.62

ε0 = 0.22+0.06
−0.06 ε1 = 0.26+0.05

−0.03 ε2 = 0.46+∞
−0.09

. (2.6.7)

of twist 2 are given for Ξ (Ξ′) as an example, in which the �rst moment is 1 by de�nition,
see (2.2.11). The result for the other twists can be found in App. B.6.

The values we used for the calculation are

< q̄q > = −(0.24 GeV)3 [57]
< s̄s > = 0.8 < q̄q > [58]p. 9, [59]p. 261 �

λ = (0.4 GeV)2 [46]p. 7
. (2.6.8)

2.7 Renormalization

The LCDAs are de�ned via the Greens-Functions (2.2.8) and (2.2.9). Thus they are no
physical quantities and have to obey renormalization group equations. The Greens func-
tions de�ne up to �rst order in gs the non-local vertices:

Γγ′ω1ω2 jβk2+

iαk1+

kγ

= −εijkΓαβ1 γ′
γ δ(ω1 − k1+)δ(ω2 − k2+),

Γγ′ω1ω2 jβk2+

kγ

iαk1+

cµk4+

=

−gsεljktcl inµΓαβ1 γ′
γ

1
k4+

δ(ω2 − k2+)(δ(ω1 − k1+)− δ(ω1 − k4+ − k1+))

. (2.7.1)
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a) b) c) d) e)

Figure 2.10: Types of diagrams for the non-local vertex renormalization. Each of the �rst
four diagrams appears twice (one for each light-quark). The dashed line represents the
Wilson line.

The vertex for the case, in which the gluon line is attached to the lower Wilson line
is obtained by replacing 1 ↔ 2. A detailed derivation of the vertices is presented in
App. B.3.3. The expansion of the Greens-Functions in gs corresponds to an expansion of
the Wilson lines (2.1.5) in gs. For the n-th order expansion there are in general n gluon-
�elds attached to the vertex, but for the calculations in this work one-loop calculations
are su�cient, and additional vertices to the ones in Eq. (2.7.1) are not necessary. The
evolution kernel at one-loop order is determined by the ultraviolet poles of the matrix
elements of the bare operators. The types of diagrams which contribute to the kernel of
the renormalization group equation up to one-loop order are given in Fig. 2.10. For leading
twist (neglecting masses) the diagrams give the same contribution to the evolution equation
of transverse and parallel twist. Furthermore they also give the same contribution for the
SU(3)F triplet and sextet (Fig. 2.4), where only for the transversal functions diagram b)
vanishes. This is due to some special properties of the Lorentz structures which de�ne
the currents and therefore the vertices. The SU(3)F triplet evolution equation has already
been derived in [46]Eq. 13. The calculations necessary for this section are rather lengthy
and may obscure the main conclusions of this chapter. Hence, the detailed derivations of
the renormalization group equations are hived o� to App. B.4. Especially (B.4.8) shows
the equality of the loop integrals for the triplet and parallel currents of the sextet in case of
the leading twist and therefore also the equality of the evolution kernels. I will just sketch
the derivation here and state the most important facts.

At one-loop order the diagrams shown in Fig. 2.10 involve at maximum two quarks
in the loop and one ore more quarks are on-shell. Hence, the derivation of the evolution
kernels is almost identical to the meson case. The heavy-light contributions, involving the
b-quark and one light-quark, are similar to the heavy-light mesons [60] and the light-light
contributions are similar to the light-light mesons [61]. Diagram a) is UV �nite, as is also
found in [60]. Diagram e) vanishes because the corresponding vertex is proportional to
nµnν and the gluon propagator is proportional to gµν . The other diagrams are calculated
at the end of App. B.4. The evolution equation for the leading twist reads [46]

µ
d

dµ
ψ2(ω1, ω2;µ) = −αs(µ)

2π

(
1 +

1

Nc

) ∞∫
0

dk1+γ
LN(ω1, k1+;µ)ψ2(k1+, ω2;µ)

+

∞∫
0

dk2+γ
LN(ω1, k2+;µ)ψ2(ω1, k2+;µ)
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−
1∫

0

dvV (u, v)ψ2(vω, v̄ω;µ) +
3

2
ψ2(ω1, ω2;µ)

 , (2.7.2)

in which

γLN(ω, k+;µ) =

(
ln
µ

ω
− 5

4
−
[
ω

k+

Θ(k+ − ω)

k+ − ω
+

Θ(ω − k+)

ω − k+

]
⊕

)
(2.7.3)

is taken from [60]Eq. 8 and

V (u, v) =

[
1− u

1− v

(
1 +

1

u− v

)
Θ(u− v) +

u

v

(
1 +

1

v − u

)
Θ(v − u)

]
+

, (2.7.4)

which is taken from [62]Eq. C17. The �⊕� and �+� subtractions are de�ned via

∞∫
0

dk+ [γ(ω, k+)]⊕ f(k+) =

∞∫
0

dk+γ(ω, k+) (f(k+)− f(ω)) ,

[V (u, v)]+ = V (u, v)− δ(u− v)

1∫
0

dtV (t, v). (2.7.5)

For small evolution steps, ln(µ/µ0) . 1, the di�erentiation with respect to µ in Eq. (2.7.2)
is given by the linear approximation

µ
d

dµ
ψ2(ω1, ω2;µ) ≈ µ

ψ2(ω1, ω2;µ)− ψ2(ω1, ω2;µ0)

ln(µ/µ0)
, (2.7.6)

and the evolution of the distribution amplitudes can be calculated easily. In the following
I give the parallel LCDAs as example. As will be shown, the e�ect of the renormalization
is within the errors obtained from the variation of the two di�erent local interpolating
currents.

2.8 Results

The moments of the functions de�ned in (2.6.3, 2.6.4, 2.6.5), which are calculated us-
ing (2.6.2), are given in Tab. 2.6.1.

We used a strange-quark mass of ms = 0.128 GeV and massless light-quarks, mu/d = 0.
The calculation is performed in the rest frame with v+ = 1 at an energy scale of µ = 1 GeV.
The method of the non-local condensates, which involves the parameters λ and m2

0 is not
yet completely understood. Especially, since there is only one model parameter, the ratio
m0 =<: q̄D2q :> / <: q̄q :> between the 5-dimensional and 3-dimensional local condensate,
known. This parameter determines the center of the quark virtuality distribution in QCD
background, but is not su�cient to determine the shape of the quark distribution. To
determine the shape also yet unknown dimension 7 local condensates are needed. We took
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Figure 2.11: Model function ψ of Ξ. Shown is twist 2 (1st), symmetric twist 3 (2nd),
antisymmetric twist 3 (3rd) and twist 4 (4th). They are given at an energy scale of
µ = 1 GeV.
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Figure 2.12: Twist 2 functions of Σ (blue), Ξ (red) and Ω (yellow) at energy scale µ = 1 GeV
(solid line) and energy scale µ = 2.5 GeV (dashed line) including most conservative error
A ∈ [0, 1] in the two bottom plots (light shade). At the top, the distribution amplitudes
for the baryons are listed separately, including the most conservative error (light shade)
and the less conservative error A ∈ [0.3, 0.7] (darker shade).

the shape parameter λ (2.6.8) as universal parameter, not in�uenced by either the baryon
nor the mass of the propagating quark. For the strange-quark, where ms0 =<: s̄D2s :>
/ <: s̄s :>, the situation is more di�cult since even dimension 5 condensates are not yet
clearly understood. The value R, which is de�ned by R <: q̄D2q :>=<: s̄D2s :>, varies
from R ≈ 0.8 ( [63]Eq. 15, [59]Eq. 6.25) which gives m2

0 ≈ m2
s0 to values around R ≈ 1.3

( [64]Eq. 1, [65]Tab. 1, [66]Eq. 8) which gives 1.7m2
0 ≈ m2

s0. We took for our calculation
1.7m2

0 ≈ m2
s0 since in this case the SU(3)F breaking e�ects appear already in the lower ω

spectrum of the light-quark system as expected. The in�uence of the choice of R on the
results is due to the already large uncertainties within error bars.

The corresponding LCDAs for Ξ (Ξ′) are shown in Fig. 2.11. To give an overview over
the tables of model parameters, I show the plots of the LCDAs in Figs 2.11 and 2.12.



Chapter 3

[bq][b̄q̄]-tetraquarks

In this chapter I present my work concerning the hidden1 bottom tetraquark states with
valence-quark content bqb̄q̄, which was developed in collaboration with Ahmed Ali, Ishtiaq
Ahmed, Muhammad Jamil Aslam and Satoshi Mishima.

First I introduce the tetraquarks as strongly bound four quark states, discuss their
properties and give a roundup of other exotic hadrons, which are up to date studied by
several groups. Afterwards I recall the tetraquark history, which has its roots in the mid
seventies of the last century and point out their general relevance for modern QCD. The
introductory chapters are partly based on our article [67] in 2physics.com and the answers
to some questions we have been asked during the preparation of the articles [68] and [69].
The introduction is followed by our work and split in several parts. Sec. 3.4 contains the
calculation of bb̄-tetraquark masses by using the constituent quark model . The Isospin
breaking, the production and the hadronic two-body decays for the most promising bb̄-
tetraquark candidates, the JPC = 1−− states, are presented in Sec. 3.5 and 3.6. A �t to
the inclusive BaBar data on Rb, to search for evidence for the JPC = 1−− tetraquark states
is outlined in Sec. 3.7. The development of a dynamical model to explain the exclusive
Belle data on the decay channels Υ(1S)π+π− and Υ(2S)π+π− can be fund in Sec. 3.8,
in which the model and the �t are presented in Sec. 3.8.1 and 3.8.2 respectively. The
�t values and the model are used to provide speci�c predictions to verify our tetraquark
interpretation, which are presented in Sec. 3.8.3.

3.1 What are tetraquarks?

A tetraquark, as depicted in Fig. 3.1, is a four-quark hadron consisting of a di-
quark [qq] and an antidiquark [q̄q̄]. The diquarks and antidiquarks are themselves
bound states in the sense, that they form distinguishable substructures inside a hadron.
The former are composed of a quark pair and the latter of two antiquarks, shown
in Fig. 3.2. Hence, the diquarks are not color singlets. They are bound by glu-
onic interactions inside the tetraquark, as opposed to the hadronic molecules, which
are also four-quark states, explained at the end of this section. The tetraquark
hadron is color neutral and can exist as a free particle. Tetraquarks enormously en-

1The phrase �hidden� refers to the b-quark content (bb̄) of the tetraquark, which has bottomness 0.
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large the quark model of Gell-Mann and Zweig by the diquarks as new hadron con-
stituents, adding new forms of hadronic interaction and a diversity of bound states,
which are yet unexplored. So far the only existing known hadrons are either quark-
antiquark (qq̄), or three-quark (qqq) bound states, called mesons and baryons respectively.

Figure 3.1: The tetraquark, composed of a
diquark (orange) and an antidiquark (blue),
which are themselves bound states of a quark
qq (antiquark q̄q̄) pair.

Hadrons with di�erent valence-quark quan-
tum numbers, such as tetraquarks, are
termed exotics. However, all of these ex-
otic states have so far been absent in exper-
iments, and it is yet not clear if there exist
any. The next section gives an impression
of the intense search for clues which may
(hopefully) lead to the discovery of exotic
states and tetraquarks in particular.

In the pursuit of understanding the
tetraquarks it is necessary to learn �rst
about the properties of their constituents,
the diquarks. The diquarks are, as build-
ing blocks of the tetraquarks, likewise im-
portant. They can also play a role in non-tetraquark scenarios. For example, they are
relevant in the discussion of heavy ion collisions at RHIC and LHC in the framework of
fragmentation functions, in which multi-quark con�gurations are important and in scenar-
ios of color-superconductivity of cold, dense matter [70]. Another possible diquark scenario
might be, that light diquarks are the mediators of forces, just like the pion exchange plays
a crucial role in the binding of nucleons inside a nucleus. Though very speculative, it may
well be that there is an underlying e�ective theory such as the very successful and well
established chiral perturbation theory. However, to start exploring the putative rich �eld of
research, it is important that the diquarks have well established footing in both theory and
experiment. The tetraquarks are the most simple diquark scenarios. If the diquarks indeed
open a new chapter in the story of strong interactions, the �rst pages will be dedicated to
the tetraquarks, if their existence is con�rmed.

As discussed in the following, diquarks turn out to be color triplets, possessing

Figure 3.2: The color triplet
diquark (orange), composed of
two quarks (yellow and red).

the same colors as the quarks. In general a bound state of
two quarks transforms under the SU(3)C as 3⊗3 = 3̄+6.
However, there is good evidence from one gluon exchange
models [2] , that two quarks in a diquark with the color
assignment 6 do not bind. The one gluon exchange mod-
els, as the name suggests, take into account the inter-
change of one gluon between two colored particles, as
pictured in Fig. 3.3. All group-theoretical �ows through
the diagrams in SU(N) gauge theories are in general in-
dependent of spacetime and factorize. This feature is for
example used in the large N expansion for SU(N) gauge
theories. A nice way to calculate the color factors is pro-
vided by the diagrammatic birdtrack notation [71]. The

present diagram in Fig. 3.3 is, however, simple enough to be calculated by hand.
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The color factor for the contribution corresponding to the diagram in Fig. 3.3 involves
only the two SU(N) generators taij. They are connected through a gluon by δab . The
corresponding color structure is given by taijt

a
kl. Using the Fierz-identity for the generators

of the SU(N) gauge group leads to

taijt
a
kl =

1

2
(δilδkj −

1

N
δijδkl). (3.1.1)

The representation of a SU(N) group is entirely de�ned through the permutation prop-
erties of the indices of the fundamental representation (this is also the reason, why the
Young tableaux provides a proper description for SU(N) representations). The dimen-
sion of the representation is obtained by counting the degrees of freedom. By rewriting
expression (3.1.1) as

taijt
a
kl = −N + 1

2N
(δijδkl − δilδkj)/2 +

N − 1

2N
(δijδkl + δilδkj)/2, (3.1.2)

and by setting N = 3, the group theoretical property 3⊗ 3 = 3̄ + 6 appears explicitly:

taijt
a
kl = −2

3
(δijδkl − δilδkj)/2︸ ︷︷ ︸

antisymmetric: projects 3̄

+
1

3
(δijδkl + δilδkj)/2︸ ︷︷ ︸
symmetric: projects 6

. (3.1.3)

If the diquark transforms under the triplet, the color spinor is antisymmetric εjl = −εlj
and the normalized color spinor is given by |3̄〉 = εjl/

√
ε2 with ε2 = εjlεjl (similar the

sextet is given by δjl). Thus

〈3̄| taijtakl |3̄〉 =
εik√
ε2

(
−2

3
(δijδkl − δilδkj)/2

)
εjl√
ε2

= −2

3
. (3.1.4)

In general the contribution of a diagram, in which two colored objects in a certain

Figure 3.3: One gluon exchange
model contribution to the binding of
a quark-quark con�guration.

color con�guration interchange one gluon is propor-
tional to a group-theoretical factor, the discriminator
I, which is de�ned by

I =
1

2
(C(D)− C(A)− C(B)), (3.1.5)

in which A and B are the SU(3)C representations
of two particles forming the state, which transforms
under the representationD. The discriminator is the
sum of the product of SU(3)C charges, where C(X)
is the Casimir invariant of representation X. For
the SU(3)C representations it is listed in Tab. 3.1.1,
in which Eq. (3.1.4) can be compared with the dis-
criminator of the 3̄ representation. Attractive forces
(like in electromagnetism, where positive times negative charges give negative and hence
attractive contributions) exist for negative signs of I. The singlet case in Tab. 3.1.1, which
corresponds to the binding of the qq̄ pair inside the meson, is (of course) also attractive.
Here one can see, that in this approximation the mesons transforming under 1 are bound
twice as strong as the quarks in the diquark transforming under 3̄.

According to the equations obtained in the one gluon exchange model approximation,
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Table 3.1.1: one gluon exchange model

D = A⊗B 1 3̄ 6 8
C(D) 0 4/3 10/3 3
I −4/3 −2/3 1/3 1/6

the interaction in the sextet con�guration
6 of the diquark is repulsive and the triplet
3 is attractive. Hence, only the diquarks
having antitriplet color charges are phe-
nomenologically relevant. In conclusion,
the mechanism of forming a tetraquark

hadron from a diquark and an antidiquark is very much the same as forming a meson,
since both the quarks and the diquarks transform under the same triplet representation.

A diquark is, as discussed, similar to an antiquark in color space but inherently dif-
ferent in Minkowski space. Ground state diquarks can have two values of their spin
quantum number, s = 0 and s = 1. In the �rst case they are called scalar or good di-
quarks and in the second case they are called vector or bad diquarks, shown in Fig. 3.4.

Figure 3.4: The good (s=0) and the bad (s=1)
diquark spin assignments. This characteriza-
tion holds, however, only for light diquarks.

The overall quantum numbers of a
tetraquark hadron are determined by the
angular momenta and spins of the diquarks
and antidiquarks and by their possible or-
bital excitation. That good diquarks ex-
ist as bound states emerges from recent
lattice QCD studies [72, 73] for the light-
quark systems. On the other hand, no evi-
dence is found on the lattice for an attrac-
tive diquark channel for the bad spin 1 di-
quarks involving light-quarks. In [73] the
quark correlations inside the diquarks are probed. The result is depicted in Fig. 3.6.
First they de�ned the interpolating currents, where the positive parity channels are
qTCγ5q and qTCγ5γ0q with spin zero and qTCγiq and qTCσ0iq with spin one, in which
σµν = (γµγν − γνγµ)/2. They are the same interpolating currents as the de�ned currents
for the light-quark current in the de�nition of the LCDAs (2.1.13). The negative par-
ity channels create states, which vanish in the non-relativistic limit and are excluded in
quark models. These quark currents are studied by de�ning gauge-invariant two-density
correlators:

CΓ(ru, rd, t) = 〈0|JΓ(0, 2t)Ju0 (ru, t)J
d
0 (rd, t)J

†
Γ(0, 0)|0〉, (3.1.6)

where Jf0 (r, t) =: f̄(r, t)γ0f(r, t) :, f = u, d and

JΓ(x) = εabc
[
uT a(x)C Γdb(x)± dT a(x)C Γub(x)

]
sc(x), (3.1.7)

where the + (-) sign corresponds to the �avor symmetric (antisymmetric) combination,
and sc denotes the static-quark. Latin indices denote color.

In words, the color singlet operators in (3.1.6) are de�ned, then one quark is moved
far away from the other two to test their interaction strength. The angle θ in the shown
parametrization is de�ned by rud = 2r sin (θ/2), where rud is the separation of the re-
maining quarks, as pictured in Fig. 3.6. The normalized correlation strength is plotted
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Figure 3.5: Hadronic molecule composed of
two mesons (small white ovals)

with green triangles for the bad diquarks
and black asterisks for the good diquarks.
As is shown, they �nd no attraction for
the former and increasing attraction for the
latter case for decreasing quark distance.
The measured attraction is similar to the
case of quark attraction inside the mesons.
In [73] both cases are compared. However,
as the e�ective QCD Lagrangian is spin-
independent in the heavy-quark limit, see
Eq. (1.0.10), it is expected that the bad di-
quarks will also be in an attractive channel for [cq] and [bq] diquarks containing a charm
or a bottom-quark. On account of this, both good and bad diquarks are considered in the
following sections.

Figure 3.6: Evidence for the good light diquarks in
lattice QCD. Figure taken from [73]. Left: CΓ(r/a =
5.1, θ)/Cγ5(r/a = 5.1, 0) versus cos(θ). Right: CΓ(r =
0.5 fm, rud)/Cγ5(r = 0.5 fm, 0) versus rud, for the �good�
(black asterisks) and �bad� (green �lled triangles) di-
quarks at the lightest pion for three lattice spacings a.

There are other exotic parti-
cles discussed in the framework
of QCD. The most famous ones,
the molecules, the hybrids and
the pentaquarks are introduced
below.

A seemingly close relative of
the tetraquark is the hadronic
molecule, shown in Fig. 3.5. Like
the tetraquark it is composed out
of four valence-quarks, but with
an inherent di�erence: Hadronic
molecules are not bound states
of a diquark and an antidiquark
but of two mesons. The underly-
ing physics is therefore very dif-
ferent. The composite mesons
are color singlets and are bound
by the exchange of intermediate
light mesons, like baryons inside
a nucleus.

The hybrids are bound states
which do not consist entirely of

quarks but also include one ore more constituent gluons. The simplest are the hybrid qq̄g
mesons and the glueballs gg and ggg, see Fig. 3.7.

The pentaquarks, pictured in Fig. 3.8, are baryons composed of four quarks and an
antiquark. The four quarks bind to two diquarks. Pentaquarks are fermions and their
decays follow the pattern of excited baryons, decaying for example in a lighter baryon
and a meson. A pentaquark is always produced in association with another baryon
(or antibaryon) to conserve the baryon quantum number. Experimental evidence for
pentaquarks has disappeared in the meanwhile, which is discussed in the next section,
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Figure 3.7: Exotic states, with the qq̄g-hybrid to the left, the gg-glueball in the middle and
the ggg-glueball to the right. The gluons are adumbrated by the double colored objects.

Figure 3.8: Pentaquark, composed of four
quarks and one antiquark. The four quarks bind
to two diquarks depicted in green and purple.

including a historical abstract. On
the theoretical side, simulations of pen-
taquarks on the lattice did not yield a
clear signal of their existence and prop-
erties. Tetraquarks stand on much �rmer
experimental and theoretical footings
than it is the case for pentaquarks. Prob-
ably, the latter are also present as bound
states, but establishing this theoretically
or experimentally is a formidable task.

3.2 Tetraquarks: experimental evidence and history

The idea that diquarks and antidiquarks may play a fundamental role in hadron spec-
troscopy is rather old and goes back to to the suggestions by Robert Ja�e and his col-
laborators over 30 years ago [74�76]. This suggestion was lying dormant for most of this
period due to the lack of experimental evidence. More recently, diquarks were revived
by Ja�e and Wilczek [76] in the context of exotic hadron spectroscopy, in particular that
of pentaquark baryons, which now seem to have receded into oblivion. The story of the
diquarks is still poorly treated because of the lacking evidence in data since several decades
and the fatal setback in the pentaquark sector in the early part of this decade. However,
diquarks as constituents of hadronic matter may eventually �nd their rightful place in
particle physics, since the scienti�c case for the existence of tetraquarks recently got a
boost by the discovery of new hadronic states with masses of typically 4 GeV. In the past
several years, experiments at the two B-factories, BaBar and Belle, and at the Tevatron
collider, CDF and D0, have discovered an impressive number of new hadronic states in
the mass region of the charmonia [77]. These states, generically labeled as X, Y and Z,
defy a conventional cc̄ charmonium interpretation [2,78]. Moreover, they are quite numer-
ous, with 14 of them discovered by the last count, ranging in mass from the JPC = 1++

X(3872), decaying into DD̄∗, J/ψπ+π−, Jψγ, to the JPC = 1−− Y (4660), decaying into
ψ′π+π−. There is also evidence for an ss̄ bound state, Ys(2175) with the quantum numbers
JPC = 1−−, which was �rst observed by BaBar in the initial state radiation (ISR) process
e+e− → γISR f0(980)φ(1020), where f0(980) is the 0++ scalar state [79]. This was later
con�rmed by BES [80] and Belle [81].
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Table 3.2.1: Summary of new states observed by Belle [84]

State M [MeV] Γ [MeV] JPC Decay Modes Production Modes Also observed by
e+e− (ISR)

Ys(2175) 2175± 8 58± 26 1−− φf0(980) J/ψ → ηYs(2175) BaBar, BESII
π+π−J/ψ, BaBar

X(3872) 3871.4± 0.6 < 2.3 1++ γJ/ψ,DD̄∗ B → KX(3872), pp̄ CDF, D0,

X(3915) 3914± 4 28+12
−14 0/2++ ωJ/ψ γγ → X(3915)

Z(3930) 3929± 5 29± 10 2++ DD̄ γγ → Z(3940)
DD̄∗ (not DD̄

X(3940) 3942± 9 37± 17 0?+ or ωJ/ψ) e+e− → J/ψX(3940)
Y (3940) 3943± 17 87± 34 ??+ ωJ/ψ (not DD̄∗) B → KY (3940) BaBar

Y (4008) 4008+82
−49 226+97

−80 1−− π+π−J/ψ e+e−(ISR)

X(4160) 4156± 29 139+113
−65 0?+ D∗D̄∗ (not DD̄) e+e− → J/ψX(4160)

Y (4260) 4264± 12 83± 22 1−− π+π−J/ψ e+e−(ISR) BaBar, CLEO
Y (4350) 4361± 13 74± 18 1−− π+π−ψ′ e+e−(ISR) BaBar

X(4630) 4634+9
−11 92+41

−32 1−− Λ+
c Λ−c e+e−(ISR)

Y (4660) 4664± 12 48± 15 1−− π+π−ψ′ e+e−(ISR)

Z(4050) 4051+24
−23 82+51

−29 ? π±χc1 B → KZ±(4050)

Z(4250) 4248+185
−45 177+320

−72 ? π±χc1 B → KZ±(4250)

Z(4430) 4433± 5 45+35
−18 ? π±ψ′ B → KZ±(4430)

Yb(10890) 10, 890± 3 55± 9 1−− π+π−Υ(1, 2, 3S) e+e− → Yb

All these states are the subject of intense phenomenological studies. Three di�erent
frameworks have been suggested to accommodate them: (i) D −D∗ molecules [19,24,28];
(ii) cc̄g hybrids [33]; and (iii) tetraquarks [35, 36, 41], which are explained in the previous
section. Of these hypotheses (i) and (iii) are the more popular ones. An example for a
molecule candidate is the X (3872). The motivation to explain this state, �rst observed by
Belle [3] and later con�rmed by CDF [4], D0 [5] and BaBar [6], as a hadronic molecule is
that its mass is very close to theD0D̄∗0 threshold. Hence, the binding energy is small in this
picture, implying that the hadronic molecules are not compact hadrons, in which case they
would have typical sizes of O(1) Fermi. But there are still caveats in this interpretation.
The large size makes it unlikely that such a loosely bound state could be produced promptly
(i.e. not fromB decays, as seen by Belle and BaBar) in high energy hadron collisions, unless
one tailors the wave functions to avoid this conclusion. In particular, Bignamini et al. [82]
have estimated the prompt production cross section of X (3872) at the Tevatron, assuming
it as aD0D̄∗0 hadron molecule. Their upper bound on the cross section pp̄→ X(3872)+... is
about two orders of magnitude smaller than the minimum production cross section from the
CDF data [7], disfavoring the molecular interpretation of X(3872). However, a dissenting
estimate [83] yields a much larger cross section, invoking the charm-meson rescatterings.
The discussion about the nature of X (3872) and many other states is still ongoing. A
summary of the newly discovered states observed by Belle and other experiments [84]
mentioned above is presented in Tab. 3.2.1. For a recent theoretical review see [85].

Recently, the perception about the light scalar mesons, such as f0(600) or σ and f0(980)
has changed. They are now interpreted as being dominantly tetraquark [qq′][q̄q̄′] states in-
stead of the usual qq̄ mesons [86]. In QCD, states are always organized in �avor multiplets,
accompanied by their next kins. From the light-quark sector we have the following full
SU(3)F nonet of tetraquark resonances [86], also shown in Fig. 3.9 (left):

σ[0] = [ud][ūd̄] f
[0]
0 = [su][s̄ū]+[sd][s̄d̄]√

2

κ = [su][ūd̄]; [sd][ūd̄]; a0 = [su][s̄d̄]; [sd][s̄ū];

(+conjugate doublet)
[su][s̄ū]−[sd][s̄d̄]√

2

(3.2.1)
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Figure 3.9: Light tetraquark nonet (left) and mass spectrum (right). The error bars are
given by the semitransparent colors, yellow for the a0 iso-triplet, red for the two conjugated
κ iso-doublets and green for the two iso-scalars σ and f0(980). The mass values are taken
from [77].

In the ordinary meson case, one would expect from the constituent quark model, that
the masses of the qq̄ nonet fall into a triangle. After s-quark mass-breaking, this triangle
should arrange as shown in Fig. 3.10 (left), in which the expected masses for meson and
tetraquark multiplets are compared. The iso-triplet contains the lowest lying states. The
mass rises with increasing s-quark content for the iso-doublet and iso-singlet. The strongest
experimental evidence favoring the existence of the light tetraquark nonet comes from the
observed inverted mass spectrum. The measured triangle is indeed facing upside down as
shown in Fig. 3.9 (right), which is in agreement with the expected constituent tetraquark
mass spectrum in Fig. 3.10(right). Note, that the assigned error of the mass of the σ0 is
huge and even extend beyond the frame of the plot. In the PDG [77] it is listed with a mass
ranging from 400 to 1200 MeV. There are several problems in its precise determination,
originating mainly in the immense total decay width listed as Γ = (600−1000) MeV. Thus
there are threshold e�ects and overlaps with several other resonances and background
terms. But also its unknown nature makes the analysis challenging, just to name some
of the reasons why no value is currently �xed in the listings of the particle data group.
In [87], however, the existence of the σ is established in a model-independent way using
the dispersive representation of the partial wave amplitudes by Roy [88], also called Roy
equations, which use the analytic properties of the scattering amplitudes at low energy
scales. They have established the σ and f0(980) as poles, which are governed by the
dynamics and interactions of the Goldstone bosons, the pions and kaons respectively. Their
analysis yields a more precise value for the σ mass of mσ = 441+16

−8 MeV. The light scalar

resonances also need to be accounted for in this work in the discussion of Y (1)
b → Υ(nS)PP ′

decays, in which PP ′ = π+π−, K+K− or ηπ0 are �nal state particles. In this work I use a
mass of 478 MeV and a total decay width of 324 MeV for σ0, as determined by the E791
collaboration [89] from D+ decays. The mass is very close to the one found by [87].

As mentioned, bound states in QCD are always accompanied by their next kins
in the �avor multiplets. This should also hold to a certain extent for the heavier
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quarks, especially in view of heavy-�avor symmetry. If a tetraquark can be composed
of charm-quarks, it should also be possible to �nd them in the bottom sector. Till the
end of 2009, there has been no tetraquark candidate observed in the hidden bb̄ sector.

Figure 3.10: Comparison of the mass spectrum
of tetraquark states (right) and mesons (left) ex-
pected from the constituent quark model.

In our work [43], [44] and [90],
we presented the �rst evidence for
tetraquarks in the bottom-quark sector
- harbingers of an entirely new world
of bound and open beauty hadrons.
In our approach we interpreted the
Yb(10890) state discovered by Belle
[91], i.e. the last line in Tab. 3.2.1,
as hidden bottom tetraquark. In the
following this state is called Y

(1)
b . It

is a P -wave L = 1 state composed of
two good diquarks. One might ask the
question, why there is so far only a
single particle which provides evidence
for the existence of tetraquarks in the
bb̄ sector, even though there should be
a plethora of states present. While
the lighter tetraquarks, including the
charmed ones, can be produced in decays of heavier particles (such as weak B-decays), the
bottom-quarks are lacking this possibility and have in general small production cross sec-
tions. The tetraquark Y (1)

b with spin-parity and charge conjugation assignment JPC = 1−−,
however, possesses the right quantum numbers to be directly produced in e+e− annihila-
tion. If the e+e− production cross section is big enough, this could provide the desired
opportunity for producing bb̄-tetraquarks experimentally.

3.3 Our work for tetraquarks in the bottom sector

In [43] we were able to identify tetraquark states, which can directly be produced in e+e−

annihilation. Of these Y[bu] and Y[bd] with JPC = 1−− quantum numbers are estimated to
have the right masses to be produced in the vicinity of the Υ(5S). The Y[bq] have the quark
content [bq][b̄q̄], in which [bq] and [b̄q̄] indicate the diquark and antidiquark respectively.
The physical particles are called Y[b,l] and Y[b,h], for lighter and heavier, are mixed states.
They have masses around 10.90 GeV, as will be shown in Sec. 3.4. We classi�ed these
states according to their JPC quantum numbers and calculate the mass spectrum of the
diquarks-antidiquarks [bq][b̄q̄′] with q, q′ = u, d, s and c in the ground and orbitally excited
states by taking into account both good and bad diquarks. The resulting mass spectrum
for the 0++, 1++, 1+−, 1−− and 2++ states with valence diquark-antidiquark content [bq][b̄q̄]
(q = u, d, s, c) and the mixed states [bd][b̄s̄] (and charge conjugates) . The main focus of
this work is as aforementioned on the JPC = 1−− states. To be speci�c, there are four
neutral states Y (n)

[bu] (n = 1, ..., 4) with the quark content ([bu][b̄ū]) (which di�er in their spin

assignments) and another four Y (n)
[bd] with the quark content ([bd][b̄d̄]). These mass states

are degenerate in the isospin symmetry limit for each n, and the notation is abbreviated as
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Y
(n)
b . All four states have the quantum numbers JPC = 1−−, but only the Y (1)

b is composed
of only good diquarks. The Y (2)

b and Y (3)
b each contain one and the Y (4)

b two bad diquarks.

Isospin-breaking introduces a mass splitting and the mass eigenstates called Y (n)
[b,l] and

Y
(n)
[b,h] (for lighter and heavier of the two) become linear combinations of Y (n)

[bu] and Y
(n)
[bd] .

Thus, Y (n)
[b,l] ≡ cos θ Y

(n)
[bu] + sin θ Y

(n)
[bd] and Y

(n)
[b,h] ≡ − sin θ Y

(n)
[bu] + cos θ Y

(n)
[bd] . The mass

di�erences are estimated to be small, withM(Y
(n)
[b,h])−M(Y[b,l]) = (7±2) cos 2θ MeV, where

θ is a mixing angle. In Sec. 3.5 the calculation of the isospin breaking is explained.

The electromagnetic couplings of the tetraquarks Y (n)
[b,l] and Y

(n)
[b,h] are calculated assum-

ing that the diquarks have pointlike couplings with the photon, given by eQ[bq], where
e2/(4π) is the electromagnetic �ne structure constant α, and Q[bq] = +1/3 for the [bu]
and [bc] diquarks and Q[bq] = −2/3 for the [bd] and [bs] diquarks. Because of this charge

assignment, the electromagnetic couplings of the tetraquarks Y (n)
[b,l] and Y

(n)
[b,h] depend on

the mixing angle θ. To calculate the production cross sections e+e− → Y
(n)
[b,l] → hadrons

and e+e− → Y
(n)
[b,h] → hadrons, one needs to calculate the partial widths Γ

(n)
ee (Y[b,l]) and

Γ
(n)
ee (Y[b,h]) for decays into e+e− pair and the hadronic decay widths Γ(Y

(n)
[b,l] ) and Γ(Y

(n)
[b,h]).

For the Υ(nS), the leptonic decay widths are determined by the wave functions at the origin
Ψbb̄(0). The tetraquark states are similar to the bottomonia for pointlike diquarks. To take
into account the possibly larger hadronic size of the tetraquarks compared to that of the
bb̄ mesons, we modify the quarkonia potential, usually taken as a sum of linear (con�ning)
and coulombic (short-distance) parts. For example, the Buchmüller-Tye QQ̄ potential [92]
has the asymptotic forms V (r) ∼ kQQ̄ r (for r → ∞) and V (r) ∼ 1/r ln(1/Λ2

QCD r2) (for
r → 0), where kQQ̄ is the string tension and ΛQCD is the QCD scale parameter. The bound
state tetraquark potential VQQ̄(r)2 will di�er from the Quarkonia potential VQQ̄(r) in the
linear part, as the string tension in a diquark kQQ is expected to be di�erent than the cor-
responding string tension kQQ̄ in the QQ̄ mesons. However, as the diquarks-antidiquarks
in the tetraquarks and the quarks-antiquarks in the mesons are in the same (3̄,3) color
representation, the Coulomb (short-distance) parts of the potentials are similar. De�ning
κ = kQQ̄/kQQ̄, κ is expected to have a value smaller than 1. A value of κ di�erent from
unity will modify the tetraquark wave functions ΨQQ̄(0) from the corresponding ones of the
bound bb̄ systems, e�ecting the leptonic decay widths of the tetraquarks. The derivation
of the leptonic decay width Γ(Y

(n)
[b,l] ) and Γ(Y

(n)
[b,h]) is outlined in Sec. 3.5.

The hadronic decays of Y (n)
[b,l] and Y

(n)
[b,h] are calculated by relating them to the corre-

sponding decays of the Υ(5S), such as Υ(5S) → B(∗)B̄(∗), which we take from the PDG.
It is assumed, that the form factors in the two set of decays (Y[b,q] and Υ(5S)) are roughly
(say up to a factor 2 or 3) related by κ, yielding the hadronic decay widths presented in
Sec. 3.6. The results are related to the total decay width and give important hints for
the searches in experimental data. Because the masses of the Y (n)

b are all above the Zweig
allowed B(∗)B̄(∗) thresholds, the width is expected to be large.

Having speci�ed the mass spectrum and our dynamical assumptions for the tetraquark
decays, a theoretical analysis of the existing data from BaBar [93] on Rb(s) = σ(e+e− →

2We shall use the symbol Q and Q̄ to denote a generic diquark and antidiquark, respectively. However,
where the �avor content of the diquark is to be speci�ed, we use the symbol [bq], and [b̄q̄] with q = u, d, s, c.
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bb̄)/σ(e+e− → µ+µ−) is carried out in Sec. 3.7. The data were obtained during an energy
scan of the e+e− → bb̄ cross section in the range of

√
s = 10.54 to 11.20 GeV. The

question that is hoped to be answered in this analysis is: Are the kinematically allowed
tetraquark states Y (n)

[b,h] and Y
(n)
[b,l] visible in the BaBar energy scan of Rb? To that end,

the contributions of the lowest 1−− tetraquark states Y[b,h] and Y[b,l] to the hadronic cross
sections σ(e+e− → Y[b,l] → hadrons) and σ(e+e− → Y[b,h] → hadrons), and hence the
corresponding contributions ∆Rb(s) are calculated. Our �ts in [43] of the BaBar Rb-data
are consistent with the presence of a single state Y[bq] as a Breit-Wigner resonance with
mass around 10.90 GeV and total width of about 30 MeV in addition to the Υ(5S) and
Υ(6S). The quality of the �t with three Breit-Wigners is found to be better than the one
obtained with just only Υ(5S) and Υ(6S) as reported by BaBar [93]. A closeup of the
energy region around 10.90 GeV is necessary to con�rm and resolve the structure reported
by us. The isospin-induced mass di�erence between the two eigenstates Y[b,h] and Y[b,l]

comes out as about 6 MeV, which is comparable to the BaBar center-of-mass energy step
of 5 MeV. Hopefully this can be investigated in the near future by Belle. These results are
presented in Sec. 3.7.

Our inference was that the BaBar data are consistent with the presence of additional
bb̄ states Y[b,l] and Y[b,h] with a mass of about 10.90 GeV and a decay width of about
30 MeV, beside the Υ(5S) and Υ(6S) resonances. This is insu�cient to prove or disprove

Figure 3.11: Kinematics of a (spin aver-
aged) 1 → 3 process in the rest frame of
the dipion system. The two independent
variables in this frame are the helicity an-
gle θ and the invariant mass mππ.

the existence of tetraquarks in the predicted
region. It struck us that most of the enigmatic
events in the Belle data, explained below, in the
�nal states Υ(1S)π+π− and Υ(2S)π+π− are con-
centrated around 10.90 GeV, and hence we ten-
tatively identi�ed the states in our analysis of
the Rb-scan with the state Yb(10890) in the Belle
analysis shown in the last line of Tab. 3.2.1.

In December 2007, the Belle collaboration
reported the �rst observation of the processes
e+e− → Υ(1S)π+π− and e+e− → Υ(2S)π+π−

near the peak of the Υ(5S) resonance at the
center-of-mass energy

√
s of about 10.87 GeV

[91, 94]. The Υ(nS) states are called �bottomo-
nia� - bb̄ bound states of the bottom-quark and
its antiparticle. In particular, the �nal states Υ(1S)π+π− and Υ(2S)π+π− arising from the
production and decays of the lower bottomonia states, such as Υ(4S) → Υ(1S)π+π−, have
been studied in a number of experiments over the last thirty years and are theoretically
well-understood in QCD [95�98].

The observed spin averaged 1 → 3 processes are in general characterized by the helicity
angle θ and the invariant massmππ as pictured in Fig. 3.11. This is also what was measured
by the Belle group. Invariant mass refers to the absolute value of the sum of the outgoing
particle momenta. For n outgoing particles with momenta ki the invariant mass is de�ned
by mk1...kn ≡ |

∑n
i ki|. More about kinematics can be found in App. C.3. The invariant

mass is a Lorentz-invariant quantity, but the helicity angle is frame dependent. It is de�ned
as the angle between the pion and the Υ(nS) in the dipion rest frame. The di�erential
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Figure 3.13: Underlying Zweig forbidden process for the Υ(nS) → Υ(mS)π+π− transition
(left), in which n > m such that the dipionic decay is kinematically allowed, and the
corresponding invariant-mass spectrum for a typical decay Υ(4S) → Υ(1S)π+π− (right;
frame taken from [99])

cross section is invariant under the interchange of π+ and π− in the isospin limit and hence
symmetric in cos θ distribution.

Belle measurements near the Υ(5S) did not fall in line with theoretical expecta-
tions [91, 94]. Their data were enigmatic in that the partial decay widths for Υ(5S) →
Υ(1S)π+π− and Υ(2S)π+π− were typically up to three orders of magnitude larger than
anticipated in QCD [95�98]. The measured partial decay widths are listed in Tab. 3.3.1,
in which the decay widths measured for the supposedly Υ(5S) state is highlighted in red.

Figure 3.12: Measured spectra for the Υ(1S)
π+π− and Υ(2S) π+π− channels (crosses; �g-
ures taken from [91]). The histograms (red
curves) region is obtained from a Monte-
Carlo simulation using the model of refer-
ence [95] (phase space model) described in
Fig. 3.13.

The underlying process, pictured in Fig. 3.13
(left), describes the decays of the lower
Υ(2S)-Υ(4S) decaying to Υ(2S) π+π− well
and involves two gluon interactions. These
processes are Zweig-forbidden and hence
lead to small cross sections. In addition to
the deviation of the measured cross sections
from the expectations, the dipion invariant-
mass distributions in these events were dis-
tinct di�erent from theoretical expectations.
The di�erence shows for example in the
corresponding measurements for the Υ(4S)
decays Υ(4S) → Υ(1S)π+π− undertaken
previously by the Belle collaboration [99],
shown in Fig. 3.13 (right). The measure-
ments in question are robust, with the
Υ(1S)π+π− and Υ(2S)π+π− channels hav-
ing a signi�cance of 20σ and 14σ [91,94], re-
spectively. By comparing the expectations
(shaded histograms and red line) with the measurements (crosses) given in Fig. 3.12 it
is obvious that for the decays found near the Υ(5S), the hitherto working picture of the
Υ(nS) decays is not valid.
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Table 3.3.1: The total width Γtotal, and the partial width Γe+e− , ΓΥ(1S)π+π− [91]Tab. II.

Process Γtotal Γe+e− ΓΥ(1S)π+π−

Υ(2S) → Υ(1S)π+π− 0.032 MeV 0.612 keV 0.0060 MeV
Υ(3S) → Υ(1S)π+π− 0.020 MeV 0.443 keV 0.0009 MeV
Υ(4S) → Υ(1S)π+π− 20.5 MeV 0.272 keV 0.0019 MeV
Υ(5S) → Υ(1S)π+π− 110 MeV 0.31 keV 0.59 MeV

To be precise, two aspects of the Belle data had to be explained: (a) the anomalously
large partial decay rates and (b) the unexpected invariant-mass distributions of the dipions.
A related and important issue is whether the puzzling events seen by Belle stem from the
decays of the Υ(5S), or from another particle having a mass close to the mass of the Υ(5S).
In the conventional quarkonium theory, there is no place for an additional bb̄ resonance
having the quantum numbers of Υ(5S).

Our interpretation [44] of the Belle data is that the anomalous Υ(1S)π+π− and
Υ(2S)π+π− events are not caused by the production and decays of the Υ(5S), but rather
by the production of a completely di�erent hadron species, the above mentioned Y

(1)
b

tetraquark states, and their subsequent decays.

To pursue our theoretical hypothesis, we developed a dynamical theory to make quan-
titative predictions and undertake an analysis of the Belle data. The presented model
can explain the larger decay rates for the transitions Y (1)

b → Υ(1S)π+π−, Υ(2S)π+π−,
as well as the decays of Y (1)

b involving a recombination of the initial four quarks. This is
exempli�ed below by the process Y[bq] = [bq][b̄q̄] → (bb̄)(qq̄), with the subsequent projection
(bb̄) → Υ(1S) and (qq̄) → π+π−. The model is further explained in Sec. 3.8.1.

The measured decay distributions, such as the dipion invariant-mass spectra, are also
easily understood in terms of the a�nity of the tetraquark states Y[b,l] and Y[b,h] to decay
preferentially into Υ(1S) or Υ(2S) and lighter tetraquark states, like the light 0++ states
σ0(600) and f0(980) as mentioned earlier. Hence, one expects a resonant structure in the
dipion invariant mass, re�ecting these and other known resonances allowed by phase space
and angular momentum and parity conservation. In our model we were indeed able to
perceive a clear indication for such intermediate resonance interchanges in the shape of
the invariant-mass spectrum. In summary, the tetraquark interpretation of the Yb(10890)
provides an excellent description of the decay distributions measured by Belle. The �t
results are shown in Sec. 3.8.2.

Exciting and plausible as our explanation of the Belle and BaBar data is, a num-
ber of measurements are needed to con�rm the tetraquark interpretation of the Belle
anomaly. First and foremost two almost degenerate states Y[b,l] and Y[b,h], predicted in the
tetraquark theory as members of an iso-doublet, have to be con�rmed experimentally. We
eagerly await the analysis of the new data which Belle is currently accumulating around
the Υ(5S) region. Improved measurements of the cross section e+e− → bb̄ in dedicated
energy scans, which will be carried out at the Super-B factories being planned at KEK
and Frascati (Italy), may also greatly help in resolving this structure and perhaps estab-
lish other tetraquark resonances predicted in that region. If the higher and lower mass
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eigenstates can be distinguished depends on the one hand on the suppression with respect
to the background and the dominance of the enhanced contributions from the bottomonia
resonances with masses in the same energy region. On the other hand it depend on the
mixing between the �avor eigenstates Y[bu] and Y[bd]. If there is no mixing (θ = 0), the Y[b,l]

state is even further suppressed with respect to Y[b,l] by a factor 1/4 (the squared ratio
of the e�ective diquark charges). The inclusive (i.e. without specifying a single �nal
state) data has therefore disadvantages and may not be more conclusive than the already
analyzed BaBar data. There are, however, still unexplored exclusive (i.e. for a speci�c
�nal state) channels. In our latest work [90] we utilized our �t to the data of the exclu-
sive Y (1)

b → Υ(1S)π+π− channel to predict the size of the cross sections and the shapes
for the exclusive channels Y (1)

b → Υ(1S)K+K− and Y (1)
b → Υ(1S)ηπ0. If the presented

model in Sec. 3.8.1 is a proper description and the coupling to intermediate resonances is
as predicted, the other exclusive channels should show the same feature. Another testable
prediction in this framework is, that the ratio of the observed K+K− and K0K̄0 should be
1. Currently we are preparing a forthcoming paper [100] in which further details about the
correlations among the parameters and the cross sections will be presented. In Sec. 3.8.3
all our predictions are discussed in detail.

3.4 Mass spectrum of bottom diquark-antidiquark

states

In this section I derive the hidden bottom tetraquark mass spectra in the framework of
a simple constituent Hamiltonian model. See [41] for the application of the Hamiltonian
model in the strange-tetraquark sector and [101] for the historical roots of the constituent
quark models. The masses are the most easy accessible and moreover the �rst important
input to any search for experimental evidence.

The mass spectrum of tetraquarks [bq][bq′] with q = u, d, s and c can be described
in terms of the constituent diquark masses, mQ, spin-spin interactions inside the single
diquark, H(QQ)

SS , spin-spin interactions between quark and antiquark belonging to two di-

quarks, H(QQ̄)
SS , spin-orbit interactions, HSL, and purely orbital term, HLL:

H = 2mQ +H
(QQ)
SS +H

(QQ̄)
SS +HSL +HLL. (3.4.1)

The Hamiltonian is diagonalized by a certain set of four quark states, which will be in-
troduced later. Introducing the vector valued spin S and angular momentum L operators,
the terms can be written as

H
(QQ)
SS = 2(Kbq)3̄[(Sb.Sq) + (Sb̄.Sq̄)],

H
(QQ̄)
SS = 2(Kbq̄)(Sb.Sq̄ + Sb̄.Sq) + 2Kbb̄(Sb.Sb̄) + 2Kqq̄(Sq.Sq̄),

HSL = 2AQ(SQ.L + SQ̄.L),

HLL = BQ
LQQ̄(LQQ̄ + 1)

2
. (3.4.2)

Here mQ is the mass of the diquark [bq], LQQ̄ is the or-
bital excitation quantum number of the diquark and antidiquark,
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(Kbq)3̄ accounts for the spin-spin interaction between the quarks inside the diquark and
antidiquark, Kqq̄ are the couplings ranging from the quarks in the diquark to the anti-
quarks in the antidiquark, AQ is the spin-orbit coupling of diquark and BQ corresponds
to the contribution of the total angular momentum of the diquark-antidiquark system. A
schematic picture of the spin interactions is presented in Fig. 3.14. The overall factor of 2
is used customarily in the literature. A closer look on the spin interactions of Eq. (3.4.1)
and (3.4.2) shows, that the spin part is composed of the spin interaction of each pairing of
the quarks inside the tetraquark:

HSS =
∑
i<j

2Kij(Si.Sj), (3.4.3)

where the sum runs over the hadron constituents. The coe�cient Kij depends on the
�avor of the constituents i, j and on the particular color state of the pair. The color
representation of the two quark system can be 3 ⊗ 3̄ = 1 ⊕ 8 for the quark-antiquark
system and 3⊗ 3 = 3̄⊕ 6 for the quark-quark system (the antiquark-antiquark system is
similar). In Sec. 3.1 it is argued, that the sextets are phenomenologically irrelevant.

Figure 3.14: Schematic picture describing
the meaning of the coe�cients in the Hamil-
tonian (3.4.1). To illustrate the spin-orbit
and purely orbital terms is beyond the scope
of this simple picture.

For the calculation of the masses isospin
symmetry is assumed, i.e. the iso-doublet
consisting of the states

Y
(n)
[bu] = [bu][b̄ū] and

Y
(n)
[bd] = [bd][b̄d̄] (3.4.4)

are degenerate in mass for each n. Later,
the isospin symmetry breaking e�ects in the
masses will be calculated.

As mentioned, the Hamiltonian (3.4.1)
needs to diagonalize the mass eigenstates.
To accomplish this, the qualitative opera-
tor (3.4.1) needs to be cast in a mathemat-
ical form, and likewise the states. We use
the non-relativistic notation |SQ, SQ̄; J〉, where SQ and SQ̄ are the spin of diquark and
antidiquark, respectively, and J is the total angular momentum. These states are then
de�ned in terms of the direct product of the 2× 2 matrices Γα in spinor space, which can
be written in terms of the Pauli matrices as:

Γ0 =
σ2√
2
; Γi =

1√
2
σ2σi , (3.4.5)

in which the former corresponds to the scalar and the latter to the vector diquark. The
following tetraquark ground states are obtained:

|0Q, 0Q̄; 0J〉 =
1

2
(σ2)⊗ (σ2) ,

|1Q, 1Q̄; 0J〉 =
1

2
√

3

(
σ2σ

i
)
⊗
(
σ2σ

i
)
,
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Table 3.4.1: Constituent-quark masses derived from the L = 0 mesons and baryons.

Constituent mass [MeV] q s c b
Mesons 305 490 1670 5008
Baryons 362 546 1721 5050

Table 3.4.2: Spin-Spin couplings for quark-antiquark pairs in the color singlet state from
the known mesons.

Spin-spin couplings qq̄ sq̄ ss̄ cq̄ cs̄ cc̄ bq̄ bs̄ bc̄ bb̄
(Kij)0[MeV] 318 200 129 71 72 59 23 23 20 36

|0Q, 1Q̄; 1J〉 =
1

2
(σ2)⊗

(
σ2σ

i
)
,

|1Q, 0Q̄; 1J〉 =
1

2

(
σ2σ

i
)
⊗ (σ2) ,

|1Q, 1Q̄; 1J〉 =
1

2
√

2
εijk

(
σ2σ

j
)
⊗
(
σ2σ

k
)
. (3.4.6)

Similar matrix representations exist for the spin operators. More about the explicit forms
and calculations can be found in App. C.1.

The next step is the diagonalization of the Hamiltonian (3.4.1) by using the basis of
states with de�nite diquark and antidiquark spin and total angular momentum. There are
two di�erent possibilities: The lowest lying states with LQQ̄ = 0 and the orbital excited
higher mass states with LQQ̄ = 1, which are discussed below.

The parameters involved in the Hamiltonian (3.4.2) can be obtained from the known
meson and baryon masses in the constituent quark model [101]. The derivation is straight
forward. It is based on the assumption that the constants involved in the Hamiltonian
are to a good approximation universal. This allows to resort to the known mesons and
baryons and to derive the constants with their help. Namely, the spin interaction between
two quarks can be obtained from the baryon mass spectrum, as the coe�cients, say for
exampleKud, play a role in the calculation of the proton mass. The spin interaction between
a quark and and antiquark can be obtained from the mesons and the orbital interactions
can be estimated from the excited mesons and baryons and so on.

Using the entries in the PDG for hadron masses along with the assumption that the spin-
spin interactions are independent of whether the quarks belong to a meson or a diquark,
the results for diquark masses corresponding to X (3872) and Y (2175) were calculated in
the literature [35, 41]. Here, this procedure is extended to the tetraquarks [bq][b̄q̄]. The
constituent quark masses and the couplings Kij for the color singlet and antitriplet states
are given in Tab. 3.4.1, 3.4.2 and 3.4.3. The 0 index indicates, that the quark and antiquark
are in the singlet representation, which is the only accessible con�guration from the mesons.
The octet con�guration is discussed later.
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Table 3.4.3: Spin-Spin couplings for quark-quark pairs in color 3̄ state from the known
baryons.

Spin-Spin couplings qq sq cq cs ss bq bs bc
(Kij)3̄[MeV] 98 65 22 24 72 6 25 10

3.4.1 Lowest lying [bq][b̄q̄] ground states with LQQ̄ = 0

The states can be classi�ed in terms of the diquark and antidiquark spin, SQ and SQ̄, total
angular momentum J , parity P and charge conjugation C. The charge conjugation in
terms of Pauli matrices is given by C = iσ2, such that transposition works the same way
as with Dirac matrices, σTi = CσiC and γTµ = CγµC for Dirac matrices correspondingly.
Considering both good and bad diquarks we have six possible states, which are listed below.

i. Two states with JPC = 0++:∣∣0++
〉

= |0Q, 0Q̄; 0J〉 ;∣∣0++′〉 = |1Q, 1Q̄; 0J〉 . (3.4.7)

ii. Three states with J = 1:∣∣1++
〉

=
1√
2

(|0Q, 1Q̄; 1J〉+ |1Q, 0Q̄; 1J〉) ;∣∣1+−〉 =
1√
2

(|0Q, 1Q̄; 1J〉 − |1Q, 0Q̄; 1J〉) ;∣∣1+−′〉 = |1Q, 1Q̄; 1J〉 . (3.4.8)

All these states have positive parity, since both, the good and bad diquarks, have positive
parity. They di�er in the charge conjugation quantum number, the state |1++〉 is even
under charge conjugation, whereas |1+−〉 and |1+−′〉 are odd.

iii. One state with JPC = 2++:∣∣2++
〉

= |1Q, 1Q̄; 2J〉 . (3.4.9)

For LQQ̄ = 0 the Hamiltonian (3.4.1) takes the form

H = 2m[bq] + 2(Kbq)3̄[(Sb.Sq) + (Sb̄.Sq̄)] + 2Kqq̄(Sq.Sq̄)

+2(Kbq̄)(Sb.Sq̄ + Sb̄.Sq) + 2Kbb̄(Sb.Sb̄). (3.4.10)

The diagonalization of the Hamiltonian (3.4.10) with the states de�ned above gives the
eigenvalues, which are needed to estimate the masses of these states. For the 1++ and 2++

its eigenvalues are [35]

M
(
1++

)
= 2m[bq] − (Kbq)3̄ +

1

2
Kqq̄ −Kbq̄ +

1

2
Kbb̄, (3.4.11)
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M
(
2++

)
= 2m[bq] + (Kbq)3̄ +

1

2
Kqq̄ +Kbq̄ +

1

2
Kbb̄. (3.4.12)

The coe�cients K are known, and the constituent diquark mass is obtained as follows. We
took the Belle data [84] as input and identi�ed the Yb(10890) with the lightest of the 1−−

states, Y[bq], yielding a diquark mass

m[bq] = 5.251 GeV. (3.4.13)

This procedure is analogous to what was done in [35], in which the mass of the diquark
[cq] was �xed by using the mass of X(3872) as input, yielding

m[cq] = 1.933 GeV. (3.4.14)

It might look inconsistent to take the Belle data as input for the determination of the
constituent quark mass and try in the following sections to prove that their observed state
is indeed a tetraquark. But the mass in (3.4.13) does not appear from nowhere: Using
heavy-quark symmetry the [bq] diquark mass can be obtained from the [cq] diquark mass
in (3.4.14). In the heavy-quark limit the masses of the heavy-quarks are constant and equal
to their constituent mass. In conclusion the [bq] diquark mass is given by

m[bq] = m[cq] + (mb −mc) (3.4.15)

The mass di�erence mc − mb ≈ 3.33 GeV is a well determined experimental quantity
(see also Tab. 3.4.1) and one gets m[bq] = 5.267 GeV, yielding a di�erence with the mass
in (3.4.13) of 16 MeV. This will be taken as an estimate of the theoretical error on m[bq],
which then yields an uncertainty of about 30 MeV in the estimates of the tetraquark
masses. Unfortunately, there is no consistent way to obtain well founded error estimates.
Experience from other applications of the Hamiltonian models tells however, that the errors
are usually some few 10 MeV. Thus the di�erence discussed above is well within errors.

The couplings corresponding to the spin-spin interactions have only been calculated for
the color singlet and color antitriplet, as mentioned earlier. In Eq. (3.4.2), however, the
quantities Kqq̄, Kbq̄ and Kbb̄ involve both color singlet and color octet couplings between
the quarks and antiquarks in a QQ̄ system. For Kbb̄

Kbb̄

(
[bq][b̄q̄]

)
=

1

3
(Kbb̄)0 +

2

3
(Kbb̄)8 , (3.4.16)

in which (Kbb̄)0 is reported in Tab. 3.4.2, (Kbb̄)8 can be derived from the one gluon exchange
model, described in Sec. 3.1, by using the relation [35]

(Kbb̄)X ∼
(
C2 (X)− C2 (3)− C2 (3̄)

)
, (3.4.17)

with C2 (X) = 0, 4/3, 4/3, 3 for X = 1, 3, 3̄, 8 respectively. The contributions are
therefore proportional to the discriminator given in Tab. 3.1.1. Finally, Eq. (3.4.16) yields

Kbb̄

(
[bq][b̄q̄]

)
=

1

4
(Kbb̄)0 . (3.4.18)
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Using the values given in Eq. (3.4.13) and Tabs. 3.4.2 and 3.4.3, the masses for the
hidden bb̄ tetraquark states 1++ and 2++ states are:

M
(
1++

)
= 10.533 GeV, for q = u, d, (3.4.19)

= 10.860 GeV, for q = s, (3.4.20)

= 13.222 GeV, for q = c, (3.4.21)

M
(
2++

)
= 10.557 GeV, for q = u, d, (3.4.22)

= 10.921 GeV, for q = s, (3.4.23)

= 13.252 GeV, for q = c. (3.4.24)

For the corresponding 0++ and 1+− tetraquark states, the Hamiltonian is not diagonal and
we have the following 2× 2 matrices:

M
(
0++

)
=

(
−3(Kbq)3̄

√
3

2
(Kqq̄ +Kbb̄ − 2Kbq̄)√

3
2

(Kqq̄ +Kbb̄ − 2Kbq̄) (Kbq)3̄ − (Kqq̄ +Kbb̄ + 2Kbq̄)

)
, (3.4.25)

M
(
1+−) =

(
−(Kbq)3̄ +Kbq̄ − (Kqq̄+Kbb̄)

2
Kqq̄ −Kbb̄

Kqq̄ −Kbb̄ (Kbq)3̄ −Kbq̄ − (Kqq̄+Kbb̄)

2

)
. (3.4.26)

To estimate the masses of these two states, one has to diagonalize the above matrices.
After doing this, the mass spectrum of the bb̄ states is shown in Fig. 3.15.

3.4.2 Excited higher mass [bq][b̄q̄] states with LQQ̄ = 1

I discuss now the orbital excited tetraquark states with LQQ̄ = 1, having both good and bad

diquarks. This work is particularly focused on the 1−− multiplet. Using the basis vectors
de�ned in reference [41] the mass shift due to the spin-spin interaction terms HSS becomes:

∆MSS =

 −3 (Kbq)3̄ 0 0
0 − (Kbq)3̄ −Kbq̄ + (Kqq̄ +Kbb̄) /2 0
0 0 − (Kbq)3̄ −Kbq̄ − (Kqq̄ +Kbb̄) /2

 . (3.4.27)

The eigenvalues of the spin-orbit and angular momentum operators, given in Eq. (3.4.1),
were calculated by Polosa et al. [41] and are summarized in Tab. 3.4.4.3

The Hamiltonian model yields for the masses of the eight tetraquark states [bq][b̄q̄]
(q = u, d) having the quantum numbers 1−−:

M
(1)
Y[bq]

(SQ = 0, SQ̄ = 0, SQQ̄ = 0, LQQ̄ = 1) = 2m[bq] + λ1 +BQ,

M
(2)
Y[bq]

(SQ = 1, SQ̄ = 0, SQQ̄ = 1, LQQ̄ = 1) = 2m[bq] + ∆ + λ2 − 2AQ +BQ,

M
(3)
Y[bq]

(SQ = 1, SQ̄ = 1, SQQ̄ = 0, LQQ̄ = 1) = 2m[bq] + 2∆ + λ3 +BQ, (3.4.28)

3The entry for a in the last row of Tab. 3.4.4 di�ers from the corresponding one in the �rst reference
in [41], which is given as −2, but this point has now been settled amicably in �avor of the value given here.
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Table 3.4.4: Eigenvalues of the spin-orbit and angular momentum operator in Eq. (3.4.1)
for the states having J = LQQ̄ + SQQ̄ = 1.

|SQ , SQ̄, SQQ̄, LQQ̄〉 a (SQ , SQ̄, SQQ̄, LQQ̄) b (sQ , SQ̄, SQQ̄, LQQ̄)
|0 , 0, 0, 1〉 0 1
|1 , 0, 1, 1〉 −2 1
|1 , 1, 2, 1〉 −6 1
|1 , 1, 1, 1〉 −2 1
|1 , 1, 0, 1〉 0 1

M
(4)
Y[bq]

(SQ = 1, SQ̄ = 1, SQQ̄ = 2, LQQ̄ = 1) = 2m[bq] + 2∆ + λ3 − 6AQ +BQ,

in which λi(i = 1, 2, 3) are the diagonal elements of the matrix ∆MSS given in Eq. (3.4.27)
(λ1 = −18 MeV, λ2 = 33 MeV and λ3 = −56 MeV). Note, that there are 16 electrically
neutral self-conjugate 1−− tetraquark states Y (n)

[bq] with quark contents [bq][b̄q̄], with q =

u, d, s or c, of which the two corresponding to [bu][b̄ū] and [bd][b̄d̄], i.e. Y (n)
[bu] and Y

(n)
[bd] , are

degenerate in mass due to the isospin symmetry. There are yet more electrically neutral
JPC = 1−− states with the mixed light-quark content [bd][b̄s̄] and their charge conjugates
[bs][b̄d̄]. However, these mixed states don't couple directly to the photons, Z0 or the gluon
and are not of immediate interest in this work.

The numerical values of the coe�cients corresponding to AQ and BQ are given in
Tab. 3.4.4 and are labeled by a and b, respectively. The quantity ∆ is the mass di�erence
of the good and the bad diquarks

∆ = mQ (SQ = 1)−mQ (SQ = 0) . (3.4.29)

In order to calculate the numerical values of these states one has to estimate ∆ (the only
unknown remaining constant in this calculation). Following Ja�e and Wilczek [2], the value
of ∆ for diquark [bq] is ∆ = 202 MeV for q = u, d, s and c-quarks. This value is, however,
to be taken with caution. The value obviously ignores the mass di�erences of the di�erent
valence-quarks. The mass-breaking e�ects are very large and not well in agreement with
the adopted heavy-quark limit and di�er by a factor 4 from the mass di�erence of the
ground state B-mesons and the excited B∗ mesons, which is around 50 MeV. Naively one
would expect them to be of the same order. In a recent work [102]Tab. II, the diquark
masses were calculated using the relativistic quark model. The diquark masses di�er from
the values used here by O(50) MeV for m[cq] and by O(100) MeV for m[bq]. There is still
some discussion needed in the determination of the constituent diquark mass. However,
since the mass-breaking e�ect of the good and the bad diquark is taken into account in
that work, it might be a better guideline. The �ndings for the mass-breaking ∆ are given
by 199 MeV, 121 MeV, 63 MeV and 22 MeV for [qq], [sq], [cq] and [bq] respectively. On
the upside, however, the state Y (1)

b on which this work is focused only consists of the good
diquarks and does not su�er from this uncertainties.
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Figure 3.15: Tetraquark mass spectrum with the valence-quark content [bq][b̄q̄] with q =
u, d, assuming isospin symmetry (upper left frame), with q = s (upper right frame), with
q = c (lower left frame), and for the mixed light-quark content [bd][b̄s̄] (lower right frame).
Some important decay thresholds are indicated by dashed lines. All masses are given in
MeV.

The S = 1, L = (0, 1) meson states B∗, B1 (5721), B2 (5747) are used to calculate the
values of AQ and BQ which describe the orbital couplings of the excited states. They are:

AQ = 5 MeV, for q = u, d,

AQ = 3 MeV, for q = s, c,

BQ = 408 MeV, for q = u, d,

BQ = 423 MeV, for q = s, c. (3.4.30)

Numerical values of the mass estimates for the states given in Eq. (3.4.28) are quoted in
Tab. 3.4.2. Some of the entries, in particular M

Y
(1)
[bq]

(q = u, d, s), are comparable with the

existing ones in references [103,104].

Finally, the mass spectrum for the tetraquark states [bq][b̄q̄] for q = u, d, s, c with
JPC = 0++, 1++, 1+−, 1−− and 2++ states is plotted in Fig. 3.15 in the isospin-symmetry
limit. The bb̄-tetraquark states with mixed light-quark content [bd][b̄s̄] are also shown in
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Table 3.4.5: Masses of the 1−− tetraquark states M
(n)
Y[bq]

in GeV as computed from
Eqs. (3.4.28), (3.4.29) and (3.4.30). The valueM

Y
(1)
[bq]

(for q = u, d) is �xed to be 10.890 GeV,

identifying this with the mass of the Yb from Belle [84]
.

M
(i)
Y[bq]

q = u, d q = s q = c q = d, q̄ = s̄

M
Y

(1)
[bq]

10.890 11.218 13.618 11.054

M
Y

(2)
[bq]

11.130 11.479 13.841 11.281

M
Y

(3)
[bq]

11.257 11.646 14.025 11.476

M
(4)
Y[bq]

11.227 11.629 14.009 11.453

this �gure. Of these the 1−− state Y (1)
[bq] (10.890), shown in the upper left frame in Fig. 3.15,

is of central interest in this work. The mass M
Y

(1)
[bq]

is also in agreement with a later QCD

sum rule estimate [105].

3.5 Isospin breaking and e+e− decay widths of the JPC =

1−− tetraquarks

In this section the isospin breaking e�ects of the JPC = 1−− tetraquarks are discussed
and the partial decay widths Γee(Y[b,l]) and Γee(Y[b,h]) for the processes Y[b,l] → e+e− and
Y[b,h] → e+e− are derived. The partial electronic width is needed to estimate the production
of the Yb states in e+e− annihilation processes and plays an important role. As mentioned
earlier, all Yb states are arranged in isospin doublets with quark content [bu][b̄ū] and [bd][b̄d̄].
The mass eigenstates are called Y[b,l] and Y[b,h] for the lighter and the heavier of the two.
They are given by a linear superposition of the states de�ned in (3.4.4). Introducing a
mixing angle θ they are generically de�ned by:

Y[b,l] = cos θ Y[bu] + sin θ Y[bd] and Y[b,h] = − sin θ Y[bu] + cos θ Ybd]. (3.5.1)

The isospin eigenstates are given by

Y 0
b = (Y[bu] + Y[bd])/

√
2 and Y 1

b = (Y[bu] − Ybd])/
√

2. (3.5.2)

It is trivial to see, that for θ = −45◦ Y[b,l] = Y 1
b and Y[b,h] = Y 0

b , so that all general expres-
sions are easily simpli�ed for the isospin eigenstates. The isospin-invariant Hamiltonian
model in the previous section needs to be extended by isospin breaking terms to yield
the mass-breaking e�ects. Writing the quark eigenstates as (Y[bu], Y[bd]) the mass-breaking
matrix is de�ned as(

2mu + δ δ
δ 2md + δ

)
, (3.5.3)
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in which δ is the contribution stemming from one gluon exchange quark annihilation dia-
grams, in which the light-quark pair annihilates to an intermediate gluon. The diagonal
δ elements correspond to uū → uū and dd̄ → dd̄ and the o�-diagonal terms describe the
contribution uū → dd̄ and dd̄ → uū. In the one gluon exchange models all contributions
are identical. However, this contribution is assumed to be small compared with the break-
ing of the constituent quark mass mu and md and will be neglected for mixing angles of
θ . 30◦ (the bigger the mixing, the more important are the annihilation diagrams). Then
the isospin mass-breaking is given by4

M(Y[b,h])−M(Y[b,l]) = (7± 3) cos(2θ) MeV. (3.5.4)

The isospin mass-breaking is very small and experiments usually con not resolve this mass
di�erence, though it may cause visible interference e�ects, which are, however, hard to
handle on the theoretical side. Hence, in the analysis of the tetraquarks, this relation plays
a minor role.

More interesting is another aspect of the mixing, namely the e�ects of the e�ective
charge of the mixed constituent diquarks, which depends also on the mixing angle θ:

Q[b,l] = cos θ Q[bu] + sin θ Q[bd] and Q[b,h] = − sin θ Q[bu] + cos θ Qbd]. (3.5.5)

and

Q0
b = (Q[bu] +Q[bd])/

√
2 and Q1

b = (Q[bu] −Q[bd])/
√

2 (3.5.6)

for the isospin eigenstate charges. Here Q[bd] = −2/3 is the diquark charge in Ybd = [bd][b̄d̄]
and Q[bu] = +1/3 is the charge of the diquarks in Ybu = [bu][b̄ū]. For the P -wave tetraquark
states, the decay width is given at LO in αs by the generalized Van Royen-Weisskopf
formulae

Γ(Yi → e+e−) =
24α2

s|Qi|2

m4
Yb

κ2
∣∣∣R(1)

11 (0)
∣∣∣2 , (3.5.7)

in which R
(1)
11 (0) is the �rst derivative of the radial wave function at the origin and i

labels the basis (i = [bu/bd], [bh/bl]). The relation (3.5.7) is derived in App. C.2 after
a short review of the bottomonia production, from where the derivation is borrowed. It
rests upon the condition of approximately pointlike diquarks. As mentioned in Sec. 3.1
the tetraquarks are mainly strong bound states, and the pointlike diquarks are in color
space almost identical to the quarks. Hence the close connection to the bottomonia
family. The derivation of the Van Royen-Weisskopf formula involves an e+e− pair cou-
pling to an intermediate o�-shell photon, which couples to the diquark current and pro-
duces the diquark antidiquark pair at zero diquark distance (hence the behavior of the
wave function at origin determines the overlap). The process is depicted in Fig. 3.16.
We determined the wave functions for the P-state tetraquarks [bd][b̄d̄] and [bu][b̄ū] from
the corresponding wave functions for the P-state bb̄ system by scaling the string tension

4The expression (3.5.4) di�ers from the one derived in [35], but there is consensus now on the expression
given here.
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Figure 3.16: Schematic underlying pro-
cess of the Van Royen-Weisskopf formula
for tetraquarks with pointlike diquarks.

in the linear part of the potential, as discussed
earlier. As most potential models agree in
their linear (con�ning) parts [92], and the lin-
ear part of the potential essentially determines
the heavy Quarkonia wave functions, the uncer-
tainty in Ψbb̄(0) from the underlying model is
not a concern. We have used the QQ-onia pack-
age of [106], yielding |R′(0)|2 = 2.062 GeV5 for
the bb̄ radial wave function, which we have used
as normalization. The corresponding value for
the tetraquark states [bq][b̄q̄] is then calculated
as ΨQQ̄(0) ' κΨbb̄(0). The constant parameter
κ is introduced as a form factor to capture the
di�erences between the bottom mesons and the
bottom tetraquarks as a �rst order approximation. Here κ re�ects two e�ects, namely the
size of the tetraquarks Y[bu/bd] compared to a typical hadronic bottomonia state, say, Υ(5S),
and the e�ect of the nonzero size of the diquarks, since on the lattice, the diquarks exhibit
typical sizes of O(1fm), as discussed in Sec. 3.1. Hence κ is expected to be signi�cantly
smaller than 1. We expect that for all the P-states Y (n)

[bu] and Y
(n)
[bd] the electronic widths will

be constant to a good approximation.

With the formula (3.5.7) it is possible to determine the strength of the coupling in the
e�ective Lagrangian

Leff = ge+e−Yi
(Yi)µ ēγ

µe , (3.5.8)

which de�nes the e�ective vertex as

Yi

µe+

e−
= ige+e−Yi

γµ (3.5.9)

and yields

Γ(Yi → e+e−) =
mYb

12π
|ge+e−Yi

|2 , (3.5.10)

for the decay widths of Yi . The e�ective couplings are de�ned in the same way as the
e�ective charges for an arbitrary mixing angle by

ge+e−Y[bl]
= cos θ ge+e−Y[bu]

+ sin θge+e−Y[bd]
,

ge+e−Y[bh]
= − sin θge+e−Y[bu]

+ cos θge+e−Y[bd]
, (3.5.11)

and

ge+e−Y 0
b

= (ge+e−Y[bu]
+ ge+e−Y[bd]

)/
√

2,

ge+e−Y 1
b

= (ge+e−Y[bu]
− ge+e−Y[bd]

)/
√

2. (3.5.12)
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Some interesting relations can be derived with the above discussed formulas. In the
following I state the most important of them. The ratio Ree(Yb) of Γee(Y[b,l]) and Γee(Y[b,h])
and hence also the production ratio is given by

Ree(Yb) ≡
Γee(Y[b,l])

Γee(Y[b,h])
=
Q2
l (θ)

Q2
h(θ)

=

[
1− 2 tan θ

2 + tan θ

]2

. (3.5.13)

Since the total cross section σ(e+e− → (Y[b,l], Y[b,h]) → hadrons) for the states Y[b,l] and
Y[b,h], which are the physical relevant particles, are directly proportional to Γee(Y[b,l]) and
Γee(Y[b,h]), the ratio Ree(Yb) is accessible from the experiment. The absolute values of the
decay widths Γee(Y[b,l]) and Γee(Y[b,h]) are given by Γee(Yi) ≈ 0.2 κ2Qi(θ)

2 keV, where Qi(θ)
are the mixing angle weighted charges (3.5.5). The electronic decay width for the �avor
eigenstates, which are approximately the mass eigenstates for small mixing angles θ, are
given by

Γee(Y[bu]) ≈ 10 eV and Γee(Y[bd]) ≈ 50 eV (3.5.14)

for a value of κ = 1/2. Compared to the electronic width Γee(Y[bd]) = 310±70 eV of Υ(5S),
taken from [77], the tetraquarks are suppressed by one order of magnitude in the inclusive
Rb-scans with respect to the bottomonia.

Comparing Eq. (3.5.10) with Eq. (3.5.7), we �nd the relations

|ge+e−Yi
| = 12

√
2π α|Qi|κ
m

5/2
Yb

∣∣∣R(1)
11 (0)

∣∣∣ . (3.5.15)

The ratio of the couplings ge+e−Y 0
b
and ge+e−Y 1

b
, which will be needed in the later sections

is then given by

ge+e−Y 1
b
/ge+e−Y 0

b
= Q1/Q0 = −3 . (3.5.16)

We can compute the coupling of Y 0
b to e+e− from Eq. (3.5.15):

ge+e−Yi
≈ 8× 10−4κQi(θ). (3.5.17)

For the isospin eigenstates Y 0 and Y 1 and κ = 1/2 one �nds

ge+e−Y 0 ≈ 10−4 and ge+e−Y 1 ≈ −3× 10−4. (3.5.18)

3.6 Y[bq] decay modes and total decay widths

In this section the dominant hadronic decays of the LQQ̄ = 1 states are discussed and the
total decay width is estimated. All examined decays in this section are mediated through
the strong interaction, thus isospin breaking is neglected. The calculations include only
the two-body decays, Y[bq] → B

(∗)
q B̄

(∗)
q , and when kinematically allowed also the decay

Y[bq] → ΛbΛ̄b. Their thresholds are indicated in Fig. 3.15. These decays are Zweig allowed
and involve essentially quark rearrangements and the possible pop-up of a light qq̄ pair to
form the ΛbΛ̄b state. The decays Y[bq] → Υ(1S, 2S) π+π− are also Zweig allowed. However,
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Figure 3.17: Comparison of the production and the subsequent decays of the Υ(5S) to the
left and the tetraquark to the right. The production of the light-quark pair qq̄ is produced
in a strong process from the QCD background in the former and in the electromagnetic
production process by the coupling to a virtual photon in the latter case.

they are kinematically suppressed and supposedly sub-dominant. Hence, they will be
neglected in the calculation of the inclusive hadronic width. They are otherwise signature
decays of the Y[bq] tetraquarks as discussed in the preceding Sec. 3.3. More about these
three-body decays can be found in the following sections. It is assumed, that the Zweig
allowed and kinematically augmented two-body decays are the dominant decay modes of
the Y[bq] tetraquarks. Following this argument, the total decay width can be approximated
by the sum of the partial decay widths of the two-body decays to a good approximation.

The vertices and the corresponding decay widths of the dominant decays are given

below:5

BqB̄q : 1
−−

µ q

L = 1

k

l

0
−

0
−

=̂ FBqB̄q
(kµ − lµ)

=⇒ ΓBqB̄q
=

F 2
BqB̄q

|k|3

2M2π ,

BqB̄
∗
q : 1

−−

µ q

k

l

0
−

1
−

=̂
FBqB̄∗

q

M εµνρσkρlσ

=⇒ ΓBqB̄∗
q

=
F 2

BqB̄∗
q
|k|3

4M2π ,

(3.6.1)

B∗
q B̄

∗
q : 1

−−

µ q

L = 1

k

l

1
−

1
−

=̂

FB∗
q B̄∗

q
(gµρ(q + l)ν

−gµν(k + q)ρ

+gρν(q + k)µ)

=⇒ ΓB∗
q B̄∗

q
=

F 2
B∗

q B̄∗
q
|k|3(48|k|4−104M2|k|2+27M4)

2π(M3−4|k|2M)2 ,

5The second vertex involves the antisymmetric tensor due to parity conservation.
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ΛbΛ̄b : 1
−−

µ q

k

l

1
2

+

1
2

+

α

β

=̂

(
FΛbΛ̄b

γµ +
2F ′

ΛbΛ̄b

iM qνσ
νµ

)
αβ

=⇒ ΓΛbΛ̄b
=

3(F 2
ΛbΛ̄b

+F ′2
ΛbΛ̄b

)|k|
4π −

(F 2
ΛbΛ̄b

+2F ′2
ΛbΛ̄b

)|k|3

M2π .

The center-of-mass momentum |k| is given by

|k| =
√
M2 − (M1 +M2)2

√
M2 − (M1 −M2)2

2M
, (3.6.2)

where M is the mass of the decaying particle and M1, M2 are the masses of the decay
products. The matrix elements are obtained by multiplying the vertices in (3.6.1) by the
polarization vectors. Thus the Lorentz-invariant matrix element for the decay Y[b,q] → BqB̄q

is given by MBqB̄q
= ε

Y[b,q]
µ FBqB̄q

(kµ − lµ) and likewise for the other decays shown above.
The decay constants F and F ′ are non-perturbative dynamical quantities, hard to estimate
from �rst principles or in lattice QCD. In state of the art calculations experimental input
is therefore still the �rst choice. We estimated the decay constants using the known two-
body decays of a typical hadronic state with similar mass, the Υ(5S), which are described
by the same vertices as given above [43]. Both Zweig allowed processes are pictured in
Fig. 3.17. The nature of the production of the light-quark pair is the characteristic feature,
which distinguishes both processes. The Υ(5S) is produced by coupling to the virtual
photon, which couples to the e+e− current. Subsequently, the light-quark pair pops up
from the QCD background of the Υ(5S). It is assumed, that the probability of the pop-up
of a quark pair from the QCD vacuum is 1. The light-quark pair in the tetraquark decay
process on the other hand is produced in the electromagnetic process by the coupling of
the virtual photon to the pointlike diquarks. This is an important di�erence in our model
and has far reaching consequences. It emerges whenever the production of the tetraquarks
is taken into account. Since the quark pair is not speci�ed, the Υ(5S) can decay to both
charged and neutral mesons, whereas [bu][b̄ū] can only couple to charged and [bd][b̄d̄] can
only couple to neutral mesons, i.e. we used〈
B+B−∣∣ Ĥ ∣∣Y[bu]

〉
=
〈
B0B̄0

∣∣ Ĥ ∣∣Y[bd]

〉
=
〈
B+B−∣∣ Ĥ |Υ(5S)〉 =

〈
B0B̄0

∣∣ Ĥ |Υ(5S)〉 (3.6.3)

and similar equations for the �nal states BB̄∗ and B∗B̄∗ . This causes a suppression
factor 2 in the total tetraquark decay width compared to the bottomonia. The di�erent
hadronic sizes of the bottomonia states and the tetraquarks Y[bq] are taken into account by
the quantity κ, discussed earlier. We use the values for the partial decay widths for the
decays Υ(5S) → BB̄,BB̄∗, B∗B̄∗ from the PDG [77]. They are called ΓPDG and are given
in Tab. 3.6.2, yielding the coupling constants, called FPDG, and the decay momentum
|k|. The full width of Υ(5S) is given by Γtot[Υ(5S)] = 110 ± 13 MeV. For the decays
Y

(i)
[bq] → ΛbΛ̄b and Y

(i)
[bs] → ΞΞ̄, we took FΛbΛ̄b

= F ′
ΛbΛ̄b

= 1.1+0.3
−0.35, and included a factor

of 1/3 for the baryonic �nal state to take the creation of the additional qq̄ pair from the
vacuum into account. This is only a very bold guess, but for most (and more importantly
for the relevant) states the mass is below the two-baryon threshold. I further remark,
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that the estimates of FPDG will be modi�ed, if the total decay width Γtot[Υ(5S)] has a
signi�cantly lower value, as predicted by the BaBar Rb-analysis [93].

The input values for the masses used in our calculation are listed in Tab. 3.6.1. With
this input, our estimates of the decay widths for Y (i)

[bq] are given in Tab. C.8.3. I give also the
total decay widths (up to the factor κ2) in Tab. 3.6.3. As seen in this table, the lowest lying
1−− states Y (1)

[bq] are expected to have decay widths of O(20) MeV, for κ2 ' 0.5. Admittedly
this is a rather crude approximation and re�ned approaches will hopefully provide better
estimates. However, the total decay width of Y (1)

[bq] are consistent with the measurements

by Belle, if Y (1)
[bq] is identi�ed with their Yb(10890), and moreover the Belle measurements

are in agreement with a value of κ . 1. The higher 1−− states have much larger decay
widths and will be correspondingly more di�cult to �nd.

Table 3.6.1: Input masses taken from [77] in units of GeV.

hadron mass hadron mass hadron mass
B 5.279 π 0.139 Υ(1S) 9.46
B∗ 5.325 Λb 5.62 Υ(4S) 10.5794
Bs 5.366 Ξb 5.792 Υ(10860) 10.865
B∗
s 5.412 K 0.4937 Υ(11020) 11.019

Table 3.6.2: 2-body decays Υ(5S) → B(∗)B̄(∗), which we use as a reference, with the
mass and the decay widths taken from [77], including the extracted values of the coupling
constants FPDG and the center of mass momentum |k|.

process ΓPDG[MeV] FPDG |k|[GeV]
Υ(10860) → B B̄ < 13.2 < 2.15 1.3
Υ(10860) → B B̄∗ 15.4+6.6

−6.6 3.7+0.7
−0.9 1.2

Υ(10860) → B∗ B̄∗ 48+11
−11 1+0.13

−0.12 1.0

Table 3.6.3: Total decay widths for the tetraquarks Y (i)
[bq] and Y

(i)
[bs]. The errors in the entries

correspond to the errors in the decay widths in Tab. 3.6.2.

1−− Tetraquark Γtot/κ
2[MeV]

Y
(1)
[bq] 44± 8

Y
(2)
[bq] 119± 24

Y
(3)
[bq] 171± 33

Y
(4)
[bq] 154± 30

1−− Tetraquark Γtot/κ
2[MeV]

Y
(1)
[bs] 88± 17

Y
(2)
[bs] 184± 35

Y
(3)
[bs] 267± 50

Y
(4)
[bs] 258± 48



3.7 Analysis of the BaBar Rb energy scan 55

3.7 Analysis of the BaBar Rb energy scan

In this section I present our �rst (and simplest) attempt [43] to �nd experimental evidence
for the 1−− Y

(1)
b and Y

(2)
b tetraquarks from the Rb-scant performed by BaBar [93]. The

�ndings are suggestive but not conclusive. Stronger evidence is presented from the analysis
of e+e− → Yb → Υ(1S)π+π−, presented in the following Sec. 3.8.

In 2009 BaBar reported the e+e− → bb̄ cross section measured in a dedicated energy
scan in the range 10.54 GeV and 11.20 GeV taken in steps of 5 MeV [93]. Their measure-
ments are shown in Fig. 3.18 (left frame) together with the result of the BaBar �t, the
details are described in their paper and were also made available to us. The ratio Rb is de-
�ned by the ratio of the cross section σ(e+e− → bb̄) and the cross section σ(e+e− → µ+µ−).
Their �t model of the Rb-data contains the following ingredients: A �at component rep-
resenting the bb̄-continuum states not interfering with resonant decays, called Anr, added
incoherently to a second �at component, called Ar, interfering with two relativistic Breit-
Wigner resonances, having the amplitudes A10860, A11020 and strong phases, φ10860 and
φ11020, respectively. Thus,

Rb ≡
σ(e+e− → bb̄)

σ(e+e− → µ+µ−)
=|Anr|2 + |Ar + A10860e

iφ10860BW (M10860,Γ10860)

+ A11020e
iφ11020BW (M11020,Γ11020)|2 , (3.7.1)

with BW (M,Γ) = 1/[(s−M2) + iMΓ].

The one-resonance contribution of the amplitude M(ab → cd) for a 2→2 process is
given by [77]Eq. 2

M(ab→ cd) =
∑
λ

〈ab| rλ〉Tr(mab) 〈rλ| cd〉 , (3.7.2)

in which r labels the resonance. The sum runs over the resonance spin λ, and the function
Tr(mab) is a dynamical quantity describing the r resonance pole of the S-matrix in the
vicinity of mab ≈ mr, with mr being the mass of the resonance. Di�erent approaches such
as the K-matrix formalism present types of models for this function. The Breit-Wigner
form

Tr(mab) ∝
1

p2
r −m2

r + imrΓr
(3.7.3)

is the most handy example, in which Γr is the total decay width of the resonance r. The
disadvantage of this parametrization is, however, that in the case of overlapping resonances
the unitarity of the S-matrix is violated. Nevertheless, this model works well also in
data analysis with overlapping contributions. The cross section is proportional to the
squared amplitude and the terms given in (3.7.2), including terms modeling the background
contribution, are added up with unknown complex coe�cients in Eq. (3.7.1). The latter
are merely proportionality factors and have no immediate physical meaning in this simple
approach.

The BaBar results for the masses and widths of the Υ(5S) and Υ(6S) di�er substantially
from the corresponding PDG values [77], in particular for the total decay widths, which
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are found to be 43± 4 MeV for the Υ(10860), as against the PDG value of 110± 13 MeV,
and 37± 2 MeV for the Υ(11020), as compared to 79± 16 MeV in PDG. As the systematic
errors from the various thresholds are not taken into account in the BaBar analysis, this
mismatch needs further study. Their �t, shown in Fig. 3.18 (left frame), having a χ2/d.o.f.
of approximately 2 is not eminently impressive. In particular, the data points around
10.89 GeV and 11.2 GeV lie systematically above the �t. In our analysis of the BaBar
data, we were able to reproduce these features, but also found, that the �t-quality can
be improved somewhat at the expense of strong phases φ10860 and φ11020, which come out
di�erent than the ones reported by BaBar [93]. I do not show this �t here as the resulting
Rb-line-shape is close to the one shown in the BaBar publication and reproduced here.

We have repeated the �ts of the BaBar Rb-data, modifying the �t model in Eq. (3.7.1)
by taking two additional resonances into account, corresponding to the masses and widths
of Y[b,l] and Y[b,h]. Thus, formula (3.7.1) is extended by the terms

AY[b,l]
e
iφY[b,l]BW (MY[b,l]

,ΓY[b,l]
) and AY[b,h]

e
iφY[b,h]BW (MY[b,h]

,ΓY[b,h]
), (3.7.4)

which interfere with the resonant amplitude Ar and the two resonant amplitudes for Υ(5S)
and Υ(6S), shown in Eq. (3.7.1). We use the same non-resonant amplitude Anr and Ar as in
the BaBar analysis [93]. The resulting �t is shown in Fig. 3.18 (right frame) with resulting
χ2/d.o.f. = 88/67. The χ2/d.o.f. is better than that of the BaBar �t [93]. Values of the
best-�t parameters are shown in Tab. 3.7.1, from where one sees, that the masses of the
Υ(5S) and Υ(6S) and their respective full widths from our �t are almost identical to the
values obtained by BaBar [93]. However, quite strikingly, a third resonances is seen in the
Rb-line-shape at a mass of 10.90 GeV, tantalizingly close to the Yb(10890)-mass in the Belle
measurement of the cross section for e+e− → Yb(10890) → Υ(1S, 2S) π+π−, and a width
of about 28 MeV. In the region around 11.15 GeV, where the Y (2)

[bq] states are expected,
our �ts of the BaBar Rb-scan do not show a resonant structure. This can have several
reasons. Foremost, the total decay width of Y (2)

[bq] is large. Considering, that the observed

Y
(1)
[bq] peak near the Υ(5S) is strongly suppressed compared with the Υ(5S) peak, a similar

production ratio for the Y (2)
[bq] would mean, that the larger decay width will lead to even

further suppression in its Rb-amplitude. As mentioned in Sec. 3.4 near Eq. (3.4.29), the
Y

(2)
[bq] contains one bad diquark. It may well be, that the calculated mass is overestimated.

More precise calculations of the heavy-quark mass-breaking e�ect for the mass di�erence
∆ of the good and the bad diquarks could shift the mass of the Y (2)

[bq] downwards, in the
extreme case even in the region of the Υ(6S). A Belle Rb-scan will greatly help to con�rm
the existence of the state Y[bq] visible in the analysis presented here.

The quantity Ree(Yb) in (3.5.13) is given by the ratio of the two amplitudes AY[b,l]
and

AY[b,h]
, which also �xes the mixing angle θ. From our �t, we get

Ree(Yb) = 1.07± 0.05, (3.7.5)

yielding

θ = −19± 1◦ and ∆M = 5.6± 2.8 MeV (3.7.6)

for the mixing angle and the mass di�erence between the eigenstates, respectively.
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Figure 3.18: Measured Rb as a function of
√
s with the result of the �t with 2 Breit-

Wigners described in [93] (left frame). Reprinted from Fig. 1 of B. Aubert et al. [93]
[Copyright (2009) by the American Physical Society]. The result of the �t with 4 Breit-
Wigners described in the text is shown in the right-hand frame, where we have indicated
the location of the Υ(5S), Υ(6S) and the tetraquark state Y[b,q] (labeled as Y (1)). The

location of the next higher JPC = 1−− state Y (2)
[b,q] (labeled as Y (2)) is also shown. The

shaded bands around the mass of Y (1) and Y (2) re�ect our theoretical uncertainty in the
masses.

The Rb-analysis in the tetraquark picture can be used to determine κ. It can be
obtained from the theoretically estimated total decay widths of the Y[b,q] states and the
corresponding result from the Rb-�t.

κ =

√
28± 2

44± 8
= 0.8± 0.1, (3.7.7)

which is in the expected ball park. For the mass eigenstates Y[b,l] and Y[b,h], the electronic
widths Γee(Y[b,l]) and Γee(Y[b,h]) are given by Γee(θ) = 0.2 κ2Q(θ)2 keV, as already stated in
Sec. 3.5. With the above determination of κ and θ we get

Γee(Y[b,l]) = 33± 6 eV and Γee(Y[b,h]) = 31± 6 eV. (3.7.8)

Table 3.7.1: Fit values of the masses, decay widths and the strong phases φ.

M [MeV ] Γ[MeV ] ϕ [rad.]
Υ(5S) 10864± 5 46± 8 1.3± 0.3
Υ(6S) 11007± 0.3 40± 2 0.88± 0.06
Y[b,l] 10900−∆M/2± 2 28± 2 4.4± 0.2
Y[b,h] 10900 + ∆M/2± 2 28± 2 1.9± 0.2
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Table 3.8.1: Belle data at
√
s ∼ 10.87 GeV [91].

channel Ns Σ E�.[%] σ[pb] B[%] Γ[MeV]

Υ(1S)π+π− 325+20
−19 20σ 37.4 1.61± 0.10± 0.12 0.53± 0.03± 0.05 0.59± 0.04± 0.09

Υ(2S)π+π− 186± 15 14σ 18.9 2.35± 0.19± 0.32 0.78± 0.06± 0.11 0.85± 0.07± 0.16

Υ(3S)π+π− 10.5+4.0
−3.3 3.2σ 1.5 1.44+0.55

−0.45 ± 0.19 0.48+0.18
−0.15 ± 0.07 0.52+0.20

−0.17 ± 0.10

Υ(1S)K+K− 20.2+5.2
−4.5 4.9σ 20.3 0.185+0.048

−0.041 ± 0.028 0.061+0.016
−0.014 ± 0.010 0.067+0.017

−0.015 ± 0.013

3.8 Analysis of the Belle data on e+e− → Yb →
Υ(1S)(π+π−, K+K−, ηπ0)

In this section I discuss our analysis [44] and [90] of the Belle data taken near the Υ(5S)
resonance at

√
s ∼ 10.87 GeV. The Belle group reported results for the three-body �nal

states Υ(1S)π+π−, Υ(2S)π+π−, Υ(3S)π+π− and Υ(1S)K+K− produced in e+e− annihila-
tion [91]. Only the former two processes are statistically signi�cant to adequately show the
invariant-mass and helicity distributions. Of the latter two merely the total cross section is
reported. The results are based on a data sample of 21.7 fb−1. The measured cross sections
are listed in Tab. 3.8.1, and the characteristic features of the data are presented in Sec. 3.3.
We predict the dikaon invariant-mass spectrum as well as the ηπ0 mass spectrum in the
�nal states Υ(1S)K+K− and Υ(1S)ηπ0 by using the input from the �ts to the Υ(1S)π+π−

spectra. Note, that for Υ(1S)K+K− with a signal yield in the ballpark of 20 events, the
invariant-mass spectrum is not yet measured, but it is promising, that the recent run of
the Belle experiment in the �rst half of 2010 will improve the statistics su�ciently to make
the spectrum available to the analysis of our predictions. Since two isospin states are con-
tributing in this channel, as discussed later, the predictions might su�er from uncertainties
in the cancellation of the di�erent diagrams due to the conveyed strong interaction phases
for the K+K− and ηπ0 channels from the �t to the π+π− spectra. However, this is not
the case for the Υ(1S)ηπ0 channel. Because of the neutral �nal states the process can only
be observed by the three-pion decay of the η meson, which is harder to detect compared
with the charged decays Υ(1S)π+π− and Υ(1S)K+K−. No data has been published for
this process so far. We predicted the decay distributions and �nd, that the cross section
for this process is large enough to justify a search.

The number of events Ns per bin, reported by Belle, are listed in Tab. C.8.1 and plotted
in Fig. 3.12. To convert the signal yield Ns to cross sections in pb, the luminosity L, the
detection e�ciency E�. and the branching ratio B(Υ(1S) → µ+µ−) is needed (the events
are selected if the invariant µ+µ− mass is close to the mass of the Υ(1S), hence the necessity
of the branching ratio B(Υ(1S) → µ+µ−)), where the detection e�ciency E�. is obtained
in Monte-Carlo simulations. The correlations between the cross section and the signal yield
Ns is then given by

σ(e+e− → Υ(1S)π+π−) =
Ns

L× Eff.×B(Υ(1S) → µ+µ−)
=

(21700 pb)Ns

0.374× 0.0248
. (3.8.1)

The data is taken from reference [91], in which further information about the data selection
can be found.
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Mass-breaking of the heavy and light Y[b,l] and Y[b,h] is neglected in this section, and I
work in the isospin basis with the two isospin components

Y 0
b ≡

1√
2
(Y[bu] + Y[bd]) with I = 0 , Y 1

b ≡
1√
2
(Y[bu] − Y[bd]) with I = 1 . (3.8.2)

The mass eigenstates are approximately Y[bu] and Y[bd] rather than the isospin
eigenstates above, since the mixing between Y[bu] and Y[bd], arising from an-
nihilation diagrams (uū ↔ dd̄), are suppressed as discussed in Sec. 3.5.

p

T

e+

e−

Υ(nS)

P

P ′ k2

k1

p1

p2

T I
b

Figure 3.19: Topology and
kinematics of the observed 2→3
processes e+e− → Yb →
Υ(nS)PP ′. The momenta are
assigned to the �nal particle
states as shown.

Since the Y I
b production in e+e− annihilation is consid-

ered, not all isospin breaking e�ects can be neglected.
These e�ects are important in the coupling of the Y I

b

to the intermediate virtual photon. This is described in
Sec. 3.5, in which it is derived, that the coupling is pro-
portional to the e�ective constituent diquark charge QI

of the Y I
b .

To �t the data, we calculated the di�erential cross
section of the 2→3 process e+e− → Yb → Υ(nS)PP ′ at
tree level, where P and P ′ can be one of the light me-
son �nal states in the above mentioned decays (PP ′ =
π+π−, K+K−, ηπ0). The topology and the kinemat-
ics of the process are shown in Fig. 3.19, in which the
Y I
b is in the s-channel. Two kind of contributions are

accounted for, the resonant and non-resonant transitions. The former arise, when the
Y I
b decays in a two-body decay Y I

b → RΥ(nS) and subsequently the resonance R de-
cays to the meson pair R → PP ′. In the following I take the Breit-Wigner ansatz,
presented in Sec. 3.7 and Eq. (3.7.3) in particular, including also the Flatté formal-
ism for the total decay width, which is discussed in App. C.4.2. The Flatté formal-
ism is only used for resonances whose mass is close to a decay threshold compared
with the total decay width. The resonant part comprises the resonance interchanges
e+e− → Yb → Υ(nS)[σ(600), f0(980), a0

0(980), f2(1270)] → Υ(1S)PP ′. Since the quan-
tum numbers of Yb and Υ(nS) are JPC = 1−−, those of the dipion system must be either
0++ or 2++ due to angular momentum and parity conservation, thus the above resonances
include all contributions in the allowed kinematic region. In the following the notations for
the resonances are abbreviated as σ, f0, a

0
0 and f2 respectively (the upper index indicates

the I3 = 0 component of the iso-triplet a0). Following t'Hooft et al. [86], we adopted a
tetraquark interpretation of the light scalar mesons and ignored a supposedly tiny mixing
between σ0 and f0.

The non-resonating transitions are quark rearrangement processes, which can occur
without forming intermediate states. This contributions are called continuum contri-
butions, labeled by C. The amplitude factorizes however in the same way as in the
resonant case in the sense, that those contributions can be kinematically interpreted as
Yb → Υ(nS)C with the subsequent �decay� of the continuum C → PP ′. Hence in Fig. 3.19
T stands for any of the aforementioned contributions C or R. The di�erent types of con-
tributions are pictured in Fig. 3.20. This contribution is not stemming from poles in the
S-matrix as the resonances and needs a di�erent model, which we adopted from [95].

The model and the di�erent contributions are described in the following.
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Figure 3.20: Zweig allowed quark rearrangement diagrams contributing to the model for
the cross section σ(e+e− → Yb → Υ(nS)PP ′). The continuum contribution is pictured to
the left, the scalar tetraquark resonance interchange is given in the middle and the f2(1270)
meson interchange to the right.

3.8.1 Model for the process e+e− → Yb → Υ(nS)PP ′

First I sketch the derivation of the di�erential cross section dσ(e+e− → Yb → Υ(nS)PP ′)
(shorthand dσPP ′). Afterwards I introduce the couplings, which are involved in the resonant
decay and the continuum couplings. The values for the input parameters, which are used
in this section can be found in Tab. C.8.2.

The di�erential cross section dσPP ′ is given by

dσPP ′ =
(2π)4

2s

1

4

∑
λe+ ,λe− ,λΥ

∣∣∣∣∣∣
∑

T ,I,λYb

MI
T ,λYb

∣∣∣∣∣∣
2

dΦ3(p1 + p2; p, k1, k2) , (3.8.3)

in which the invariant amplitude

MI
T ,λYb

=̂
Y

I

b

T

(3.8.4)

has mass dimension −1, and the sum over T runs over the resonant and continuum con-
tributions. It is summed over the polarizations λi of the �nal and averaged over the spin
λe+ and λe− of the initial state particles.

Each PP ′ channel receives speci�ed contributions depending on the isospin of PP ′ and
the kinematically allowed region for the invariant mass MPP ′ ∈ [mP +mP ′ ,

√
s−mΥ(1S)],

in which I = 0 for π+π−, I = 0, 1 for K+K−, and I = 1 for ηπ0, since the Υ(1S) is an
isospin 0 state, and the following resonances contribute to each process:

σ, f0 and f2 for PP ′ = π+π−,
f0, a

0
0 and f2 for PP ′ = K+K−,

a0
0 for PP ′ = ηπ0.

(3.8.5)

The contributions for the di�erent �nal states are listed in Fig. 3.21. Because Y I
b is in

the s-channel, the amplitude in (3.8.3) factorizes in the product of the amplitudes for
e+e− → Y I

b and Y I
b → Υ(nS)T and splits explicitly in a production and a decay part:

MI
T ,λYb

=
∑
λ

Y I
b

M(e+e− → Y I
b )

1

s−m2
Yb

+ imRΓYb

M(Y I
b → Υ(nS)T ).
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Figure 3.21: Diagrams contributing to the di�erent channels e+e− → Υ(nS)PP ′, with PP ′

being the above listed meson pairs π+π−, K+K− and ηπ0. Note, that the continuum part,
labeled by C, in this notation do not denote propagators. They are to be understood in
the sense of Eq. (3.8.19).

=̂
∑
λ

Y I
b

Y
I

b
(λ

Y I
b

)

× 1

s−m2
Yb

+ imRΓYb

×
T

Y
I
b (λ

Y I
b

)

(3.8.6)

This is valid under the assumption, that the process is dominated by the interchange of
the intermediate Y I

b resonance, as described in Eq. (3.7.2).

The calculations in this section are performed with the use of helicity amplitudes
without the use of the polarization sums of the external states. However, the polar-
ization of the internal state Y I

b can be summed over. The product of ε∗δYb
in the pro-

duction amplitude and ενYb
in the decay amplitude gives the usual polarization sum in

a vector-boson propagator, after summing over the helicity λYb
of the Y I

b resonance:∑
λYb

ενYb
(λYb

)ε∗δYb
(λYb

) = −gνδ + qνqδ/q2. The momentum-depending term vanishes in the
calculations due to the on-shell condition. The external polarization vectors satisfy the
transversality condition and only the metric part remains. I de�ne therefore the produc-
tion and decay amplitudes as

Mprd
µ εµYb

(λYb
) ≡ M(e+e− → Y I

b ),

Mdec
ν ενYb

(λYb
) ≡ M(Y I

b → Υ(nS)T ) (3.8.7)

respectively. Thus yielding

dσPP ′ =
∑
T ,I

∑
λe+ ,λe−

(2π)4

2s

1

4

dM2
PP ′

2π
dΦ2(p1 + p2; p, k1 + k2)dΦ2(pR; k1, k2)

Mprd
µ Mprd∗

ν

1

(s−m2
Yb

)2 +m2
Yb

Γ2
Yb

∑
λΥ

Mdec µMdec ν∗. (3.8.8)
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Figure 3.22: e+e− → Υ(1S)π+π− in the rest frame of the dipion (left) and in the rest
frame of the e+e− pair (right).

Here the phase space factor dΦ3(pa + pb; pc, p1, p2) is split in the two-body phase spaces
in the e+e− and π+π− rest frame, further described in App. C.3, where also details of the
phase space parametrization can be found.

A 2 → 3 process is in general described by 6 independent variables, in which the center
of mass energy

√
s is �xed. The 5 independent �nal state integration variables are in the

present case MPP ′ , cos θ, φ, cosϑee and ϕee. The parametrization is described in Fig. 3.22
and the variables are de�ned in two di�erent frames, the e+e− rest frame and the PP ′ rest
frame. The subscript ee indicates de�nition in the former and no subscript de�nition in
the latter frame. Both frames are correlated by a rotation by ϑee and ϕee, and a boost
along the k1 + k2 direction. The boost is described in Eq. C.3.14. The two particle phase
space dΦ2 is given in Eq. (C.3.7).

The production and decay amplitudes are separately discussed in the following. The
coupling ge+e−Y I

b
between e+e−Y I

b was already introduced in Sec. 3.5 in the discussion of
the production process through intermediate virtual photons, described by the Van Royen-
Weisskopf formula. The e�ective couplings of the resonances are in a similar way de�ned
by the e�ective Lagrangians

L = gSPP ′(∂µP )(∂µP ′)S + gY I
b Υ(nS)S Y

I
bµΥ

µS , (3.8.9)

for the scalar tetraquark resonances S, while those for the f2 meson are de�ned through

L = 2gf2PP ′(∂µP )(∂νP
′)fµν2 + gY I

b Υ(nS)f2Y
I
bµΥνf

µν
2 , (3.8.10)

in which fµν2 denotes the f2 meson �eld. The Lagrangians give rise to the vertices, which
are

Y I
b

µe+

e−
Y I

b

Υ(nS)ν
µ

S

Y I
b

Υ(nS)ν
µ

f2ρσ

S

P

P ′

k1

k2

f2

P
µν

P ′

k1

k2

ige+e−Y I
b
γµ igY I

b Υ(nS)Sgµν igY I
b Υ(1S)f2gµρgνσ −igSPP ′k1.k2

igf2PP ′
1
2
×

(k1 − k2)µ(k1 − k2)ν

.(3.8.11)
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Note, that the couplings gYbΥ(1S)M and gYbΥ(1S)f2 have mass dimension 1 and the couplings
gMPP ′ and gf2ππ have mass dimension −1. The propagator of the f2 meson is de�ned by

µν ρσ

p

=
Bµν,ρσ(p)

p2 −m2
f2

+ imf2Γf2
, (3.8.12)

in which the tensor Bµν,ρσ is the polarization sum of f2 given in Eq. (C.4.31). The introduc-
tion of the f2 propagator follows the same rules as the introduction of the propagator of the
Y I
b in Eq. (3.8.6), in which the polarization sum is performed for all internal states. The

scalar resonant contributions are expressed by the Breit-Wigner formula with propagator

p
=

1

p2 −m2
R + imRΓR

. (3.8.13)

For the σ, f0 and a0
0, we adopted the Flatté model [107], in which the imaginary part of

the propagator becomes a dynamical quantity:

mσΓσ = f 2
σππρππ ,

mf0Γf0 = f 2
f0ππ

ρππ + f 2
f0KK̄

ρKK̄ ,

ma0
0
Γa0

0
= f 2

a0
0ηπ
ρηπ + f 2

a0
0KK̄

ρKK̄ (3.8.14)

with phase space factor

ρab =

[(
1− (ma −mb)

2

M2
PP ′

)(
1− (ma +mb)

2

M2
PP ′

)]1/2

, (3.8.15)

in which the Flatté couplings fSPP ′ are related to the vertex couplings gSPP ′ entering in
(3.8.11) via

gSPP ′ (k1.k2) = 4
√
π fSPP ′ . (3.8.16)

This couplings are de�ned for an exclusive �nal state. Summing over �nal states, e.g.,
f 2
f0ππ

= f 2
f0π+π− + f 2

f0π0π0 , one obtains the isospin relations fSππ =
√

3/2 fSπ+π− , fSKK̄ =√
2 fSK+K− and fSηπ = fSηπ0 . For the σ meson, we extracted the coupling gσπ+π− from the

E791 data [89]: gσπ+π− = 26.7 GeV−1 with mσ = 478 MeV, yielding the Flatté coupling
fσππ = 437 MeV. For the f0 and a0

0 mesons, we adopted the masses and the Flatté couplings
measured by the BES [108] and CB [109] Collaborations (the corresponding couplings from
KLOE [110,111] are shown in the parentheses) :

mf0 =965(984), ff0ππ=406(349), ff0KK̄ =833(869),

ma0
0
=982(983), fa0

0ηπ
=324(398), fa0

0KK̄
=329(429) (3.8.17)

in units of MeV. Furthermore, we extract the couplings for the f2 meson through the
formula

Γ(f2 → PP ′) =
g2
f2PP ′

m3
f2

480π

(
1− 4m2

P

m2
f2

)5/2

(3.8.18)



64 [bq][b̄q̄]-tetraquarks

for mP = mP ′ , where the data for Γ(f2 → ππ) = (3/2) Γ(f2 → π+π−) and Γ(f2 → KK̄) =
2 Γ(f2 → K+K−), and mf2 = 1275 MeV are taken from PDG [77]. The other inputs for
the pseudo-scalar mesons and the Υ(1S) are also taken from PDG. The Flatté model is
detailed in App. C.4.2, and the f2 contribution is further described in App. C.4.3.

The continuum contributions describe the Zweig allowed quark rearrangement diagrams
in Fig. 3.20 (left). Our continuum parametrization is described in detail in App. C.4.1 and
was taken from [95]. It is similar to the model describing the ordinary Υ(nS) decays like
the one shown for Υ(4S) in Fig. 3.13 (right). In total one �nds the following three types
of contributions

Y 0

b

µ
ν

P

P ′

Υ(nS)

C0

1

: gµνMC
1 (M2

PP ′),

Y 0

b

µ
ν

P

P ′

Υ(nS)

C0

2

: gµνMC
2 (M2

PP ′)

(
cos2 θ − 1

3

)
,

Y 0

b

µ
ν

P

P ′

Υ(nS)

C0

3

: (k1µk2ν + k2µk1ν)MC
3 (M2

PP ′), (3.8.19)

of which the last one is suppressed by the heavy-quark mass.

After the introduction of the phase space parametrization and the explicit form of the
amplitudes, the di�erential cross section dσPP ′ is calculated. The production amplitude is
the same for all diagrams in Fig. 3.21 and is given by the e�ective coupling of the Y I

b to
the e+e− current described by the vertex in (3.8.11). It is given by

Mprd
µ = ge+e−Y I

b
[v̄e(p1, λ1)γµue(p2, λ2)] (3.8.20)

The coupling constant is related to the Van Royen-Weisskopf formula, described in Sec. 3.5,
in which an approximate value is given in Eq. (3.5.17). The decay amplitude is obtained
similar to the production amplitude by using the vertices and propagators in Eqs. (3.8.11)
to (3.8.19).

Choosing explicit expressions for the electron spinors and the Υ(nS) polarization vector,
which are listed in App. C.3, every diagram is proportional to a helicity factor, which can be
explicitly calculated. The helicity factor takes only the direct dependence on the external
polarization vectors and spinors of the amplitude into account, further outlined in App. C.5,
and contains therefore the full angular dependence. The simplest of them, namely the one
corresponding to the scalar resonance exchange, is given as example. The corresponding
diagram reads

M =
k1.k2 gSPP ′ gY 0

b Υ(1S)S ge+e−Y I
b

[s−m2
Yb

+ imYb
ΓYb

][M2
PP ′ −m2

S + imSΓS]
×HC

1 =̂
Y

I
b

R

, (3.8.21)
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with helicity factor

HC
1 ≡ ε∗µΥ (λΥ)gµν [v̄e(p1, λ1)γ

νue(p2, λ2)] . (3.8.22)

The structure is very simple because the decay matrix elementMdec µ is only proportional
to the polarization vector ε∗µΥ of Υ(nS). After the insertion of the polarization vectors and
spinors, listed in App. C.3, Eq. (3.8.22) yields

HC
1 =



−
√

2πs(1 + cos(ϑee))e
±iϕeeY 0

0 (θ, φ) for{λe+ , λe− , λΥ} =

{
±1

2
,±1

2
,±1

}
,

±
√

2πs

√
2(q.p)√
smΥ

sin(ϑee)e
±iϕeeY 0

0 (θ, φ) for{λe+ , λe− , λΥ} =

{
±1

2
,±1

2
, 0

}
,

−
√

2πs(1− cos(ϑee))e
±iϕeeY 0

0 (θ, φ) for{λe+ , λe− , λΥ} =

{
±1

2
,±1

2
,∓1

}
,

0 otherwise.

(3.8.23)

The spherical harmonics Y m
l (θ, φ) are given in App. A.3. The helicity decomposition is

described in App. C.5, in which the factors for all di�erent helicity contributions are given
in Eq. (C.5.7).

The Belle data on the di�erential cross sections dσPP ′/dMPP ′ and dσPP ′/d cos θ in
Fig. 3.12 is described by the invariant mass MPP ′ and the helicity cos θ respectively. To
obtain the di�erential cross sections, the variables ϑee, φ and ϕee have to be integrated out:

d2σ

dMPP ′ d cos θ
=

∫ 2π

0

dφ

∫ 1

−1

d cosϑee

∫ 2π

0

dϕee
λ1/2(s,m2

Υ,M
2
PP ′)λ

1/2(M2
PP ′ ,m

2
P ,m

2
P ′)

256(2π)5s2MPP ′∑
λe+ ,λe− ,λΥ,T ,I

Mprd
µ Mprd∗

ν Mdec µMdec ν∗ , (3.8.24)

in which λ(x, y, z) ≡ (x− y − z)2 − 4yz. The integration over MPP ′ or cos θ is performed
subsequently. The integration around the beam axis, described by ϕee, is trivial and yields
an overall factor 2π. The integration over the other angles can be performed analytically. It
is helpful, that the di�erential cross section in (3.8.24) is a polynomial in the trigonometric
functions of the angles. Here I just give the �nal result:

d2σPP ′

dMPP ′ d cos θ
=
λ1/2(s,m2

Υ,M
2
PP ′)λ

1/2(M2
PP ′ ,m

2
P ,m

2
P ′)

384π3sMPP ′
[
(s−m2

Yb
)2 +m2

Yb
Γ2
Yb

] {(1 +
(q.p)2

2sm2
Υ

)
|S|2

+ 2Re

[
S∗
(
D′ +

(q.p)2

2sm2
Υ

D′′
)](

cos2 θ − 1

3

)
+ |D|2 sin2 θ

(
sin2 θ + 2

(
(q0)2

s
+

(p0)2

m2
Υ

)
cos2 θ

)
+

(
|D′|2 +

(q.p)2

2sm2
Υ

|D′′|2
)(

cos2 θ − 1

3

)2
}
, (3.8.25)

The S-wave amplitude for the PP ′ system, S, and the D-wave amplitudes, D, D′ and D′′,
are the sums over possible isospin states

M =
∑
I

MI for M = S, D, D′, D′′. (3.8.26)
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The I = 0 amplitudes are given by the combinations of the resonance amplitudes,MS
0 and

Mf2
0 , and the non-resonating continuum amplitudes, M1C

0 , M2C
0 and M3C

0 :

S0 = M1C
0 + (k1.k2)

∑
S

MS
0 +

2|k|2

3
MC

3 (MPP ′), D0 = |k|2(Mf2
0 +MC

3 (MPP ′)),

D′
0 = M2C

0 −D0 , D′′
0 = M2C

0 +
2q0p0

(q.p)
D0 , (3.8.27)

where S runs over possible I = 0 scalar resonances in Eq. (3.8.5). Similarly, the I = 1
amplitudes are given by

S1 =
ge+e−Y 1

b

ge+e−Y 0
b

[
M1C

1 + (k1.k2)M
a0
0

1

]
, D1 = 0 , D′

1 = D′′
1 =

ge+e−Y 1
b

ge+e−Y 0
b

M2C
1 , (3.8.28)

in which the dimensionless couplings ge+e−Y 0
b

and ge+e−Y 1
b

are de�ned via the La-
grangian (3.5.8). The continuum amplitudes in Eq. (3.8.27) are written in terms of the
two form factors A, B and C as

M1C
0 (M2

PP ′) =
2A

fPfP ′
(k1.k2) +

B

fPfP ′

3(q0)2k0
1k

0
2 − |q|2|k|2

3s
,

M2C
0 (M2

PP ′) = − B

fPfP ′

|q|2|k|2

s
,

M3C
0 (M2

PP ′) =
C

fPfP ′
, (3.8.29)

in which fP (′) is the decay constant of P (′). Using SU(3) symmetry the relations

M1C,2C,3C
0 (Υ(1S)K+K−) = (

√
3/2)M1C,2C,3C

0 (Υ(1S)π+π−),

M1C,2C,3C
1 (Υ(1S)K+K−) = M1C,2C,3C

0 (Υ(1S)K+K−),

M1C,2C,3C
1 (Υ(1S)ηπ0) =

√
2M1C,2C,3C

1 (Υ(1S)K+K−) (3.8.30)

are assumed. The continuum contributions are explicitly de�ned in the PP ′ rest frame.
The variables q0, p0, k0

1, k
0
2, |q| and |k| are given in terms of s ≡ q2 = (p1 + p2)

2 and
M2

PP ′ ≡ (k1 + k2)
2 by

q0 =
s−m2

Υ +M2
PP ′

2MPP ′
, p0 = q0 −MPP ′ =

s−m2
Υ −M2

PP ′

2MPP ′
,

|q|2 = (q0)2 − s = (p0)2 −m2
Υ , k0

1 =
√
|k|2 +m2

P , k0
2 =

√
|k|2 +m2

P ′

|k|2 =
M2

PP ′

4

(
1− (mP +mP ′)

2

M2
PP ′

)(
1− (mP −mP ′)

2

M2
PP ′

)
, (3.8.31)

in which M2
PP ′ = (k1 + k2)

2 = (k0
1 + k0

2)
2. Note, that this set of equations simpli�es for the

π+π− and K+K− case since the light meson masses are identical. Only the ηπ0 case has
a more complicated kinematics.

The di�erential cross section dσ/dMPP ′ is obtained by analytically integrating (3.8.25)
over cos θ. One �nds:

dσPP ′

dMPP ′
=
λ1/2(s,m2

Υ,M
2
PP ′)λ

1/2(M2
PP ′ ,m

2
P ,m

2
P ′)

192π3sMPP ′
[
(s−m2

Yb
)2 +m2

Yb
Γ2
Yb

] {(1 +
(q.p)2

2sm2
Υ

)
|S|2 (3.8.32)
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+
4

15
|D|2

(
2 +

(
(q0)2

s
+

(p0)2

m2
Υ

))
+

4

45

(
|D′|2 +

(q.p)2

2sm2
Υ

|D′′|2
)}

,

To obtain the di�erential cross section dσPP ′/d cos θ, the integration over MPP ′ of the
di�erential cross section given in (3.8.25) needs to be performed numerically. In this case
it is helpful, that the formula is a simple polynomial in the �tting parameters (the coupling
constants) and cos θ of maximal fourth degree, i.e. the di�erential cross section

dσPP ′

d cos θ
=

∫ √
s−mΥ(nS)

P+P ′
dMPP ′

d2σPP ′

dMPP ′ d cos θ
(3.8.33)

has the form

=
1

384π3s[(s−m2
Yb

)2 +m2
Yb

Γ2
Yb

]

(
C0 + C2 cos2 θ + C4 cos4 θ

)
, (3.8.34)

in which C0, C2 and C4 are functions of the �tting parameters. This polynomial expansion
and the numerical integration of the coe�cient functions can be easily automatized.

The model functions (3.8.32) and (3.8.33) are used in the following to perform a �t to
the Belle data for PP ′ = π+π− and to subsequently use the obtained �tting parameters
as input to predict the spectra for PP ′ = K+K−, ηπ0. The Dalitz plot for the di�erential
cross section dσPP ′/M

2
ΥP/M

2
PP ′ is also given below, in which the invariant mass for the

Υ(1S)P system is given in terms of the helicity angle via

M2
ΥP =m2

Υ +m2
P +

1

2M2
PP ′

(
s−M2

PP ′ −m2
Υ

) (
M2

PP ′ +m2
P −m2

P ′

)
− 1

2M2
PP ′

cos θ
√
λ(s,M2

PP ′ ,m
2
Υ)λ(M2

PP ′ ,m
2
P ,m

2
P ′). (3.8.35)

3.8.2 Fit to the Υ(1S)π+π− data

Here I discuss our �t to the Belle data [90], using the modeled di�erential cross sections
in Eqs. (3.8.32) and (3.8.33). The experimental data, the input parameters and the Flatté
couplings, which are needed for this section are listed in Tabs. C.8.1 and C.8.2. Although
MC

3 is suppressed by the heavy-quark mass compared to the other continuum terms MC
1

and MC
2 , the interference between MC

3 and the f2 contribution may be signi�cant. How-
ever, we found in the �t, that the contribution is negligible even for allowing arbitrary
large couplings in the �t. Due to this reasons, we set the continuum term MC

3 to zero,
which moreover results in more stable �ts. The spectra are normalized by the measured
cross section dσ̃π+π−/dMππ and dσ̃π+π−/d cos θ, where

σ̃π+π− ≡ σΥ(1S)π+π−/σ
Belle
Υ(1S)π+π− with σBelleΥ(1S)π+π− = 1.61± 0.16 pb [91]. (3.8.36)

With assuming SU(3) symmetry for the Y 0
b Υ(1S)R couplings in Eq. (3.8.11), i.e., set-

ting gY 0
b Υ(1S)σ = gY 0

b Υ(1S)f0 , one �nds 7 free �tting parameters:

A′ ≡ A|ge+e−Y 0
b
| , B′ ≡ B|ge+e−Y 0

b
| ,
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Figure 3.23: Fit results for the model for the process e+e− → Yb → Υ(1S)π+π− for
di�erent Flatté couplings BES, CB (solid, blue, χ2/d.o.f. = 21.5/15) and KLOE (dashed,
orange, χ2/d.o.f. = 21.9/15). To the left, the Mπ+π− (upper left) and cos θ (lower left)
spectra are shown. To the right the Dalitz plot is shown for the BES, CB values. The
shaded histograms represent the binned model �ts to the measured spectrum, which is
given by the black crosses. The red lines show the contributions without the continuum
terms, and the green lines show the contribution from only f2(1270). The �ts for the
di�erent input parameters are almost identical, and the KLOE �ts are almost covered by
the BES, CB �ts.

g′Y 0
b Υ(1S)σ ≡ gY 0

b Υ(1S)σ|ge+e−Y 0
b
| , ϕσ ,

g′Y 0
b Υ(1S)f0

≡ gY 0
b Υ(1S)f0|ge+e−Y 0

b
| , ϕf0 ,

g′Y 0
b Υ(1S)f2

≡ gY 0
b Υ(1S)f2|ge+e−Y 0

b
| , ϕf2 . (3.8.37)

With 12 and 10 degrees of freedom in theMPP ′ and cos θ spectrum respectively, the number
of degrees of freedom in the �t is d.o.f. = (12 + 10)− 7 = 15.

With these inputs, we have performed a large number of �ts (typically O(5000)) of the
Belle data with the tetraquark theory predictions. The resultant best �t is fairly good,
with χ2/d.o.f. = (15.1+6.4)/15 = 21.5/15 for the BES and CB input in Eq. (3.8.17), which
corresponds to a p-value of 0.12. The �rst (second) summand in χ2 is the χ2-value obtained
from the �t to the MPP ′ (cos θ) spectrum. The corresponding best �t using the KLOE
data is very similar, having a χ2/d.o.f. = (15.4 + 6.5)/15 = 21.9/15, yielding a p-value of
0.11. The best �ts using the BES,CB and KLOE data are presented in Fig. 3.23 and the
corresponding �t values of the parameters are listed in Tab. 3.8.2. The �ts were performed
with ROOT which was implemented in a C++ program and checked with Mathematica,
using a self-made �tting routine. The p-value, the χ2 method and the �tting procedure are
further explained in App. C.7.

I note, that the resonance contribution represented by the red curve (only resonant
contributions) and the green curve (f2 contribution) in Fig. 3.23 dominate the Mπ+π−

spectrum, supporting our dynamical model in the decay Yb → Υ(1S)π+π−. Su�cient data
may provide enough statistics to undertake an analysis in the end-region ofMπ+π− to probe
the angular distribution of f2 → π+π−, although the shape in the helicity spectrum is not
very distinctive. However, it might be possible, that the di�erent partial wave contributions
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Table 3.8.2: Best �t parameters of the �t to the Υ(1S)π+π− spectrum, yielding χ2/d.o.f. =
21.5/15 for BES, CB and χ2/d.o.f. = 21.9/15 for KLOE input. Here A′ and B′ are
dimensionless, g′

Y 0
b Υ(1S)f0

and g′
Y 0

b Υ(1S)f2
are given in units of MeV, and the angles are in

units of rad.

A′ B′ g′
Y 0

b Υ(1S)f0
g′
Y 0

b Υ(1S)f2
ϕσ ϕf0 ϕf2

BES, CB 0.000079 −0.00020 0.318 0.439 0.36 −2.76 −0.46
KLOE 0.000079 −0.00020 0.327 0.424 0.42 −2.49 −0.32

of f2 enter the partial cross section with di�erent strength, which may lead to a more
pronounced shape. This possibility was not taken into account and needs experimental
scrutiny.

Using the measured cross section given in (3.8.36), the partial decay width for Yb →
Υ(1S)π+π− can be computed:

Γ(Y I
b → Υ(1S)π+π−) ≈

mYb
Γ2
Yb

|ge+e−Y I
b
|2
σ(e+e− → Y I

b → Υ(1S)π+π−) ,

= 4.1

(
ΓYb

30 MeV

)2
(

10−4

|ge+e−Y I
b
|

)2

MeV, (3.8.38)

where s = m2
Yb

has been assumed. With Eq. (3.5.17) one �nds for a total decay width of
approximately 30 MeV

Γ(Y I
b → Υ(1S)π+π−) ≈ 0.5

1

κ2Q2
I

MeV. (3.8.39)

Thus the physical states Y[bu/bd] have a partial decay width Γ(Y[bu/bd] → Υ(1S)π+π−) of
O(1) MeV.

3.8.3 Predictions for e+e− → Υ(1S)K+K− and e+e− → Υ(1S)ηπ0

Here I present our predictions for the decays, in which PP ′ = K+K− and PP ′ = ηπ0.
These channels are suppressed by phase space compared with the π+π− case. However,
isospin I = 1 diagrams contribute in both channels (in the ηπ0 channel only the I = 1
amplitudes are important). Because of the ratio ge+e−Y 1

b
/ge+e−Y 0

b
= −3 due to the di�erent

e�ective diquark charges, as shown in Eq. (3.5.16), these channels receive an enhancement.
Thus the total cross section is larger than naively expected.

I approximate fη = fπ in the numerical analysis, as explained further in App. C.6.
The normalized MK+K− and Mηπ0 distributions, calculated with the best-�t parameters in
Tab. 3.8.2, are shown in Fig. 3.24 and Fig. 3.25, respectively. In these �gures the red (black)
curves show the dimeson invariant-mass spectra from the resonant (total) contribution.
Since these spectra are dominated by the scalars f0 + a0

0 and a0
0 for the K+K− and ηπ0

channel respectively, there is a strong correlation between the two cross sections. This
is shown in Fig. 3.26, where the ratio of the normalized cross sections σ̃K+K− and σ̃ηπ0

(red dots) are plotted. The shown ratios result from our �ts and satisfy χ2/d.o.f. <
1.6 (corresponding to χ2/d.o.f. . χ2

min + 1). The current Belle measurement σ̃K+K− =
0.11+0.04

−0.03 [91] is shown as a shaded (blue) band on this �gure. Our model is in agreement
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Figure 3.24: Model predictions for the process e+e− → Yb → Υ(1S)K+K− obtained from
the �t to the dipion spectra for di�erent Flatté couplings BES, CB (solid, blue) and KLOE
(dashed, orange). To the left, the MK+K− (upper left) and cos θ (lower left) spectra are
shown. The shaded curves represent the model predictions, and the red lines show the
contributions without the continuum terms. To the right the Dalitz plot is shown for the
BES, CB values.

with the Belle measurement, though there is a tendency in the �ts to yield larger values
for σ̃K+K− . The predictions will be further tested as and when the cross section σ̃ηπ0 is
measured.

Errors are very di�cult to quantify. The usual errors, calculated for example by ROOT,
are only given for one local minimum of the �t parameters, in which the variation within
χ2
min + 1 is taken into account. These errors are very small since other local minima,

which yield di�erent �t values, are ignored. Taking all minima in the given χ2 range into
account seems to be a reasonable choice. However, the entity of minima returned by the
program strongly depends on the �tting routine and moreover non-minima con�gurations
might yield larger errors. As can be seen in Fig. 3.26, the errors are sizable and certainly
larger than the variation due to the di�erent input parameters from BES,CB and KLOE.
In conclusion, noticing, that we have neglected the SU(3)-breaking e�ects, the normalized
cross section is in the region 1.0 ≤ σ̃ηπ0 ≤ 2.0.

Finally, I note that the states Υ(1S)K+K− and Υ(1S)K0K̄0 are produced by the
underlying mechanism e+e− → Y[bu] → Υ(1S)K+K− and e+e− → Y[bd] → Υ(1S)K0K̄0.
Hence, a �rm prediction is

σΥ(1S)K+K−

σΥ(1S)K0K̄0

=
Q2

[bu]

Q2
[bd]

=
1

4
. (3.8.40)

This relation is valid under the assumption that the diquarks are pointlike. In terms of
the mass eigenstates, we predicted σΥ(1S)K+K− = σΥ(1S)KSKS

. Using the same argument
for the two-body �nal states B+B− and B0, B̄0, and taking into account, that the Υ(5S)
also contributes to this decay channel with an enhanced production rate, which is given by
Γ(Υ(5S) → e+e−) = 0.31± 0.07 keV, one �nds

σB+B−

σB0B̄0

≈ 1− 0.2

κ2 + 0.27
. (3.8.41)
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Figure 3.25: Model predictions for the process e+e− → Yb → Υ(1S)ηπ0 obtained from the
�t to the dipion spectra for di�erent Flatté couplings BES, CB (solid, blue) and KLOE
(dashed, orange). To the left, the Mηπ0 (upper left) and cos θ (lower left) spectra are
shown. The shaded curves represent the model predictions, and the red lines show the
contributions without the continuum terms. To the right the Dalitz plot is shown for the
BES, CB values.

Figure 3.26: Predictions for the correlations of the total cross sections σ(e+e− →
Υ(1S)K+K−) and σ(e+e− → Υ(1S)ηπ0) obtained from the �t to the dipion spectra for
di�erent Flatté couplings BES, CB (left) and KLOE (right). Shown are the best �ts of
O(5000) �ts, which satisfy χ2 < χ2

min + 1. The shaded blue band shows the current Belle
measurement σ̃K+K− = 0.11+0.04

−0.03 [91]. The best �t is indicated by the green cross, in which
the bars correspond to the spread in the predictions for the cross sections.

The dimeson channel B0B̄0 has therefore a 10% enhanced production rate compared to
B+B− for κ2 = 0.5 when the background production is well-accounted for.
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Chapter 4

Conclusions and outlook

In this chapter I summarize the results of the work on the b-baryon LCDAs and the
[bq][b̄q̄]-tetraquarks, presented in my thesis, and give an outlook of promising future
projects and relevant experimental results anticipated in the near future, which may
decide the fate of the hidden bottom tetraquarks.

LCDAs

In Chap. 2, I presented the LCDAs of single-bottom-baryons, derived in collaboration with
Ahmed Ali and Alexander Parkhomenko. We aim to publish our results in early 2011. As
shown in Fig. 2.4 we were able to obtain the LCDAs for the entire ground state multiplets of
the single-bottom-baryons, thereby generalizing the work of Ball, Braun and Gardi [46]. We
accounted for the mass-breaking e�ects due to the strange-quark mass and calculated the
evolution of the LCDAs with the use of renormalization group equations, obtained from
the one-loop renormalization of the non-local light-cone operators, given in Eqs. (2.2.8)
and (2.2.9), which de�ne the LCDAs. The decay constants fHb

, which are local objects
and have been determined for the di�erent hadronic states at LO and NLO [52]p. 1, Tab. 2
are also taken into account. The resulting LCDAs are plotted in Figs. 2.11 and 2.12, in
which the evolution from µ = 1 GeV to µ = 2.5 GeV and our error estimates are also
shown. We �nd, that the SU(3)F breaking e�ects are of order 10 percent. The sources for
the SU(3)F breaking are the strange-quark mass ms ≈ 128 MeV, the borel parameter τ ,
the momentum cuto� s0 and the non-local condensates. The di�erence coming from the
non-local condensates has its origin in the di�erence of the local condensates of dimension 3
and 5. We used < s̄s >≈ 0.8 < ūu > [58]p. 9 and <: s̄D2s :>≈ 1.3 <: q̄D2q :>. The latter
one is, as already mentioned, not well determined. However, the mass-breaking e�ects
appear in the lower part of the energy spectrum in the region of the constituent s-quark
mass, as expected.

The major problem in using the LCDAs are the large errors of the model parameters.
Even though the SU(3)F breaking e�ects appear to be quite large at some momenta, they
are within the conservative error bars of the massless case, as is the evolution to the energy
scale µ = 2.5 GeV. The errors are obtained by varying the parameter A, which drives
the linear superposition of the two local interpolating currents, de�ned in Eq. (2.3.2). For
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A = 0, the baryon is approximated by the �rst interpolating current and by varying A
from 0 to 1. Eventually the �rst current vanishes and the baryon is interpolated by the
second current. The most conservative error estimate is then obtained by varying A in
the full possible range [0, 1]. Reducing the variation of A to the less conservative range
[0.3, 0.7] results in a variation of the distribution amplitudes of roughly the same size as
the evolution to µ = 2.5 GeV.

In the calculations of the baryonic properties, like form factors, weak and strong decays,
a better parametrization of the local interpolating currents, which are the roots of the large
errors in Fig. 2.12 and our results presented in the Tabs. B.6.1 to B.6.6 in App. B.6 in
Sec. 2.3, is desirable. The same applies also to the LCDAs of the Λb-baryon introduced
in [46]. An attempt to improve this derivation and to reduce the e�ects of the interpolating
currents, for the use in calculations of the weak-baryon decays and for the derivation of
the baryonic form factors, is currently undertaken by Ahmed Ali, Aoife Bharucha, Wei
Wang, Yuming Wang and myself. Once this is accomplished, the work may pave the way
for many other interesting analysis, such as the calculation of semileptonic and purely
hadronic two-body decays of the b-baryon in improved factorization methods. This will
be necessary, since the LHCb experiment will measure many baryonic decay modes with
improved statistics and higher precision, thus longing for better theoretical predictions. To
what extent the LCDAs provide enough precision to accomplish those tasks, and in which
areas further improvement is needed, will become clear in the future.

Tetraquarks

My work in the [bq][b̄q̄]-tetraquark sector is outlined in Chap. 3. Due to its exploratory
nature some of the results need an elaborated discussion, as given below. In collaboration
with Ahmed Ali, Ishtiaq Ahmed and Muhammad Jamil Aslam [43], I calculated the hidden
bottom tetraquark masses in a constituent Hamiltonian quark model and estimated the
hadronic two-body partial decay widths for the 1−− iso-doublet states, labeled Y

(n)
b , as

discussed in Sec. 3.4 to 3.7. Our results for the tetraquark mass spectra and the two-body
partial decay widths are shown in Fig. 3.15 and Tab. C.8.1 respectively. We introduced
a speci�c hadronic size parameter κ, taking into account the larger sizes of the hidden
bottom tetraquarks compared to the typical sizes of the bottomonia states in the same
energy region. We expect the tetraquarks to be larger in size due to a weaker string tension
and the non-zero diquark size and estimate κ to lie in the range 1/2 < κ < 1. For Y (1)

b we
obtained a total decay width of Γ(Y

(1)
b ) ≈ κ240 MeV, which indicates that the tetraquark

hadrons have a similar (but slightly larger) hadronic size compared to Υ(5S), which has a
total decay width roughly within a factor 2. An open issue in the mass calculations for the
tetraquark states involving the bad diquarks is the little-known bad diquark mass. Those
calculations should be updated once the mass splitting (3.4.29) between the heavy good

and bad diquarks is known more precisely, as discussed in Sec. 3.4.2. The Y (1)
b is however

only composed of good diquarks and is therefore not a�ected by this uncertainty. Also in
the mass estimate, the smallness of the spin coupling parameter Kbq = 6 MeV, listed in
Tab. 3.4.3, is puzzling, since it is found to be surprisingly small compared to Kbs = 25 MeV
and Kbc = 10 MeV. Usually we would expect increasing spin coupling for decreasing light-
quark mass, as suggested by the heavy-quark e�ective theories. Since we �xed our diquark
mass to reproduce the mass m

Y
(1)
b

= 10.89 GeV found by the Belle group according to
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Eq. (3.4.28) our estimated constituent diquark mass of m[bq] ≈ 5.251 GeV in (3.4.13) will
shift upwards, yielding even better agreement with the constituent diquark mass [35], as
discussed in Sec. 3.4.1. The resulting change of the tetraquark masses (of all but the Y (1)

b

mass) will be within our error estimates of O(30 MeV).

Since the hidden bottom tetraquarks, unlike their lighter relatives in the charm and
light-quark sector are too heavy to be produced in B-meson decays, we focus on 1−−

tetraquarks (and Y (1)
b in particular), which have the right quantum numbers to be produced

directly in the e+e− annihilation processes. Ahmed Ali, Satoshi Mishima and I were able
to calculate the Van Royen-Weisskopf formula for the 1−− tetraquark states. This formula
is a crucial input to estimate the e+e− production rates. We showed, that under the
assumption of pointlike diquarks, the Y (n)

b states can be produced in e+e− reactions with
su�cient statistics. I presented our result in Sec. 3.5, in which the partial electronic decay
widths are estimated to be of O(50 eV).

Knowing these important tetraquark characteristics, we undertook a �t to the e+e− →
bb̄ cross section between

√
s = 10.54 and 11.20 GeV, measured by BaBar [93], and presented

a case for the observation of the hidden bb̄-tetraquark states. The �t with good χ2/d.o.f. =
88/67 is plotted in Fig. 3.18 and the �t values are listed in Tab. 3.7.1. Our analysis is
compatible with a JPC = 1−− state Y[bq](10900) having a width of about 30 MeV. We
were able to identify a suppressed resonant structure near the Υ(5S) peak for the lowest
1−− tetraquark state Y (1)

b but not for the higher state Y (2)
b consisting of a good and a bad

diquark, whose mass is also estimated to be in the energy range of the measured BaBar
data. This is not very surprising, as discussed in Sec. 3.7, especially due to the little-known
bad diquark. The suppression by one order of magnitude in the electronic decay width of
the Y (n)

b , compared to the Υ(5S), directly leads to a suppression in an inclusive energy
scan, which is the main reason for the challenge in their discovery in the inclusive data on
Rb. We also found additional �ts with similar χ2/d.o.f., which do not show the resonant
structure seen in Fig. 3.18 (right frame). Thus the BaBar Rb-�t is suggestive but not
conclusive. Finer energy steps may be able to resolve the structure seen at this mass in
terms of two mass eigenstates, split by about 6 MeV, and a Belle Rb-scan might help to
con�rm the existence of the state Y[bq] visible in the analysis presented in Sec. 3.7. As the

decays Y[bq] → B
(∗)
s B̄

(∗)
s are not allowed, restricting the �nal states in Rb to the B(∗)

q B̄
(∗)
q

(q = u, d), into which Y[bq] decay, will also reduce the background to the Y[bq] signal. It is
important to check that the characteristics of Y[bq] (mass, full width and electronic width)
match those of the Yb, measured in the exclusive process e+e− → Yb → Υ(1S, 2S) π+π−.
This may solve one of the outstanding mysteries in the Υ(nS) physics, though this issue
might have to wait for the higher precision and increased statistics of the next-generation
B-factories, the SuperB in Frascati and the Super Belle in Japan.

The energy resolution of the e+e− accelerators is usually of the order of 5 MeV, mak-
ing a search for nearby overlapping resonances in inclusive data cumbersome. Interference
e�ects might be visible, but on the theoretical side the modeling of three overlapping res-
onances in the Υ(5S) region, namely Υ(5S) and the mass eigenstates Y (1)

[bl] and Y
(1)
[bh], is

sophisticated. This is a topic which might be addressed in future works, also in combina-
tion with a simultaneous �t to the

√
s scan of the Belle group [94]Fig. 2 for the exclusive

data for the production e+e− → Υ(nS)π+π−. It is not clear if one can su�ciently ac-
count for the resonance overlap and the possibility of �tting exclusive and inclusive cross
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sections simultaneously, especially regarding the suppression of the tetraquark resonance
in the inclusive data due to the rare production. Together with Ahmed Ali and Satoshi
Mishima, I am currently investigating this possibility. The conclusion thus far is, that the
most promising approach to gain evidence for the hidden bottom tetraquarks is found in
the analysis of the exclusive measurements in e+e− production for a tetraquark composed
of good diquarks, due to the bottomonia and background pollution in the inclusive de-
cays. Thus the hidden bottom tetraquark case will most likely be decided in the exclusive
transitions e+e− → Y

(1)
b → hadrons.

The exclusive three-body �nal states Υ(1S)(π+π−, K+K−, ηπ0) are studied in Sec. 3.8.
We were able to develop a model, presented in Sec. 3.8.1, which describes the e+e− pro-
duction of the �nal states via Y

(1)
b tetraquark resonance interchange in the s-channel.

The model �t to the invariant-mass and helicity spectra, measured by Belle for the pro-
cess e+e− → Y

(1)
b → Υ(1S)π+π−, yields good results with χ2/d.o.f ≈ 1.5, discussed in

Sec. 3.8.2. The �ts are manifestly dominated by the exchange of the meson f2(1270) and
intermediate light 0++ resonances, which are, very probably, tetraquarks themselves (see
Sec. 3.2). Using the knowledge of the values for the couplings of the intermediate resonances
and the strength of the continuum contributions, we predicted the spectra for the processes
e+e− → Y

(1)
b → Υ(1S)(K+K−, ηπ0) and the resulting total cross sections, normalized to

the experimental cross section σ(e+e− →→ Υ(1S)π+π−). We are in agreement with the
reported ratio σ(e+e− →→ Υ(1S)π+π−)/σ(e+e− →→ Υ(1S)K+K−) = 0.11+0.04

−0.03, mea-
sured by Belle. The de�nite predictions made for the spectra of these channels, shown in
Figs. 3.24 and 3.25 are characteristically di�erent from what has been seen in the promi-
nent Υ(nS) decays and show a clear resonant shape, which should be visible even for
reduced signal yield. The spectra for the Υ(1S)(K+K−, ηπ0) states and the cross sec-
tion for Υ(1S)ηπ0 are yet not available from experiments due to low statistics. This will
improve once the data taken by Belle during the �rst half of 2010 is made public. The
predicted appearance of the resonances in the measured spectra will be a clear indication
in favor of our tetraquark interpretation. Su�cient data may provide also enough statistics
to undertake an analysis in the end-region of Mπ+π− to probe the angular distribution of
f2 → π+π−.

Another test for the tetraquark picture is the ratio σΥ(1S)K+K−/σΥ(1S)K0K̄0 =
Q2

[bu]/Q
2
[bd] = 1/4 and in terms of the mass eigenstates σΥ(1S)K+K− = σΥ(1S)KSKS

. This is
a distinctive feature in the tetraquark picture under the assumptions of pointlike diquarks
and the tetraquark dominance in the three-body decays. This peculiarity is not present
for the bottomonia states, since the light-quark pairs for the �nal states are produced in
the isospin-invariant strong interaction, while for the tetraquarks, they are produced in the
e+e− production, thus breaking isospin invariance, which is also the case for the B+B− and
B0, B̄0 two-body production rates. These decays are, however, overlaid by the production
via Υ(5S), which leads to a suppression of the charged B+B− production. We predict a
10% increased production rate of the B0, B̄0 compared with B+, B− when the background
contributions are well-accounted for. In conclusion, the distributions, cross sections, and
correlations presented here and published in [44] and [90] are crucial tests of the under-
lying tetraquark hypothesis in the bb̄ sector and go well beyond what has been proposed
in the literature to understand the nature of the Yb(10890) state. If the tests support our
inference, the Y (1)

b state will be the �rst tetraquark in the bottom sector.
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The future projects concerning the studies of the hidden bottom tetraquarks will depend
on the outcome of the analysis of the Belle data. If the measurements are in agreement
with our predictions, several topics need further and improved calculations, and yet others
might be valuable if the matter remains undecided. For the latter case, the production of
tetraquarks at the LHC, which will be measured at the LHCb-experiment, is an interesting
task. It will open the door to appraise the tetraquark hypothesis with the high statistics
data provided by the LHC in the near future. However, the production process through
proton-proton collisions is more involved, than the e+e− production observed at BaBar or
Belle and requires for example the use of Monte-Carlo techniques.

If the tetraquark picture is proven to be correct, the computation of tetraquark masses
with the use of QCD-sum-rules at next-to-leading order will be an interesting extension of
the constituent quark model calculations. Also the parton distributions of the tetraquarks
will be necessary to enhance the accuracy in the calculations of tetraquark decay rates.
Several approaches are possible, for example the generalization of the well-known quarko-
nium models or a calculation in the framework of QCD-sum-rules. In the former, the
simplest �rst step might be a product ansatz in the diquark-diquark wave functions and
the quark-quark (antiquark-antiquark) wave functions. The study of the wave functions
will become especially important, if the approximation of pointlike diquarks is found to be
inadequate.

If the existence of the constituents of the tetraquarks, the diquarks and antidiquarks,
is con�rmed and well established in all quark sectors, e�ective methods to describe their
dynamics need to be developed, which will open an entire new �eld in the theory of strong
interactions. Similar to pion exchange between the baryons in a nucleus they could be
mediators of forces and provide crucial input to di�erent multiquark scenarios such as
fragmentation functions in heavy-ion collisions.

Concluding, our predictions will be scrutinized soon in the existing and the forthcoming
Belle data to which we look forward. The analysis will hopefully decide the fate of the
bottom tetraquarks, pointing out future research directions in this �eld.
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Appendix A

Summary of de�nitions and useful

relations

I use the metric in the �mostly minus� convention

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.0.1)

The Pauli matrices are de�ned as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.0.2)

In the Weyl or chiral basis the Dirac matrices are given by

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
(A.0.3)

with σµ = (1,σ) and σ̄µ = (1,−σ), and the charge conjugation in the same basis is given
by

C = iγ2γ0 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 . (A.0.4)

The free propagator of a massive scalar particle with mass m in D-dimensional (Eu-
clidean) space-time [53]eq 7 is given by

D(x,m) =
1

(2π)D

∫
ei(p.x)dDp

p2 +m2
=

(mx)λKλ(mx)

(2π)λ+1x2λ
(A.0.5)

with D = 2λ+ 2 and Kλ(z) is the modi�ed Bessel function of the second kind

Kλ(z) =
π

2

I−λ(z)− Iλ(z)

sin(πλ)
, Γ(λ)Γ(1− λ) =

π

sin(πλ)
, (A.0.6)
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in which

Iλ(z) =
(z

2

)λ ∞∑
k=0

(z2/4)k

k!Γ(λ+ k + 1)
(A.0.7)

is the modi�ed Bessel function of the �rst kind.

A.1 The Dirac �eld

Using the formalism developed in the canonical quantization method, where a fermionic
(antifermionic) �eld Ψ (Ψ) in one variable t can be expanded as [112]p. 58

Ψ(t)α =

∫
dp

2π

1√
2Ep

∑
s

(aspu
s
α(p)e

−ipt + bs†p v
s
α(p)e

ipt),

Ψ(t)α =

∫
dp

2π

1√
2Ep

∑
s

(as†p ū
s
α(p)e

ipt + bspv̄
s
α(p)e

−ipt), (A.1.1)

in which as†p (bs†p ) creates a fermion (antifermion). The similar expression holds for the
expansion in three space-time coordinates:

Ψ(x)α =

∫
d3p

(2π)3

1√
2Ep

∑
s

(aspu
s
α(p)e−ix.p + bs†p v

s
α(p)eix.p), (A.1.2)

and similar for Ψ. A fermion is created from the vacuum by

|p, s〉 ≡
√

2Epa
s†
p |0〉 (A.1.3)

with momentum p and energy Ep. The index s refers to the spinor basis spanned by usα(p).
The creation and annihilation operators obey the well known anticommutation relations

{
f1
a
r

ip,
f2
a
s†

jq} = 2πδ(p− q)δrsδijδ
f1f2 or {

f1
a
r

ip,
f2
a
s†

jq} = (2π)3δ(p− q)(3)δrsδijδ
f1f2 , (A.1.4)

in which fi indicates the type of the particle. In the following these and color indices will
be omitted.

For three dimensions, the spinors are in the chiral basis given by

us(p) =

( √
p.σξs√
p.σ̄ξs

)
, vs(p) =

( √
p.σηs

−
√
p.σ̄ηs

)
s = 1, 2, (A.1.5)

in which ηs = −iσ2(ξs)∗. By choice of basis ξ1 = (1, 0)T and ξ2 = (0, 1)T . The two
vectors denote spin up and spin down along the z-axis respectively. Both spinors can
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combine to spin 1 or spin 0, in which the symmetric combinations gives the former and
the antisymmetric combination gives the latter multiplet:

ηr†β ξ
s
α =



− 1√
2

(
1 0
0 1

)
αβ

= −1αβ√
2

{0, 0} for [(1,2)−(2,1)]√
2

(
0 1
0 0

)
αβ

= −n.σαβ√
2

{1, 1} for (1, 1) with n = − êx+iêy√
2

− 1√
2

(
1 0
0 −1

)
αβ

= −n.σαβ√
2

{1, 0} for [(1,2)+(2,1)]√
2

with n = êz(
0 0
−1 0

)
αβ

= −n.σαβ√
2

{1,−1} for (2, 2) with n = êx−iêy√
2

, (A.1.6)

in which the parenthesis (a, b) correspond to the spinor polarizations (s = a, r = b), and
{S, sz} gives the spin multiplet S and the spin projection along the z-axis sz. The vector
n with |n|2 = 1 is a polarization vector of the spin 1 ground state formed by the two
fermions.

The fermionic propagator in coordinate space is obtained from Eq. (A.0.5) by di�eren-
tiation with respect to xµ:

SF (x− y) =

∫
d4p

(2π)4

e−ip.(x−y)(/p+m)

p2 −m2 + iε
=

(
/x− /y

|x− y|5
+

m

|x− y|3

)
I1(m |x− y|) (A.1.7)

with �rst order mass corrections

S(x) =
i

2π2

/x

x4
− m

4πx2
(A.1.8)

The heavy-quark propagator in coordinate space [112]p. 177 � reads

i < T{hv(x)h̄v(0)} > =
1 + /v

2

∫
dtδ4(x− vt), (A.1.9)

which is obtained from Eq. (1.0.9) with the help of
∞∫

−∞

e−iωt

(−ω − iε)n
dω

2π
=

in

Γ(n)
tn−1Θ(t) and

∞∫
0

eiωttndt =
(−i)n+1Γ(n+ 1)

(−ω − iε)n+1
. (A.1.10)

A.2 The gluon �eld

The vector gauge �eld Aµ(tz)i
′
i in one coordinate can be expanded similar to the

Eqs. (A.1.2) [112]p 123:

A l
µ i′(t) =

∫
dp

2π

1√
2Ep

∑
r,c

(Acrp ε
r
µ(p)t

cl
i′e

−ipt + Acr†p εr∗µ (p)tcl i′e
ipt), (A.2.1)
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in which εrµ is the basis of polarization vectors where r = 0, . . . , 3, and Arc†p (Arcp ) is the
creation (annihilation) operator, which creates (annihilates) a gluon with momentum p,
polarization r and color c. They obey

[Arcp , A
sc′†
q ] = 2πδ(p− q)δrsδcc

′
. (A.2.2)

Since the gluon transforms as gauge �eld under the adjoint representation, which is the
8SU(3)c , the index c runs from 1 to 8. The eight matrices tci

′
i are the generators of SU(3)

and the indices i, i′ are the color indices of the fundamental representations 3SU(3)c and
3̄SU(3)c .

A.3 Spherical harmonics

The spherical harmonics Y m
l (θ, ϕ) with angular momentum quantum number l and pro-

jection to the z-axis m up to l = 2 are given by:

Y 0
0 (θ, ϕ) =

√
1

4π
, spin 0

Y +1
1 (θ, ϕ) = −1

2

√
3

2π
sin θeiϕ = −1

2

√
3

π

x+ iy√
2r

,

Y 0
1 (θ, ϕ) =

1

2

√
3

π
cos θ =

1

2

√
3

π

z

r
, spin 1

Y −1
1 (θ, ϕ) =

1

2

√
3

2π
sin θe−iϕ =

1

2

√
3

π

x− iy√
2r

,

Y 0
2 (θ, ϕ) =

√
5

16π
(3 cos2 θ − 1) ,

Y ±1
2 (θ, ϕ) = ∓

√
15

8π
sin θ cos θ e±iϕ , spin 2

Y ±2
2 (θ, ϕ) =

√
15

32π
sin2 θe±2iϕ . (A.3.1)

Here the spin 1 triplet is given in two coordinate systems, spherical coordinates and Carte-
sian coordinates with x = r sin θ cosϕ, y = r sin θ sinϕ and z = r cos θ. This parametriza-
tion makes the de�nition of the polarization vectors ε(m) of a spin 1 state apparent:

ε(m) = {ε(m=+1), ε(m=0), ε(m=−1)} =

{
−ex + iey√

2
, ez,

ex − iey√
2

}
. (A.3.2)

Thus by de�ning x̂i ≡ xi/r, the spin 1 triplet can be written in terms of the polarization
vector as

Y m
1 (θ, ϕ) =

1

2

√
3

π
x̂.ε(m), (A.3.3)
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and the wave function for a P -wave state with principal quantum number n and spin
projection m can be written as

Ψn1m(x) =
1

2

√
3

π
x̂.ε(m)Rn1(r) = ψin1(x)ε

(m)
i , with ψin1(x) ≡ 1

2

√
3

π
x̂iRn1(r). (A.3.4)

Some useful relations are further:∫ 2π

0

dϕY 0∗
0 (θ, ϕ)Y 0

0 (θ, ϕ) =
1

2
,∫ 2π

0

dϕY 0∗
0 (θ, ϕ)Y 0

2 (θ, ϕ) =
3
√

5

4

(
cos2 θ − 1

3

)
,∫ 2π

0

dϕY 0∗
2 (θ, ϕ)Y 0

2 (θ, ϕ) =
45

8

(
cos2 θ − 1

3

)2

,∫ 2π

0

dϕY ±1∗
2 (θ, ϕ)Y ±1

2 (θ, ϕ) =
15

4
sin2 θ cos2 θ ,∫ 2π

0

dϕY ±2∗
2 (θ, ϕ)Y ±2

2 (θ, ϕ) =
15

16
sin4 θ , (A.3.5)

and in general the normalization∫ 1

−1

d cos θ

∫ 2π

0

dϕY m∗
` (θ, ϕ)Y m′

`′ (θ, ϕ) = δ``′δmm′ (A.3.6)

holds.

A.4 Master integrals for renormalization

In D = 4− 2ε dimensions the master integrals are given as follows:

I1(∆) =

∫
dD−2l

i(2π)D−2

1

l2 −∆
= − 1

4π
Γ(ε)

(
1

∆

)ε
,

I2(∆) =

∫
dD−2l

i(2π)D−2

l2

l2 −∆
=

1

4π
(1− ε)Γ(−1 + ε)

(
1

∆

)−1+ε

,

I3(∆) =

∫
dD−2l

i(2π)D−2

1

(l2 −∆)2
=

1

4π
Γ(1 + ε)

(
1

∆

)1+ε

UV �nite,

I4(∆) =

∫
dD−2l

i(2π)D−2

l2

(l2 −∆)2
= − 1

4π
(1− ε)Γ(ε)

(
1

∆

)ε
= (1− ε)I1,

I5(∆) =

∫
dD−2l

i(2π)D−2

l4

(l2 −∆)2
=

i

4π
(1− ε)(2− ε)Γ(ε− 1)

(
1

∆

)ε−1

,

I6(∆) =

∫
dD−2l

i(2π)D−2

lµlν
(l2 −∆)2

= −igµν
8π

Γ(ε)

(
1

∆

)ε
=
gµν
2
I1,

J1(∆) =

∞∫
0

dx

(x+ ∆)1+ε
=

Γ(ε)

∆ε
,
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J2(∆) =

∞∫
0

xdx

(x+ ∆)1+ε
=

Γ(ε− 1)

∆ε−1
, (A.4.1)

and

∞∫
0

tx−1dt

(∆ + t)x+y
=

1

∆y

∞∫
0

tx−1dt

(1 + t)x+y
=

1

∆y

Γ(x)Γ(y)

Γ(x+ y)
. (A.4.2)

Several quantities above can be expanded in a series in ε for epsilon close to 0:

1

ε∆ε
=

1

ε
− log(∆) +

1

2
log2(∆)ε+O(ε2) (A.4.3)

Γ(ε) =
1

ε
− γ +O(ε)

(
1

∆

)ε
= 1− ε log ∆ (A.4.4)

and

Γ(x) =
(−1)n

n!

(
1

x+ n
− γE + 1 + . . .+

1

n
+O(x+ n)

)
(A.4.5)

near x = −n, in which γE is the Euler constant.

Feynman parameters are useful to rewrite the integrations in terms of the master inte-
grals. They are de�ned by:

1

A1 . . . An
=

1∫
0

dx1 . . . dxnδ(
∑

xi − 1)
(n− 1)!

[x1A1 + . . . xnAn]
n . (A.4.6)



Appendix B

b-baryon LCDAs

This appendix contains several calculations and detailed explanations necessary for the
discussion of the LCDAs in Chap. 2. The order of the sections follows the order of the
appearance of the corresponding topics in the main work.

B.1 The Borel transform

The Borel transform E → τ is de�ned as

B [f(E)] (τ) = lim
n→∞
E→∞
E/n=τ

En+1

n!

(
− d

dE

)n
f(E), (B.1.1)

such that

B

 ∞∫
0

dte±it(−iε+Ω+E) 1

tx


ε→0
E→τ

= lim
n→∞
E→∞
E/n=τ
ε→0

∞∫
0

dt
ine±t(ε+i(Ω+E))tn−xEn+1

n!
,

= i±(−x+1)e−
Ω
τ τx,

=
i±(−x+1)

Γ(x)

∞∫
Ω

dse−
s
τ (s− Ω)x−1 . (B.1.2)

The de�nition of the Borel transform in Eq. (B.1.1) is equivalent to the inverse Laplace
transform. However, in the former form it becomes apparent, that the Borel transform
handles the regularization of the correlation functions in Sec. 2.5 automatically, since the
renormalization is applied by subtracting polynomials in E, which vanish due to the deriva-
tive of arbitrary large order. Applying the Borel transform to the sum rules, the contri-
butions of states heavier than the ground state are exponentially suppressed. Introducing
the cuto� after the application of the Borel transform, which is needed for the sum rule
calculations one �nds:

i±(−x+1)

Γ(x)

s0∫
Ω

dse−
s
τ (s− Ω)x−1 =

i±(−x+1)

Γ(x)
e−

Ω
τ τx

(
Γ(x)− Γ

(
x,
s0 − Ω

τ

))
(B.1.3)
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B.2 QCD sum rules

The QCD sum rules provide a framework of techniques to gain access to the non-
perturbative interaction regime αs & 1, in which the energy scale is of order of the binding
scale ΛQCD. The characteristics of the hadron ground states can be calculated with this
type of calculations. Together with lattice QCD it is among the most famous working tools
in this �eld. An elaborated review was introduced by Colangelo and Khodjamirian [47].
Here I sketch the working principles of the QCD sum rules brie�y.

The correlation function (2.5.1), de�ned by two interpolating operators, is given by

Π(q2, t1, t2) = i

∫
d4xeiq.x 〈0|OΓγ(t1, t2)JΓ′γ′(x) |0〉 . (B.2.1)

In the heavy-quark limit, discussed in Chap. 1, the b-quark is moving on-shell with velocity
v. The origin of the coordinate frame is chosen to coincide with the b-quark, when it is
annihilated by the non-local operator OΓγ(t1, t2) . Because the b-quark moves as classical
particle along a straight line along v, at a time t it will be at point x. Thus t is de�ned
by xµ = tvµ (a resting b-quark is also produced in the origin by the local interpolating
current). The Fourier transform in time de�nes the energy E. Thus Eq. (B.2.1) simpli�es
to

Π(E, t1, t2) = i

∫
dteiEt 〈0|OΓγ(t1, t2)JΓ′γ′(t) |0〉 . (B.2.2)

With some mathematical transformations, shown below, the correlation function Π(E) can
be rewritten in form of a hadronic dispersion relation and by using the operator product
expansion. These two formulations are then used to derive the sum rule.

Using the analytic continuation of the correlation function Π(E) on the contour plotted
in Fig. B.1 one gets

Π(E, t1, t2) =
1

2πi

∫
C

dz
Π(z, t1, t2)

z − E

=
1

2πi

∫
|z|=R

dz
Π(z, t1, t2)

z − E
+

1

2πi

R∫
0

dz
Π(z + iε)− Π(z − iε)

z − E
. (B.2.3)

The correlation function at any point E (green cross) is linked to the hadronic dispersion
relation (brown shades) for the on-shell states, pictured in Fig. B.1. The �rst term vanishes
at R = ∞ and according to the Schwarz re�ection principle:

Π(E, t1, t2) =
1

π

∞∫
0

ds
Im(Π(s, t1, t2))

s− E − iε
, (B.2.4)

where the hadronic bound states lie on the positive real axis. The lowest bound state
is indicated in the density plot in Fig. B.1 by the vertical line and the red cross. In
general, there are a couple of such discrete bound states, which blend into the hadronic



B.2 QCD sum rules 87

continuum (brown shade) at some higher excitation energy. In the sum of discrete states,
every contribution is accompanied by a delta function δ(En − s). The �rst term in the
sum, which corresponds to the ground state can be extracted by shifting the integration
boundary upwards to s0 > Λ̄. This gives the hadronic dispersion relation

Π(E, t1, t2) =
|f |2 Ψ(t1, t2)

Λ̄− E
+

∞∫
s0>Λ̄

ds
Im(Π(s, t1, t2))

s− E
. (B.2.5)

The perturbative contribution can not account for the soft contributions of the partons,
which are interacting with the QCD vacuum. Those vacuum �elds induce long-distant
e�ects, while the short distance is described by the perturbative contributions. Thus the
correlation function is, as described in Sec. 2.5, calculated with the use of the propagators
in the QCD background.

In summary on �nds two formulations of the correlation function:

hadronic
dispersion
relation

: Π(E, t1, t2) =
|fHb

|2 Ψ(t1, t2)

Λ̄− E
+

∞∫
s0

ds
Im(Π(s, t1, t2))

s− E

operator
product
expansion

: Π(E, t1, t2) =
1

π

∫
ds
Im(
〈
OΓJ̄

〉pert
+
〈
OΓJ̄

〉cond
)(s)

s− E
(B.2.6)

Figure B.1: Density and contour.
The Correlation function Π(E, t1, t2)
in the complex plane at any point E
(green cross) is linked to the on-shell
hadronic thresholds (brown shades).

The spectral density includes the low lying ground
state, higher excitations and the continuum. The
parameter s0 cuts of the higher excitations and the
continuum, since we are only interested in the pure
ground state. The quark-hadron duality is applied
via assuming the approximate equality of the per-
turbative contributions and the density for s > s0:

∞∫
s0

ds
ρ(s)

s− E
≈ 1

π

∞∫
s0

ds
Im(
〈
OΓJ̄

〉pert
)(s)

s− E
, (B.2.7)

in which Λ̄ = mHb
−mb is the e�ective mass of the

baryon. One has to be very careful, what one calls
perturbative, since there might be mixed perturba-
tive and condensate contributions (i.e. diagrams in
which one light-quark is described by the low energy
condensates and the other light-quark is described
by the high energy perturbative propagator). We adopted the procedure of [46], and call
a distribution perturbative, when at least one perturbative term is present. Inserting the
quark hadron duality one gets:

|fHb
|2 Ψ(t1, t2)

Λ̄− E
=

1

π

s0∫
0

ds
Im(
〈
OΓJ̄

〉pert
)

s− E
+

1

π

∞∫
0

ds
Im(
〈
OΓJ̄

〉cond
)

s− E
.(B.2.8)
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The application of the Borel transform with B
[

1
A−E

]
(E → τ) = −e−A

τ results in the sum
rule to determine the desired wave functions Ψ(t1, t2):

|fHb
|2 Ψ(t1, t2)e

− Λ̄
τ =

1

π

s0∫
0

dse−
s
τ Im(

〈
OΓJ̄

〉pert
) +

1

π

∞∫
0

dse−
s
τ Im(

〈
OΓJ̄

〉cond
). (B.2.9)

B.3 Non-local vertex calculations

The explicit calculations to derive the vertex expressions corresponding to the operators
de�ned in Eq. (2.2.3) are performed in this section. The �rst step is to expand the Wilson
lines in (2.1.5) up to �rst order in the coupling gs:

P ◦ { e
igs

t1R
0

dtnµAµ(tn)i′
i} ≈ 1i′i + igs

t1∫
0

dtnµA
µ(tn)i

′

i. (B.3.1)

Setting gs = 0 the zeroth order operator

O
(0)
Γ = εijk[ uiα(t1)Γαβdjβ(t2)] bkγ(0) (B.3.2)

is obtained. The �rst order matrix element in gs reads

O
(1)
Γ = εi

′j′k′[ ulα(t1)igs
t1∫

0

dtnµA
µ(tn)l i′Γ

αβdj′β(t2)] bk′γ(0). (B.3.3)

The following results are similar to the ones given in [51]Fig. 3.

B.3.1 Vertex calculations lowest order in gs

Calculating

〈0|O(0)
Γ |u(k1+)s1d(k2+)s2b(E)s3〉 (B.3.4)

to lowest order in perturbation theory gives the vertex corresponding to O(0)
Γ , de�ned in

Eq. (B.3.2). Using the Eqs. (B.3.2) to (B.3.4) and the anticommutation relations of the
creation and annihilation operators one �nds

〈0|O(0)
Γ |u(k1+)s1d(k2+)s2b(E)s3〉

= 〈0| εi′j′k′[ ui′α(t1)Γαβdj′β(t2)] bk′γ(0)
√

23Ek1+Ek2+EE
u
a
s1†
ik1+

d
a
s2†

jk2+

b
a
s3†

kE |0〉 ,

= 〈0| εi′j′k′[
∫
dp1

2π

1√
2Ep1

∑
r1

u
a
r1

i′p1

u
u
r1

α (p1)e
−ip1t1

∫
dp2

2π

1√
2Ep2

∑
r2

d
a
r2

j′p2

d
u
r2

β (p2)e
−ip2t2] Γαβ
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∫
dp3

2π

1√
2Ep3

∑
r3

b
a
r3

k′p3

b
u
r3

γ (p3)√
23Ek1+Ek2+EE

u
a
s1†
ik1+

d
a
s2†

jk2+

b
a
s3†

kE |0〉 . (B.3.5)

Using now the anti commutation relations (A.1.4), Eq. (B.3.5) yields

= −〈0| εi′j′k′[
∫
dp1

∑
r1

δ(p1 − k1+)δr1s1δii′
u
u
r1

α (p1)e
−ip1t1

∫
dp2

∑
r2

δ(p2 − k2+)δr2s2δjj′
d
u
r2

β (p2)e
−ip2t2] Γαβ∫

dp3

∑
r3

δ(p3 − E)δr3s3δkk′
b
u
r3

γ (p3) |0〉 ,

= −εijk[ u
u
s1

α (k1+)e−ik1+t1Γαβ
d
u
s2

β (k2+)e−ik2+t2] b
u
s3

γ (E). (B.3.6)

The vertex for the operator O(0)
Γ de�ned in Eq. (B.3.2) can be identi�ed as

= −εijke−i(k2+t2+k1+t1)Γαβ1 γ
γ′ . (B.3.7)

Simplifying and performing the Fourier transform for the coordinate projections ti → ωi
leads to

Γγ′ω1ω2 jβk2+

iαk1+

kγ

= −εijkΓαβ1 γ′
γ δ(ω1 − k1+)δ(ω2 − k2+). (B.3.8)

B.3.2 Vertex calculations �rst order in gs

Here the �rst order vertex de�ned by the operator in (B.3.3) is calculated. The matrix
element reads:

〈0|O(1)
Γ |u(t1)s1g(t1)cs3d(k2+)s2b(E)s3〉

= 〈0| εi′j′k′[
∫
dp1

2π

1√
2Ep1

∑
r1

u
a
r1

i′p1

u
u
r1

α (p1)e
−ip1t1

igs

t1∫
0

dt4n
µ

∫
dp4

2π

1√
2Ep4

∑
r4,c′

Ac
′r4
p4
εr4µ (p4)t

c′i′

le
−ip4t4

∫
dp2

2π

1√
2Ep2

∑
r2

d
a
r2

j′p2

d
u
r2

β (p2)e
−ip2t2] Γαβ∫

dp3

2π

1√
2Ep3

∑
r3

b
a
r3

k′p3

b
u
r3

γ (p3)√
24Ek1+Ek2+EEEk4+

u
a
s1†
ik1+

d
a
s2†

jk2+

b
a
s3†

kE As4c†k4+
|0〉 ,
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= −εijk[
∫
dp1

u
u
s1

α (p1)e
−ip1t1δ(p1 − k1+)

igs

t1∫
0

dt4n
µ

∫
dp4ε

s4
µ (p4)t

ci
le
−ip4t4δ(p4 − k4+)

∫
dp2

d
u
s2

β (p2)e
−ip2t2δ(p2 − k2+)] Γαβ∫

dp3
b
u
s3

γ (p3)δ(p3 − E),

=−igsεijktci l
u
u
s1

α (k1+)Γαβ
d
u
s2

β (k2+)

t1∫
0

dt4e
−i(k1+t1+k2+t2+k4+t4)n.εs4(k4+)

b
u
s3

γ (E). (B.3.9)

The Fourier transforms de�ned in (A.1.2) and (A.2.1) have been inserted for the �eld
operators in the operator O(1)

Γ . The vertex can be identi�ed as

−igsεijktci lnµΓαβ1
γ

γ′

t1∫
0

dt4e
−i(k1+t1+k2+t2+k4+t4). (B.3.10)

Performing the Fourier transform leads to

Γγ′ω1ω2 jβk2+

kγ

iαk1+

cµk4+

=

−gsεljktcl inµΓαβ1 γ′
γ

1
k4+

δ(ω2 − k2+)(δ(ω1 − k1+)− δ(ω1 − k4+ − k1+))

.(B.3.11)

The vertex is proportional to the inverse of the plus component of the gluon momentum
k4+. In the loop calculations this can lead to further divergences. The calculation for the
�rst order term in the second Wilson line is completely analogue and is obtained by 1 ↔ 2.

B.3.3 Local vertices

The vertices for the local interpolating currents

JΓ1Γ2γ(x) = εijk(d̄αi(x)Γ
αβ
1 ūβj(x))Γ

γ′

2γ b̄γ′k(x) (B.3.12)

are

= −εijkeix.(q1+q2+q3)Γαβ1 Γ γ′

2γ (B.3.13)

in coordinate space. After Fourier transform, the exponential factor becomes the momen-
tum conserving delta function in momentum space.
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B.4 Renormalization of the b-baryon LCDAs

This part of the appendix contains the discussion of the calculations necessary for Sec. 2.7.
After some general remarks, I derive the equality of the leading twist evolution equations
for the triplet and the parallel currents of the sextet in Fig. 2.4. This information is suf-
�cient to perform the evolution of the b-baryon LCDAs, following [46]. Then I calculate
the corresponding diagrams to provide some deeper insight in the formalism. Since the
ultraviolet behavior is of interest for the renormalization group equations, the isospin limit
is adopted in this chapter. The evolution equation for the leading twist distribution am-
plitude ψI(t1, t2), de�ned in Eq. (2.2.8), is calculated at leading order in this work. The
leading order evolution equation is derived by identifying the ultraviolet singularities of
the vertices at one-loop order, pictured in Fig. 2.10.

The propagators and vertices for the quarks and the gluon are given by

= i /p

p2+iε
+O(m), = iP+

1
p.v+iε

,

µ ν = −i gµν

p2+iε
, aµ = itagsγ

µ,
aµ

= igst
avµ,

(B.4.1)

in which the light-quark propagator is given up to �rst order in its mass, and the heavy-
quark is described in the heavy-quark limit, see Chap. 1. The vertices de�ned by the non-
local operators in (2.2.8) and (2.2.9) are derived in App. B.3.3 and given in Eq. (B.3.8)
and (B.3.11). Some helpful relations and de�nitions for the following calculations are:

{γµ⊥, /n} = {γµ⊥, /̄n} = 0, g⊥µν = gµν − nµn̄ν/2− nνn̄µ/2,
{γµ⊥, γν⊥} = 2gµν⊥ , γµ⊥γ⊥µ = 2.

(B.4.2)

The loop integration over the loop momentum α is performed in light-cone coordinates,
and the integrand is transformed via∫

dDα

i(2π)D
→
∫
dD−2α⊥dα+dα−

2i(2π)D
. (B.4.3)

Some important scalar products in the following evaluations are:

α2 = α2
⊥ + α+α−, α.v = (α+ + α−)/2, /α = /α⊥ + (α+ /̄n+ α−/n)/2. (B.4.4)

In zeroth order in m, the denominator will only depend on α2
⊥ and thus be symmetric

in α⊥. In consequence all nominators ∝ αµ⊥ vanish. The master integrals are de�ned in
App. A.4. In the following, Feynman parameters (A.4.6) are used to rewrite the integrals
in terms of the master integrals. The residue theorem will also be needed in the following
chapters. For isolated single pole c of a complex function f(z) the residue is given by

Res(f, c) = lim
z→c

(z − c)f(z), (B.4.5)

And the integral of the function along a path γ in counterclockwise direction, enclosing n
isolated poles ci is given by∮

γ

dzf(z) = 2πi
n∑
i

Res(f, ci). (B.4.6)
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a)

p
p

q

b)

p

c) d) e)

Figure B.2: Diagrams for the non-local vertex renormalization. Each of the �rst four
diagrams appears twice (one for each light-quark). The dashed line represents the Wilson
line.

Reversing the integration direction results in an overall minus sign.

B.4.1 Lorentz structure of the one-loop diagrams

The leading twist structures are Cγ5/n for the jp = 0+ multiplet [46], wµC/n for the parallel
components and iCσ µ

n⊥ = −1
2
C (/nγ

µ
⊥ − γµ⊥/n) = Cγµ⊥/n for the transversal currents in the

jp = 1+ multiplet given in Eqs. (2.2.8) and (2.2.9). The most important feature of this
leading twist gamma structures Γ̃I is given by the condition /nΓ̃I = Γ̃I/n = 0, as will become
clear later in this section.

α′α′′

β

γ

µ

ν

α

γ′′ γ′

p

γ̃

Figure B.3: Example dia-
gram with explicitly shown
spinor and Lorentz indices.

Prior to the evaluation of the diagrams shown in Fig. 2.10,
the general features of the Lorentz structures are discussed.
What is meant by Lorentz structures needs some further spec-
i�cation: Everything which carries Lorentz indices and does
not belong to the trivial Lorentz structure of the heavy-quark
is accounted for (vµ in the heavy-quark vertex, /p in the light-
quark propagator, etc.). The loop momenta are generically
labeled as shown in Fig. B.2. Namely, the quark q1 has loop
momentum p and the quark q2 has loop momentum q. The
�rst diagram, explicitly shown in Fig. B.3, is given as exam-
ple, including the projector P+ for the b-quark, which is left
implicit in the following. Following Feynman rules, the corre-
sponding structures are vν (heavy-quark vertex), P+ (heavy-
quark propagator), Γ (non-local vertex), /p (light-quark prop-
agator), γµ (light-quark vertex) and gµν (gluon propagator):

vν(P+)γ
′′

γ′1
γ′

γ1
γ̃
γ′′Γ

α′′β
/p

α′

α′′
(γµ) α

α′ gµν = (P+)γ̃ γΓ
α′′β(/p/v)

α
α′′ ,

= (P+)γ̃ γ(/v
T
/p
TCΓ̃I)

αβ, (B.4.7)

in which a tilde on the Γ implies, that the charge conjugation, which is always present
in the de�nition of the currents (compare Eq. (2.2.8) and (2.2.9)) has been extracted, i.e.
Γ̃ ≡ −CΓ. Note, that the heavy-quark spin, described by the spinor indices γ and γ̃, is
passed through the diagram unchanged as described in Chap. 1.

Using the vertices in Eq. (B.3.8), (B.3.11) and (B.4.1) and applying the Feynman rules,



B.4 Renormalization of the b-baryon LCDAs 93

omitting color and using γTµ = CγµC, the following Dirac structures are derived:

diag. a) diag. b) diag. c) diag. d) diag. e)

/vT/pTCΓ̃I γµT/pTCΓ̃I/qγµ /nT/pTCΓ̃I nµvµCΓ̃I nµnµ
= = = = =

C/v/pΓ̃I Cγµ/pΓ̃I/qγµ C/n/pΓ̃I CΓ̃I 0
= = = = =

p+ΓI −2α2
⊥ΓI or 0 2p+ΓI ΓI 0

, (B.4.8)

where the derivations for the last line are given below for the only non-trivial case b). The
last diagram vanishes because the vertex is proportional to nµ and hence vanishes when
connected by a gluon line.

The loop momenta are speci�ed as shown in Fig. B.4. Thus the Lorentz structure of
diagram b) reads:

Cγµ/pΓ̃I/qγµ = Cγµ(q+ /̄n/2 + /α)Γ̃I(p+ /̄n/2− /α)γµ

= Cγµ((q+ + α+)(p+ − α+)/̄nΓ̃I /̄n/4− /α⊥Γ̃I /α⊥)γµ. (B.4.9)

The term /̄nΓ̃I /̄n is �nite since the integration is performed over dD−2α⊥, and the denomi-
nator is proportional to α4

⊥. For the loop integration I conclude:

Cγµ/pΓ̃I/qγµ = −Cγµ/α⊥Γ̃I /α⊥γµ

= −Cγµ⊥/α⊥Γ̃I /α⊥γ⊥µ. (B.4.10)

For the structure Cγ5/n of the jp = 0+ triplet this leads to

Cγµ/pΓ̃I/qγµ = −CΓ̃Iγ
µ
⊥/α⊥/α⊥γ⊥µ = −2α2

⊥CΓ̃I . (B.4.11)

Obviously this is the same for the parallel currents with Γ = wµC/n. For the transversal
currents with Γ = Cγµ⊥/n Eq. (B.4.12) reads:

Cγµ/pΓ̃I/qγµ = −Cγµ⊥/α⊥γ
ν
⊥/n/α⊥γ⊥µ = C/nγ

µ
⊥/α⊥γ

ν
⊥/α⊥γ⊥µ

= C/nγ
µ
⊥(−γν⊥α2

⊥ + 2αν⊥/α⊥)γ⊥µ

= C/n(−α2
⊥(−γν⊥γ

µ
⊥ + 2gµν⊥ ) + 2αν⊥(−/α⊥γ

µ
⊥ + 2αµ⊥))γ⊥µ

= C/n(−α2
⊥(−2γν⊥ + 2γν⊥) + 2αν⊥(−2/α⊥ + 2/α⊥))

= 0, (B.4.12)

and hence this diagram does not contribute to the evolution of the transversal currents.

In the following the results in (B.4.8) are used to calculate the loop diagrams. The loop
integral is given in in units of CFαs/4π (εi′j′ktai′it

a
j′j = −CF εijk/2, etc.), and the kinematics

are described in Fig. B.4.

diag a): This diagram was calculated in [51]Eq. 3.7. I will just show in this part, that
the diagram is �nite for the leading twist.

Da = 4Γδ(ω2 − k2+)

∫
dD−2α⊥dα+dα−

2(2π)D−2

δ(k1+ − α+)

[α2
⊥ + α+α− + iε]
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a)

α

α

k1+n̄/2− α k1+n̄/2

b)

k2+n̄/2

k1+n̄/2

k2+n̄/2 + α

k1+n̄/2− α
α

α

c)

k1+n̄/2

k1+n̄/2− α

d)

α

−α

α

f)

k1+n̄/2

k1+n̄/2− α

Figure B.4: Momentum assignment for the one-loop calculations. The loop integration is
parametrized by the loop momentum α.

δ(ω1 − k1+ + α+)

[(α+ + α−)/2 + iε][α2
⊥ + α−(α+ − k1+) + iε]

(B.4.13)

After integrating over α+, which is trivial due to the delta function, two possible pole
structures arise: Θ(k1+−ω1) with closing around α− = (α2

⊥+ iε)/ω1 and Θ(ω1−k1+) with
closing around α− = −(k1+ − ω1 + iε).

Da = −i16πΓδ(ω2 − k2+)ω1

∫
dD−2α⊥
2(2π)D−2

[
ωΘ(k1+ − ω1)

k1+[α2
⊥ + iε][α2

⊥ + ω1(k1+ − ω1) + iε]

+
Θ(ω1 − k1+)

[α2
⊥ − (k1+ − ω1)2 + iε][α2

⊥ω1(k1+ − ω1) + iε]

]
(B.4.14)

Note, that the lower contour integration needs to be integrated clockwise, hence the con-
tribution is negative. Obviously the integrand is proportional to 1/α4

⊥ for large momenta.
Hence the contribution is UV �nite.

diag b): This diagram was calculated in [62]Eq. C16. Using the propagators and vertices
in (B.4.1) and the Lorentz structure −2α2

⊥Γ, which is already calculated in (B.4.8), one
�nds:

Db = −(4π)2Γ

∫
dD−2α⊥dα+dα−

2(2π)D
δ(ω1 − k1+ − α+)α2

⊥
[α2
⊥ + α+α− + iε]

δ(ω2 − k2+ + α+)α2
⊥

[α2
⊥ + α+α− + k1+α− + iε][α2

⊥ + α+α− − k2+α− + iε]
(B.4.15)

There are two possibilities for which the integral is non-zero, namely Θ(α+)Θ(k2+ − α+)
and Θ(−α+)Θ(k1+ + α+) with poles at

α− = − α2
⊥ + iε

α+ − k2+

and α− = − α2
⊥ + iε

α+ + k1+

(B.4.16)

respectively. Closing the contour upwards for the former and downwards for the latter case
one obtains

Db = 2(4π)Γ

∫
dD−2α⊥dα+

2i(2π)D−2
δ(ω1 − k1+ − α+)δ(ω2 − k2+ + α+)
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(
Θ(α+)Θ(k2+ − α+)(α+ − k2+)

k2+(k1+ + k2+)[α2
⊥ + iε]

+
Θ(−α+)Θ(k1+ + α+)(α+ + k1+)

k1+(k1+ + k2+)[α2
⊥ + iε]

)
. (B.4.17)

The integration over the transverse loop momentum α⊥ is trivial and divergent with 1/ε.
The formula is given in App. (A.4). After removing �nite and infrared terms, Eq. (B.4.17)
yields

Db = −1

ε
Γ

∫
dα+δ(ω1 − k1+ − α+)δ(ω2 − k2+ + α+)(

Θ(α+)Θ(k2+ − α+)(α+ − k2+)

k2+(k1+ + k2+)
+

Θ(−α+)Θ(k1+ + α+)(α+ + k1+)

k1+(k1+ + k2+)

)
(B.4.18)

The last integration is independent on the choice of the delta functions in the integrand.
They will in both choices simply give the overall (lightlike) momentum conservation ω2 +
ω1 = k2+ + k1+:

Db = −1

ε
Γδ(ω2 + ω1 − k2+ − k1+)(

−Θ(ω1 − k1+)ω2

k2+(k1+ + k2+)
+

Θ(−ω1 + k1+)ω1

k1+(k1+ + k2+)

)
. (B.4.19)

Following the works [62, 113] and [46], the parametrization k1+ = vω, k2+ = (1 − v)ω,
ω1 = uω and ω2 = (1− u)ω with ω = ω1 + ω2 = k1+ + k2+ are introduced for comparison:

Db = − 1

ωε
Γδ(ω − k1+ − k2+)

(
Θ(u− v)(1− u)

1− v
+

Θ(v − u)u

v

)
. (B.4.20)

diag c): This diagram was calculated in [62]Eq. C16 and [60]Eq. 3.8. Here I adopt the
parametrization of the latter and show the equality with the former at the end. Using
the propagators and vertices in (B.4.1) and the Lorentz structure 2p+Γ in Eq. (B.4.8), one
�nds:

Dc = 8Γδ(ω2 − k2+)

∫
dD−2α⊥dα+dα−

2(2π)D−2

α+

k1+ − α+

δ(ω1 − α+)− δ(ω1 − k1+)

[α2
⊥ + α+α− + iε][α2

⊥ + α+α− − k1+α− + iε]
. (B.4.21)

The only pole in α− enclosed by the upper contour is given by α− = −(α2
⊥+ iε)/(α+−k1+)

for α+ > 0 and α+ < k1+. Using the theorem of residues yields:

Dc = −16πΓδ(ω2 − k2+)

∫
dD−2α⊥dα+

2i(2π)D−2

α+

k1+ − α+

(δ(ω1 − α+)− δ(ω1 − k1+))Θ(k1+ − α+)

[α2
⊥ − iε]

. (B.4.22)

With the help of the master integrals in App. A.4 one �nds, after ignoring �nite and
infrared terms:

Dc = 2
Γ

ε
δ(ω2 − k2+)

k1+∫
0

α+

k1+

α+

k1+ − α+

(δ(ω1 − α+)− δ(ω1 − k1+)) (B.4.23)
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The �nal integration yields:

Dc = Γ
2

ε
δ(ω2 − k2+)

 ω1

k1+

Θ(k1+ − ω1)

k1+ − ω1

− δ(ω1 − k1+)

∞∫
0

α+
α+

ω1

Θ(ω1 − α+)

ω1 − α+

 . (B.4.24)

Note, that from [62]Eq. C17 the corresponding part of this diagram reads

uΘ(v − u)

v(v − u)
− δ(u− v)

∫
du′

u′

v(v − u′)
Θ(u′ − v) (B.4.25)

which can be rewritten in the same form of Eq. (B.4.24) by setting uω = ω1, etc. as

ω1Θ(k1+ − ω1)

k1+(k1+ − ω1)
− δ(ω1 − k1+)

∫
dα+

α+

k1+(k1+ − α+)
Θ(α+ − k1+). (B.4.26)

The change of dimensionality is due to the fact, that in the evolution equations this kernel
is convoluted with the wave function. Hence the integral measure needs to be transformed
accordingly.

diag d): This diagram was calculated in [60]Eq. 3.10 and later corrected in [51]Eq. 8.
According to the previous section the Lorentz structure Γ is trivial for this diagram. One
�nds:

Dd = (4π)2Γδ(ω2 − k2+)

∫
dD−2α⊥dα+dα−

2(2π)D
1

α+

δ(ω1 − k1+)− δ(ω1 − α+ − k1+)

[α2
⊥ + α+α− + iε][α+ + α− − iε]

. (B.4.27)

The poles of the diagram are at

α− = −α+ + i2ε and α− = −α
2
⊥ + iε

α+

. (B.4.28)

The integral vanishes for a+ < 0. Taking this into account by including the theta function
Θ(a+) and closing the contour upwards, enclosing the pole α− = −α+ + i2ε, Eq. (B.4.27)
yields

Dd =
i(4π)2

2π
Γδ(ω2 − k2+)

∫
dD−2α⊥dα+

2(2π)D−2
Θ(a+)

δ(ω1 − k1+)− δ(ω1 − α+ − k1+)

α+[α2
⊥ − α2

+ + iε]
. (B.4.29)

The α⊥ integration can easily be performed by using the dimensional regularization. The
master integral I1(∆) is given in App. A.4 and the equation yields, remembering the mass
scale µ, which ensures the correct dimensionality in the dimensional regularization [114]:

Dd = Γ(ε)Γδ(ω2 − k2+)
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∞∫
0

dα+ (δ(ω1 − k1+)− δ(ω1 − α+ − k1+))
1

α+

(
µ

α+

)2ε

. (B.4.30)

The delta function, which includes α+, is readily calculated. The �rst integral is split in
the integration region

Dd = Γ(ε)Γδ(ω2 − k2+)

{
δ(ω1 − k1+)− Θ(ω1 − k1+)

ω1 − k1+

+

 ω∫
0

dα+

α+

(
µ

α+

)2ε

+

∞∫
ω

dα+

α+

(
µ

α+

)2ε
}. (B.4.31)

Using the master integrals in App. A.4 one gets

Dd = −Γ(ε)Γδ(ω2 − k2+)

{
− δ(ω1 − k1+)Γ(2ε)

(
µ

ω1

)2ε

+
Θ(ω1 − k1+)

ω1 − k1+

− δ(ω1 − k1+)

∞∫
0

dα+
Θ(ω1 − α+)

ω1 − α+

}
. (B.4.32)

The �rst term can be expanded via

Γ(ε)Γ(2ε)

(
µ

ω1

)2ε

=
1

2ε2
+

1

ε
log

µ

ω1

(B.4.33)

diag f): The Lorentz structure is the same as that of diagram c).

Df = 2Γ

∫
dD−2α⊥dα+dα−

(2π)D−2

α+

k1+ − α+

δ(ω1 − α+)(δ(ω2 − k2+)− δ(ω2 − α+ − k2+))

[α2
⊥ + α+α− + iε][α2

⊥ + α+α− − α−k1+ + iε]
. (B.4.34)

The contribution is given in units of CFαs/4π. The integration over α+ is trivial. Hence,
the non-zero contribution is coming from ω1 − k1+ < 0 and the pole when the contour is
closed in the upper plane is α− = −(α2

⊥ + iε)/(ω1 − k1+). Thus leading to

Df = −4πΓ

∫
dD−2α⊥
i(2π)D−2

ω1Θ(k1+ − ω1)

k1+ − ω1

δ(ω2 − k2+)− δ(ω2 − ω1 − k2+)

[α2
⊥ − iε]

1

k1+

. (B.4.35)

With the master integrals of App. A.4 one gets

Df = −1

ε
Γ
ω1Θ(k1+ − ω1)

k1+ − ω1

1

k1+

(δ(ω2 − k2+)− δ(ω2 − ω1 − k2+)). (B.4.36)
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B.5 QCD sum rule results

Sum rule results for all twists. Here the transverse result is given. The parallel result is
obtained by A↔ B.

f
(2)
Hb

(
Af

(1)
Hb

+Bf
(2)
Hb

)
ψ̃SR2 (ω, u) e−Λ̄/τ = (B.5.1)

3τ 4

2π4

[
Bω̂2 uū+ A ω̂ (m̂2u+ m̂1ū)

]
E1(2ŝω)e

−ω̂

−〈q̄1q1〉τ
3

π2
[Aω̂ū+Bm̂2] f(2τωu)E2−a(2ŝκ) e−ω̂

−〈q̄2q2〉τ
3

π2
[Aω̂u+Bm̂1] f(2τωū)E2−a(2ŝκ̄) e−ω̂

+
2B

3
〈q̄1q1〉 〈q̄2q2〉 τ 2 f(2τωu) f(2τωū)E3−2a(2ŝκκ̄) e−ω̂,

f
(2)
Hb

(
Af

(1)
Hb

+Bf
(2)
Hb

)
ψ̃SR4 (ω, u) e−Λ̄/τ = (B.5.2)

3τ 4

2π4
[BE3(2ŝω) + A (m̂1 + m̂2)E2(2ŝω)] e

−ω̂

−〈q̄1q1〉τ
3

π2
[AE3−a(2ŝκ) +Bm̂2E2−a(2ŝκ)] f(2τωu) e−ω̂

−〈q̄2q2〉τ
3

π2
[AE3−a(2ŝκ̄) +Bm̂1E2−a(2ŝκ̄)] f(2τωū) e−ω̂

+
2B

3
〈q̄1q1〉 〈q̄2q2〉 τ 2 f(2τωu) f(2τωū)E3−2a(2ŝκκ̄) e−ω̂,

f
(1)
Hb

(
Af

(1)
Hb

+Bf
(2)
Hb

)
ψ̃SR3s (ω, u) e−Λ̄/τ = (B.5.3)

3τ 4

4π4
{[Aω̂ +B (m̂1 + m̂2)]E2(2ŝω) +Bω̂ (m̂2u+ m̂1ū)E1(2ŝω)} e−ω̂

−〈q̄1q1〉τ
3

2π2
[BE3−a(2ŝκ) + (Bω̂ū+ 2Am̂2)E2−a(2ŝκ)] f(2τωu) e−ω̂

−〈q̄2q2〉τ
3

2π2
[BE3−a(2ŝκ̄) + (Bω̂u+ 2Am̂1)E2−a(2ŝκ̄)] f(2τωū) e−ω̂

+
2A

3
〈q̄1q1〉 〈q̄2q2〉 τ 2 f(2τωu) f(2τωū)E3−2a(2ŝκκ̄) e−ω̂,

f
(1)
Hb

(
Af

(1)
Hb

+Bf
(2)
Hb

)
ψ̃SR3σ (ω, u) e−Λ̄/τ = (B.5.4)

3τ 4

4π4
{[Aω̂ (u− ū) +B (m̂1 − m̂2)]E2(2ŝω) +Bω̂ (m̂2u− m̂1ū)E1(2ŝω)} e−ω̂

−B〈q̄1q1〉τ
3

2π2
[E3−a(2ŝκ)− ω̂ū E2−a(2ŝκ)] f(2τωu) e−ω̂
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+
B〈q̄2q2〉τ 3

2π2
[E3−a(2ŝκ̄)− ω̂uE2−a(2ŝκ̄)] f(2τωū) e−ω̂,

where ŝκ = ŝω − κ/2, ŝκ̄ = ŝω − κ̄/2, ŝκκ̄ = ŝω − κ/2− κ̄/2, and the short-hand notations

κ =
λ

2q1ωτ
, κ̄ =

λ

2q̄1ωτ
(B.5.5)

are used.

B.6 Numerical results for the LCDAs

Here I present a summary of our numeric results. The moments for Λ (Σ), Ξ (Ξ′) and Ω
are listed in Tab. B.6.1, B.6.2 and B.6.3. The model for Λ (Σ), Ξ (Ξ′) and Ω parameters
are listed in Tab. B.6.4, B.6.5 and B.6.6

Table B.6.1: Λ (Σ) with s0 = 1.2 [52] and τ = 0.6 [46]p. 6

twist 〈1〉 〈ω−1〉 〈C3/2
1 /|C3/2

1 |〉 〈ω−1C
3/2
1 /|C3/2

1 |〉 〈C3/2
2 /|C3/2

2 |〉 〈ω−1C
3/2
2 /|C3/2

2 |〉
2 1 1.71+0.86

−0.51 − − 0.37+0.17
−0.22 0.2+0.32

−0.55

twist 〈1〉 〈ω−1〉 〈C1/2
1 /|C1/2

1 |〉 〈ω−1C
1/2
1 /|C1/2

1 |〉 〈C1/2
2 /|C1/2

2 |〉 〈ω−1C
1/2
2 /|C1/2

2 |〉
3s 1 2.2+0.65

−0.37 − − −0.09+0.03
−0.07 −0.7+0.32

−0.57

3σ − − 1 1.61+0.23
−0.29 − −

4 1 2.84+0.88
−0.45 − − −0.24+0.08

−0.04 −0.92+0.18
−0.35

Table B.6.2: Ξ (Ξ′) with s0 = 1.2 [52] and τ = 0.6 [46]p. 6

twist 〈1〉 〈ω−1〉 〈C3/2
1 /|C3/2

1 |〉 〈ω−1C
3/2
1 /|C3/2

1 |〉〈C3/2
2 /|C3/2

2 |〉 〈ω−1C
3/2
2 /|C3/2

2 |〉
2 1 1.54+0.58

−0.36 0.11+0.04
−0.03 0.14+0.08

−0.05 0.33+0.17
−0.26 0.24+0.21

−0.32

twist 〈1〉 〈ω−1〉 〈C1/2
1 /|C1/2

1 |〉 〈ω−1C
1/2
1 /|C1/2

1 |〉〈C1/2
2 /|C1/2

2 |〉 〈ω−1C
1/2
2 /|C1/2

2 |〉
3s 1 2+0.38

−0.24 0.12+0.03
−0.02 0.13+0.09

−0.05 −0.1+0.01
−0.01 −0.52+0.17

−0.28

3σ −0.07+0.07
−0.04 −0.19+0.19

−0.14 1 1.53+0.15
−0.21 0.11+0.03

−0.08 0.2+0.15
−0.2

4 1 2.62+0.54
−0.32 0.13+0.02

−0.01 0.13+0.09
−0.06 −0.21+0.1

−0.6 −0.7+0.05
−0.1
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Table B.6.3: Ω with s0 = 1.4 and τ = 0.4

twist 〈1〉 〈ω−1〉 〈C3/2
1 /|C3/2

1 |〉 〈ω−1C
3/2
1 /|C3/2

1 |〉 〈C3/2
2 /|C3/2

2 |〉 〈ω−1C
3/2
2 /|C3/2

2 |〉
2 1 1.29+0.25

−0.19 − − 0.32+0.19
−0.24 0.26+0.17

−0.22

twist 〈1〉 〈ω−1〉 〈C1/2
1 /|C1/2

1 |〉 〈ω−1C
1/2
1 /|C1/2

1 |〉 〈C1/2
2 /|C1/2

2 |〉 〈ω−1C
1/2
2 /|C1/2

2 |〉
3s 1 1.69+0.08

−0.07 − − −0.06+0.03
−0.04 −0.32+0.1

−0.12

3σ − − 1 1.33+0.1
−0.12 − −

4 1 2.29+0.17
−0.14 − − −0.15+0.05

−0.03 −0.43+0.01
−0.01

Table B.6.4: Λ (Σ) with s0 = 1.2 and τ = 0.6. The error of +∞ is not a problem since it
just represents the case, where a2 = 0 and the second Gegenbauer polynomial vanishes.

twist ε0 ε1 ε2 a0 a1 a2

2 0.2+0.08
−0.07 − 0.62+∞

−0.24 1 − 0.87+0.52
−0.87

3s 0.23+0.04
−0.05 − 0.07+0.005

−0.01 1 − −0.09+0.03
−0.07

3σ − 0.31+0.07
−0.04 − − 1 −

4 0.35+0.07
−0.08 − 0.26+0.12

−0.13 1 − −0.24+0.08
−0.04

Table B.6.5: Ξ (Ξ′) with s0 = 1.2 and τ = 0.6. The error of +∞ is not a problem since it
just represents the case, where a2 = 0 and the second Gegenbauer polynomial vanishes.

twist ε0 ε1 ε2 a0 a1 a2

2 0.22+0.06
−0.06 0.26+0.05

−0.03 0.46+∞
−0.09 1 0.18+0.07

−0.05 0.78+0.4
−0.78

3s 0.25+0.03
−0.04 0.45+0.18

−0.1 0.09+0.04
−0.02 1 0.12+0.03

−0.02 −0.1+0.01
−0.01

3σ 0.17+0.12
−0.17 0.33+0.38

−0.03 0.28+0.2
−0.28 −0.07+0.07

−0.04 1 0.11+0.08
−0.11

4 0.38+0.05
−0.06 1.02+0.6

−0.33 0.3+0.12
−0.17 1 0.13+0.02

−0.01 −0.21+0.1
−0.06

Table B.6.6: Ω with s0 = 1.4 and τ = 0.4

twist ε0 ε1 ε2 a0 a1 a2

2 0.26+0.04
−0.04 − 0.42+0.25

−0.02 1 − 0.76+0.43
−0.57

3s 0.3+0.01
−0.02 − 0.1+0.01

−0.02 1 − −0.06+0.03
−0.04

3σ − 0.38+0.03
−0.03 − − 1 −

4 0.44+0.03
−0.03 − 0.34+0.08

−0.11 1 − −0.15+0.05
−0.03



Appendix C

Tetraquarks

This appendix contains several calculations and detailed explanations necessary for the dis-
cussion of the hidden bottom tetraquarks in Chap. 3. The order of the sections corresponds
to the appearance of the topic in the main work.

C.1 Tetraquark interpolating currents

In this section I give a short overview over the properties of the L = 0 tetraquark interpo-
lating operators and the calculations in which they are involved.

Interpolating operators play in general an important role in QCD, see for example the
derivation of the non-local baryonic interpolating operators in Sec. 2.2 and the de�nition
of the local interpolating operators in Sec. 2.3. Opposed to the relativistic interpolating
operators in Sec. 2.2 and 2.3, the tetraquark operators are given in the non-relativistic
limit and are de�ned by Pauli matrices. A generalization to Dirac matrices is, however,
straightforward, and in principle the interpolating operators given here can be used in
tetraquark sum rule mass calculations as was already done by several groups.

The states which are obtained with the help of the matrices

Γ0 =
σ2√
2

and Γi =
1√
2
σ2σi , (C.1.1)

and de�ned in (3.4.6). They can be understood in the following way. A state |SQ, SQ̄; J〉
with diquark spin SQ, antidiquark spin SQ̄ and total angular momentum J is given by

|SQ, SQ̄; J〉 = |Γ, Γ′ J〉 = (bΓq)(b̄Γ′q̄) |0〉 , (C.1.2)

in which Γ and Γ′ can be Γ0 or Γi. The Γ and Γ′ de�ne the interpolating operators of
the diquark and the antidiquark inside the tetraquark, where the matrix Γ0 de�nes a good
and Γi de�nes a bad diquark. The spins of the diquark and antidiquark combine to give
the overall spin of the tetraquark. For example the antisymmetric doubly-bad combination
de�nes the J = 1 ground state tetraquark via |1Q, 1Q̄; 1J〉 = 1

2
√

2
εijk (bσ2σ

jq)⊗
(
b̄σ2σ

kq̄
)
|0〉

or, as abbreviated in Chap. 3 by leaving the quark �elds and the vacuum state implicit,
by 1

2
√

2
εijk (σ2σ

j) ⊗
(
σ2σ

k
)
. The spin operators Sq in Eq. (3.4.2) act on every quark q.
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In the de�nition (C.1.2) the spin operators can act on the b-quark, which stands on the
left, or the lighter quarks, which stand on the right. Since Sq are vector valued two by
two matrices, there is only one normalized possible de�nition in terms of Pauli matrices,
namely Sq = 1

2
σ. Their action on the tetraquark states is de�ned by

Sb |Γ, Γ′; J〉 =
∣∣1
2
σTΓ, Γ′; J

〉
, Sq |Γ, Γ′; J〉 =

∣∣Γ1
2
σ, Γ′; J

〉
,

Sb̄ |Γ, Γ′; J〉 =
∣∣Γ, 1

2
σTΓ′; J

〉
, Sq̄ |Γ, Γ′; J〉 =

∣∣Γ, Γ′ 1
2
σ; J

〉
.

(C.1.3)

With the so de�ned operators the action of the Hamiltonian on the states is given, and
one can diagonalize the operator de�ned in (3.4.1) and (3.4.2) to determine the mass
eigenvalues. To give an explicit example, the qq̄ spin term, which is acting on the |1, 0; 1〉
state, is derived below.

Sq.Sq̄ |1, 0; 1〉 =
1

8

(
σ2σ

jσi
)
⊗
(
σ2σ

i
)
,

= − i
8
εjki (σ2σk)⊗ (σ2σi) +

1

8
(σ2)⊗

(
σ2σ

j
)
,

= −i
√

2

4
|1, 1; 1〉+

1

4
|0, 1; 1〉 . (C.1.4)

C.2 Derivation of the Van Royen-Weisskopf formula

The Van Royen-Weisskopf formula yields the leptonic e+e− decay width
of a two-body valence-quark state, described by a wave function ψ(x),

Figure C.1: Schematic underlying pro-
cess of the Van Royen-Weisskopf formula for
tetraquarks with pointlike diquarks.

where x is the relative coordinate of the two
quarks. They are (as probability distribu-
tions) normalized to 1,∫

d3xψ∗(x)ψ(x) = 1. (C.2.1)

It is convenient to separate the wave func-
tion by using angular coordinates as

Ψnlm(x) = Rnl(r)Ylm(θ, φ), (C.2.2)

in which Rnl(r) is the radial part and
Ylm(θ, φ) is the angular momentum part.
The function for each state is described by
the principal quantum number n, the angu-
lar momentum quantum number l and its
projection m to the z-axis. The Schrödinger wave function is obtained by Fourier trans-
form:

ψ̃(k) =

∫
d3xe−ik.xψ(x). (C.2.3)

The underlying dynamics to derive the Van Royen-Weisskopf formula, pictured in
Fig. C.1, can be described as follows. The coordinate dependence of the constituents
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of the state are distributed with a certain probability, given by the wave function. If the
constituents are close enough, they can annihilate to a virtual photon. The decay is there-
fore dominated by the behavior of the wave function near the origin. The virtual photon
subsequently decays to the lepton pair. The coupling to the photon is an electroweak
process and involves the charge QI of the constituents of the bound state. Thus the par-
tial electronic width is in this approximation proportional to Q2

I , where QI refers to the
e�ective diquark charge given in Eq. (3.5.5) and (3.5.12). Note, that it is necessary in this
section, that the diquarks are pointlike. At present there is no proper tetraquark wave
function available which could be used as input.

The Van Royen-Weisskopf formula was originally developed for the heavy-quarkonia
family. Several potential models such as [92] were derived well over thirty years ago to
derive the quarkonia radial wave functions. An important instance to carry the methods
used for the bottomonia over to the tetraquark case is, that the quarkonia are to �rst order
strongly bound objects. Since the diquarks [bq] are pointlike color triplets and moreover
have in the constituent quark model to a good approximation the same mass as the b-
quark, both derivations are very similar. Because plenty of work has already been done
for the heavy-quarkonia, they are discussed �rst.

C.2.1 Heavy qq̄-quarkonia

As aforementioned, the wave functions give the probability distributions of the quarks
inside the meson. See also [112]Sec. 5.3 for further information. In the valence-quark ap-
proximation a meson |M〉 is formally described by∫

k

|q(k)q̄(−k)〉 〈q(k)q̄(−k)|M〉 , (C.2.4)

in which 〈q(k)q̄(−k)| M〉 =̂ψ̃(k), omitting color and spinor indices, and the integration is
performed over the relative momentum k. This equation is similar to Eq. (2.1.1), describing
the b-baryon wave functions. The spinor structure speci�es the meson multiplet, compare
Sec. 2.1 and 2.2 for the baryons. The simplest spin singlet JP = 0+ con�guration 1S0 is
given by

∣∣1S0

〉
=

√
M

3

∫
d3k

(2π)32m
ψ̃(k)1αβ |qα(k)q̄β(−k)〉 , (C.2.5)

=

√
M

3

∫
d3k

(2π)32m
ψ̃(k)a†α(k)1αβb†β(−k) |0〉 , (C.2.6)

in which quark-annihilation and creation operators are used. The Notation 2S+1LJ is used,
in which the upper left index is the spin representation, the lower right index refers to the
total angular momentum and the capital latter indicates the orbital excitation (S, P,D, . . .).
The meson ground state with JP = 1− is given by

∣∣3S1

〉
=

√
M

3

∫
d3k

(2π)32m
ψ̃(k)n.σαβ |qα(k)q̄β(−k)〉 , (C.2.7)
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in which n is the polarization vector of the meson with n.n∗ = 1. The simplest exited and
also the most interesting state in this section is the spin 0 P -wave meson 1P1:

∣∣1P1

〉
=

√
M

3

∫
d3k

(2π)32m
ψ̃i(k).ni1αβ |qα(k)q̄β(−k)〉 , (C.2.8)

with ψ̃(k) being a vector valued function. The 1P1 state has quantum numbers 1+− for the
quarkonia, with P = (−1)L+1 and C = (−1)L+S, and has therefore no coupling to photons.
The tetraquark 1P1 state, discussed later, on the other hand has quantum numbers 1−−

with P = (−1)L and C = (−1)L. The factor
√

3 comes from the normalization in color
space. The color structure for all mesons is trivial included by a delta function in color
space. The meson states |M〉 shown above are normalized to 〈M| M〉 = 2M . The spin
structure in terms of polarization vectors and Pauli matrices can be found in Eq. (A.1.6).

The decay of the heavy-quarkonia is described by q(k)q̄(k′) → e−(p)e+(p′), where the
kinematics is in the center of mass frame given by kµ = (Ek,k), k′µ = (Ek,−k), pµ =
(Ep,p) and p′µ = (Ep,−p). The one photon exchange amplitude is given by

iM(qq̄ → e−e+) =
ie2QeQb

M2
[ūe(p)γµve(p

′)][v̄b(k
′)γµub(k)]. (C.2.9)

The electrons are massless with k2 = k′2 = 0 and in the heavy-quark limit, discussed in
Chap. 1, one �nds |p| ≈ Ep = Ek ≈ mb � |k|. Thus the b-quarks are on-shell, the mass is
constant and the spinors de�ned in (A.1.5) are in the chiral basis given by

ub(k) =

( √
k.σξ√
k.σ̄ξ

)
≈
√
mb

(
ξ
ξ

)
, vb(k

′) =

( √
k′.ση

−
√
k′.σ̄η

)
≈
√
mb

(
η
−η

)
. (C.2.10)

The heavy-quark current in Eq. (C.2.9) simpli�es to

[v̄b(k
′)γµub(k)] ≈ −2mbη

†σµξ for µ = 1, 2, 3 and 0 for µ = 0, (C.2.11)

in which the explicit form of the Dirac matrices in the chiral representation is given in
Eq. (A.0.3). With Eq. (A.1.6) one readily obtains

[v̄b(k
′)γµub(k)] ≈ 2mb Tr

[
nσ√

2
σµ
]

for µ = 1, 2, 3 and 0 for µ = 0. (C.2.12)

The spin 0 part vanishes automatically because the b-quark current transforms as a vector,
and hence the scalar part has no coupling to intermediate photons. The Lorentz structure
in Eq. (C.2.12) is the same as for the |3S1〉 state de�ned in (C.2.7). This statement is
tautological to some extent, because the state was constructed to exhibit that transfor-
mation property, but it points out the role of the wave function as probability function
of the momentum distributions, i.e. it shows the actuality, that up to normalization
〈e−e+| 3S1〉 =̂

∫
d3kψ̄(k) 〈e−e+| q(k)q̄(−k)〉. Thus the amplitude for the decay is given by

iM(3S1 → e−e+) ≈ ie2QeQb

M2

√
3M

∫
d3k

(2π)3
ψ̄(k) Tr [nσσµ] [ūe(p)γµve(p

′)],
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=
2ie2QeQb

√
3M

M2
ψ(0)ni[ūe(p)γive(p

′)], (C.2.13)

in which the calculation of the color factors have not been shown. According to Eq. (C.2.12)
the b-quark vector current does not depend on k in the heavy-quark limit, and the Fourier
transform of the Schrödinger wave function in (C.2.13) yields the wave function in coor-
dinate space times δ(x). Thus the wave function is taken at the origin. Averaging over
the spin of the initial states and summing over those of the �nal state, the squared matrix
element with the non-relativistic polarization sum

∑
λ n

∗i
λ n

j
λ = δij becomes

1

2

∑
spin

|M(3S1 → e+e−)|2 ≈ 4e4Q2
eQ

2
b

M3
|ψ(0)|2δij Tr

[
/pγi/p

′γj
]
,

=
4e4Q2

eQ
2
b

M3
|ψ(0)|2

[
3(E2

p + |p|2)− 2|p|2
]
,

≈ 256π2α2Q2
b

M
|ψ(0)|2 =

64πα2Q2
b

M
|R(0)|2. (C.2.14)

The factorization in Eq. (C.2.2) has been used in the last step. The partial leptonic decay
width is readily obtained:

Γ(3S1 → e+e−) =
|p|

8πM2

1

3
|M|2 ≈ 4α2Q2

b

M2
|Rn0(0)|2. (C.2.15)

This is the famous Van Royen-Weisskopf formula for the 3S1 bottomonium. The unknown
quantity, the radial wave function at origin, is derived with the help of potential model,
such as the Buchmüller-Tye potential [92]. Numerical tools to solve the corresponding
Schrödinger equations are also available, see for example the QQ-onia package from [106].

C.2.2 Heavy QQ̄-tetraquarks

The wave functions of the heavy tetraquarks states for pointlike diquarks Q with Q = [bq]
are given in a similar way to the wave functions of the heavy-quarkonia. The di�erence is
the spin assignment of the constituents. For scalar diquarks one �nds for the 1−− state:∣∣1P1

〉
=

√
2M

∫
d3k

(2π)32m
ψ̃in1mn

(m)
i (k)

δab√
3

∣∣∣Qa(k)Qb
(−k)

〉
, (C.2.16)

in which the color indices a, b are given explicitly, to show the analogy with the quarkonia
in color space, see for comparison Eq. (C.2.8). It is immanent for this derivation, that the
sextet is negligible, as stated in Sec. 3.1. The polarization vector n(m) satis�es |n(m)|2 = 1
for all spin polarizations m, see also Eq. (A.3.4) for further details to the wave function
and its polarization. The decay amplitude is accordingly given by

iM(1P1[QQ]→e+e−)=

√
2Mδab δ

a
b√

3

∫
d3kψ̃in1(k)n

(m)
i

(2π)32mQ

ie2QeQQ

M2
[ūe(p)γµve(p

′)](k− k′)µ,(C.2.17)

where, due to the dependence of the vertex on the momenta (k−k′)µ, integrals of the type∫
d3kkj
(2π)3

Ψ̃n1m(k) =

∫
d3kkj
(2π)3

∫
d3xe−ik.xψn1m(x) = −i

∫
d3xδ(3)(x)

∂

∂xj
Ψn1m(x)
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= −i ∂

∂xj
Ψn1m(x)

∣∣∣∣
x=0

(C.2.18)

appear. Using the explicit form of the wave function in Eq. (A.3.4), and recalling, that the
radial wave function of a state with angular momentum quantum number l is proportional
to rl for r → 0, one �nds after expanding the radial wave function in a polynomial in r
with coe�cients R(p)

n1 :

− i
2

√
3

π

∂

∂xj

(
∞∑
p=0

1

p!
R

(p)
n1 (0)rp

x.ε(m)

r

)∣∣∣∣∣
x=0

r→0−→ − i
2

√
3

π

∂

∂xj

(
R

(1)
n1 (0)r

x.ε(m)

r

)∣∣∣∣
x=0

. (C.2.19)

Thus �nally∫
d3kkj
(2π)3

Ψ̃n1m(k) = −i ∂

∂xj
Ψn1m(x)

∣∣∣∣
x=0

= −iε(m)
j

√
3

4π
R

(1)
n1 (0). (C.2.20)

With Eq. (C.2.20) one can calculate the amplitude in (C.2.17):

iM(1P1[QQ] → e+e−) =
3e2QeQQ

M3

√
2M

π
[ūe(p)γjve(p

′)](n(m))jR
(1)
n1 (0). (C.2.21)

The squared amplitude is obtained in the heavy-quark limit

1

3

∑
m,λe+ ,λe−

|M(1P1[QQ]→e+e−)|2 =
6e4Q2

Q

πM5
Tr[/pγj/p

′γk]
∑
m

n(m)∗jn(m)∗k|R(1)
n1 (0)|2,

=
384πα2Q2

Q

M3
|R(1)

n1 (0)|2, (C.2.22)

in which the sum runs over the �nal state polarization m and the electron spins λe+ and
λe− . The tetraquark leptonic decay width is then given by

Γ(1P1[QQ]→e+e−) =
|p|

8πM2

1

3

∑
m,λe+ ,λe−

|M|2 =
24α2Q2

Q

M4
|R(1)

n1 (0)|2. (C.2.23)

This is the partial decay width for the tetraquark states in the pointlike diquark approxi-
mation. It plays a central role in our works and in this thesis.

C.3 Kinematics and phase space

In this part I give an introduction to the recursive phase space parametrization. The
recursive n-body phase space is build of n − 1 two-body phase spaces, which are in the
chosen parametrization not Lorentz invariant. The �rst nontrivial case is the 2 → 3 process
in which the general case becomes apparent, as becomes clear in the following. I start with
some remarks on the general 2 → n case and get into detail with the 2 → 3 process,
concentrating on the recursive parametrization.
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Figure C.2: The n-body phase space for n ≤ 5. Each green dot corresponds to a two-body
phase space and the red dot corresponds to the initial-state phase space.

The phase space for the �nal state particles of a 2 → n process, in which two particles
collide in a beam, can be parametrized by

#d.o.f(2 → n) = 3n− 4 (C.3.1)

independent variables. The dependence of one parameter, the rotation along the beam
axis, is trivial. For a 2 → 2 process for example, the two independent �nal state variables
are t and φ (the Mandelstam variable and the rotation around the beam axis respectively).
Processes are usually characterized by the �nal state variables, while the initial state vari-
ables (like the center of mass energy

√
s) are assumed to be constant input parameters.

Compared, the 1 → m process has 3m − 4 independent �nal state variables. Detailed
information on the di�erent cases can be found in Ref. [115], while here I concentrate on
the former.

The di�erential n-body phase space is given by

dΦn(p1 + p2; k1, . . . , kn) = δ(4)

(
p1 + p2 −

n∑
i=1

ki

)
n∏
i=1

d3ki
(2π)3 2Ei

, (C.3.2)

in which ki are the outgoing momenta, pi are the incoming momenta and Ei = ki0 are the
energies of the outgoing particles. Inserting the delta function d4qδ(4)(q −

∑j
i=1 ki), one

can construct a recurrence relation and rewrite Eq. (C.3.2) in the form

dΦn(p1+p2; k1, . . . , kn)=dΦj(q; k1, . . . , kj)dΦn−j+1(p1+p2; q, kj+1, . . . , kn) (2π)3dq2, (C.3.3)

which de�nes the new di�erential internal momentum q. The diagrams in Fig. C.2 can be
understood as a diagrammatic realization of the recurrence relation in Eq. (C.3.3), in which
the recurrence relation is used to describe the full phase space by adequate combinations of
two-body phase spaces. The term two-body phase space is, however, slightly misleading,
since the corresponding phase space has in general only the form of the two-body phase
space (a more accurate denotation might be two-momentum phase space). To every green
dot corresponds such a phase space and an internal momentum qi. The �rst internal mo-
mentum is always given by q1 = p1 +p2 with q2

1 = s, yielding the (constant) squared center
of mass energy. The red dot corresponds to the initial-state particles which play a special
role, because their kinematics is constrained by the beam pipe. The n = 1 case is obvi-
ously fully determined. Every additional �nal-state particle introduces a new green dot and
therefore three new degrees of freedom to the phase-space integral, as given in Eq. (C.3.1).
The lines in the diagrams in Fig. C.2 correspond only to the choice of parametrization not
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to a Feynman diagrammatic notation, as will become clear in the following, i.e. the lines
do not necessarily correspond to particle exchange. I stress this to avoid confusion, since
the diagrams can look exactly the same and in the case presented in Sec. 3.8.1 they do
indeed. Usually one is always keen to choose the phase space parametrization to re�ect the
propagator structure of the Feynman diagrams, since equations tend to adopt a simpler
form in this case. Using Eqs. (C.3.2) and (C.3.3), the three-particle phase space (third
diagram in Fig. C.2) is given by

dΦ3(p1 + p2; k1, k2, k3) = δ(4) (p1 + p2 − k1 − k2 − k3)
d3k1

(2π)3 2k0
1

d3k2

(2π)3 2k0
2

d3k3

(2π)3 2k0
3

,

= dΦ2(p1 + p2; k1, q2)dΦ2(q2; k2, k3)(2π)3dq2
2, (C.3.4)

where (k2 +k3)
2 = q2

2. Note, that each two-body phase space dΦ2 in the last line is Lorentz
invariant.

The diagrams in Fig. C.2 have a supplemental use if one interprets the length of the
inner lines with momenta qi as the value of 3-momentum qi exchanged. By choice of
coordinate frame one can always choose a particular frame, in which the ith line has zero
length (qi = 0). In this case two green dots (or the red and the �rst green dot) are
contracted and eventually coincide (indicated by a blue dot) and 2 pairs of the 4 attached
momenta are in a back-to-back con�guration. This frame may then be described by the
invariant mass and two angles, pictured in Fig. C.3 (left), in which the two-body phase
space takes the form

dΦ2(qi + qj; qk, ql) =

√
λ((qi + qj)2, q2

k, q
2
l )

8(qi + qj)2
dφd cos θ (C.3.5)

with kinematical function

λ(x, y, z) ≡ (x− y − z)2 − 4yz . (C.3.6)

Every of the n − 1 blue dots de�nes such a center of mass frame, and the four-vectors
described in one frame are connected through n − 2 sets of Lorentz boost and rotations,
i.e. the transformations to change the coordinate system from one rest frame to another.
The 2 → 2 case is trivial in the sense, that only one contraction is possible. It is usually
most convenient to choose the laboratory frame (e+e− rest frame) for calculating the cross
section. This is the reason for the initial statement, that the 2 → 3 process is the �rst
non-trivial case, in which boost and rotations are indispensable, since two contractions
are necessary to divide the phase space of the di�erential cross section in two-body phase
spaces. The two possible contractions for the 2 → 3 case are pictured in Fig. C.3 (right).

As an example I give the phase space parametrization needed in Sec. 3.8 explicitly
below. In this work the process e+(p1)e

−(p2) → Υ(nS)(p)P (k1)P
′(k2) is parametrized.

The momenta are assigned to the particles as shown above and in Fig. C.4 (deviating
slightly from the above de�nitions, to match the equations in Sec. 3.8). Here Fig. C.4 is
the more explicit version of Fig. C.3 (right) for this process. In this case the interchange of
the intermediate resonances coincides with the third diagram in Fig. C.2. Note, that in an
equivalent way I could also have chosen the two-body phase space of Υ(nS) and P instead
of P and P ′, in which the Feynman diagrams for resonance interchange would deviate from
the third diagram in Fig. C.2.
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Figure C.3: Left frame: Two particle phase space. The blue dot corresponds to the rest
frame with qk + ql = 0 holds for the 3-momenta. In this frame the kinematics is described
by two angles φ and θ and the Lorentz-invariant quantity m2

qiqj
. The lines at the green dots

indicate, that the momenta qi,j,k are given by the sum of the attached external momenta
(for example q2 = k2 + k3 in the right diagram of the right frame, etc..). Right frame:
Example for the contractions of the 2 → 3 process of Fig. C.2, de�ning two rest frames.
Two rotations (by θ and φ) and one boost connects both frames.

Choosing the e+e− rest frame for dΦ2(p1 + p2; p, q) and the PP ′ rest frame for
dΦ2(q; k1, k2), one gets

dΦ2(p1 + p2; p, q) = dΦ2(p
′
1 + p′2; p

′, q′) = δ(4) (p′1 + p′2 − p′ − q′)
d3p′

(2π)3 2p0′
d3q′

(2π)3 2q0′

=
λ1/2(s,m2

Υ,M
2
PP ′)

512π6s
d cosϑee dϕee ,

dΦ2(q; k1, k2) = δ(4) (q − k1 − k2)
d3k1

(2π)3 2k0
1

d3k2

(2π)3 2k0
2

=
λ1/2(M2

PP ′ ,m
2
P ,m

2
P ′)

512π6M2
PP ′

d cos θ dφ , (C.3.7)

in which s = (p1 +p2)
2, and the primed momenta are de�ned in the e+e− rest frame. Thus

the complete three-body phase space reads:

dΦ3(p1 + p2; p, k1, k2) =
λ1/2(s,m2

Υ,M
2
PP ′)

512π6s

λ1/2(M2
PP ′ ,m

2
P ,m

2
P ′)

512π6M2
PP ′

(C.3.8)

× d cos θ dφ d cosϑeedϕee (2π)3 dM2
PP ′ .

In the following I give the phase-space parametrization in full detail for the process
e+e− → Υ(1S)PP ′, in which P and P ′ are scalar mesons. Electron masses are neglected
and the shorthand notation sin(α) ≡ sα and cos(α) ≡ cα is used.

The dipion rest frame: The z-axis is chosen to be in the direction of the momenta
for Yb and Υ(1S), and the momenta of e+ and e− are in the x-z plane, as shown in Fig. C.4
(left). In this frame the momenta read:

pµ1 =
1

2

(
q0 − |q|cϑee ,

√
s sϑee , 0, |q| − q0cϑee

)
,
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Figure C.4: Explicit picture of the two right �gures in Fig. C.3 for the process
e+(p1)e

−(p2) → Υ(nS)(p)P (k1)P
′(k2) in the rest frame of PP ′ (left) and in the rest frame

of the e+e− pair (right).

pµ2 =
1

2

(
q0 + |q|cϑee , −

√
s sϑee , 0, |q|+ q0cϑee

)
,

qµ =
(
q0, 0, 0, |q|

)
,

pµ =
(
p0, 0, 0, |q|

)
,

kµ1 =
(
k0

1, |k|sθcφ, |k|sθsφ, |k|cθ
)
,

kµ2 =
(
k0

2, −|k|sθcφ, −|k|sθsφ, −|k|cθ
)
, (C.3.9)

in which the angle ϑee is de�ned in the rest frame of the e+e− pair, as shown in Fig. C.4
(right). The variables q0, p0, k0

1, k
0
2, |q| and |k| are given in terms of s ≡ q2 = (p1 + p2)

2

and M2
PP ′ ≡ (k1 + k2)

2 by

q0 =
s−m2

Υ +M2
PP ′

2MPP ′
, p0 = q0 −MPP ′ =

s−m2
Υ −M2

PP ′

2MPP ′
,

|q|2 = (q0)2 − s = (p0)2 −m2
Υ ,

k0
1 =

√
|k|2 +m2

P =
MPP ′

2

√
1 +

(2M2
PP ′ +m2

P −m2
P ′)(m

2
P −m2

P ′)

M4
PP ′

,

k0
2 =

√
|k|2 +m2

P ′ =
MPP ′

2

√
1 +

(2M2
PP ′ +m2

P ′ −m2
P )(m2

P ′ −m2
P )

M4
PP ′

,

|k|2 =
M2

PP ′

4

(
1− (mP +mP ′)

2

M2
PP ′

)(
1− (mP −mP ′)

2

M2
PP ′

)
, (C.3.10)

in which M2
PP ′ = (k1 + k2)

2 = (k0
1 + k0

2)
2. The polarization vectors for the outgoing Υ(1S)

are given by

ε∗µΥ (λΥ = 0) =
1

mΥ

(
|q|, 0, 0, p0

)
, ε∗µΥ (λΥ = ±1) =

1√
2

(0, ∓1, i, 0) (C.3.11)

for the longitudinal and transverse polarizations, respectively.
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The e+e− rest frame: The z-axis is chosen to be in the direction of the momenta for
e+ and e−, as shown in Fig. C.4 (right):

p′µ =

(
(q.p)√
s
,
|q|MPP ′√

s
sϑeecϕee ,

|q|MPP ′√
s

sϑeesϕee ,
|q|MPP ′√

s
cϑee

)
,

p′µ1 =

(√
s

2
, 0, 0, −

√
s

2

)
, p′µ2 =

(√
s

2
, 0, 0,

√
s

2

)
, q′µ =

(√
s, 0

)
, (C.3.12)

in which the primes represent the momenta in the e+e− rest frame. The polarization
vectors for the outgoing Υ(1S) are given by

ε′∗µΥ (λΥ = 0) =
1

mΥ

(
|q|MPP ′√

s
,
(q.p)√
s
sϑeecϕee ,

(q.p)√
s
sϑeesϕee ,

(q.p)√
s
cϑee

)
,

ε′∗µΥ (λΥ = ±1) =
1√
2

(0,∓cϑeecϕee − isϕee ,∓cϑeesϕee + icϕee ,±sϑee) . (C.3.13)

Both frames: The momenta p1,2 for the e± in the PP ′ rest frame are obtained from
the corresponding momenta in the e+e− rest frame via a rotation and a subsequent boost:

pµ1,2 = Λµ
νRν

σp
′σ
1,2 , (C.3.14)

in which the boost and rotation matrices Λ and R are given by

Rµ
ν =


1 0 0 0
1 cos(−ϑee) 0 sin(−ϑee)
0 0 1 0
0 − sin(−ϑee) 0 cos(−ϑee)




1 0 0 0
0 cos(−ϕee) − sin(−ϕee) 0
0 sin(−ϕee) cos(−ϕee) 0
0 0 0 1

 ,

Λµ
ν =


q0/
√
s 0 0 |q|/

√
s

0 1 0 0
0 0 1 0

|q|/
√
s 0 0 q0/

√
s

 . (C.3.15)

The scalar products of the above momenta are given by

p2
1 = p2

2 = 0 , q2 = s , p2 = m2
Υ , k2

1 = k2
2 = m2

π ,

p1.p2 = p1.q = p2.q =
s

2
,

p1.p =
1

2

(
q0p0 − |q|2 +MPP ′|q|cϑee

)
, p2.p =

1

2

(
q0p0 − |q|2 −MPP ′|q|cϑee

)
,

p1.k1 =
1

2

[
MPP ′

2

(
q0 − |q|cϑee

)
−
√
s |k|sϑeesθcφ −

(
|q| − q0cϑee

)
|k|cθ

]
,

p1.k2 =
1

2

[
MPP ′

2

(
q0 − |q|cϑee

)
+
√
s |k|sϑeesθcφ +

(
|q| − q0cϑee

)
|k|cθ

]
,

p2.k1 =
1

2

[
MPP ′

2

(
q0 + |q|cϑee

)
+
√
s |k|sϑeesθcφ −

(
|q|+ q0cϑee

)
|k|cθ

]
,

p2.k2 =
1

2

[
MPP ′

2

(
q0 + |q|cϑee

)
−
√
s |k|sϑeesθcφ +

(
|q|+ q0cϑee

)
|k|cθ

]
,
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q.p = q0p0 − |q|2 =
s+m2

Υ −M2
PP ′

2
,

q.k1 =
q0MPP ′

2
− |q||k|cθ , q.k2 =

q0MPP ′

2
+ |q||k|cθ ,

p.k1 =
p0MPP ′

2
− |q||k|cθ , p.k2 =

p0MPP ′

2
+ |q||k|cθ ,

k1.k2 =
M2

PP ′

2
−m2

P −m2
P ′ , (C.3.16)

and

ε∗Υ(±1).k1 = −ε∗Υ(±1).k2 = ± |k|√
2
sθ e

∓iφ ,

ε∗Υ(0).k1 =
1

mΥ

(
|q|MPP ′

2
− p0|k|cθ

)
,

ε∗Υ(0).k2 =
1

mΥ

(
|q|MPP ′

2
+ p0|k|cθ

)
. (C.3.17)

C.4 Background and resonance contributions

In this part of the appendix I explain the separate contributions in the determination of
the cross section of the process e+e− → Yb → Υ(nS)PP ′, which is undertaken in Sec. 3.8.1.
In simpli�ed words, this section gives an overview over the invariant mass MPP ′ behavior
of the continuum and resonant contributions and the next Sec. C.5, �helicity amplitudes�,
deals with the angular distributions.

C.4.1 Continuum contribution

The underlying process for the continuum contribution in terms of quark-rearrangement
diagrams is shown in Fig. C.5. The general form of the amplitude for V ′(q, εYb

) →

Figure C.5: Schematic diagram of the Zweig allowed continuum quark rearrangement, in
which one light-quark pair pops up from the QCD background.
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V (p, εΥ)π(k1)π(k2) in the soft-pion limit was derived with PCAC (�Partially Conserved
Axial Current� hypothesis) by Brown and Cahn [95]. In the soft-pion limit, i.e. in the low-
est order in the pion momentum expansion, the amplitude is given in the non-relativistic
form as [116]

M(V ′ → V ππ) = f−2
π

{
(εYb

.ε∗Υ)
[
2Ak1.k2 +BE1E2 + λm2

π

]
+ C [(εYb

.k1)(ε
∗
Υ.k2) + (εYb

.k2)(ε
∗
Υ.k1)]

}
, (C.4.1)

in which E1 and E2 are the energies of the two pions in the rest frame of the initial state and
M2

PP ′ ≡ (k1 + k2)
2 is the invariant mass squared of the two pions. Relativistic corrections

have been dropped in the derivation. The term λm2
π is called the σ term in [95] and vanishes

in the chiral limit. Taking the soft pion limit and neglecting pion-pion rescattering e�ects,
the form factors A, B, C and λ are constant. Here I consider the continuum contribution
for Yb → Υ(1S)PP ′ in the case where Yb may not be on-shell and the mass of P may be
di�erent from that of P ′. The product E1E2, appearing in the continuum amplitude in
Eq. (C.4.1), is given by

E1E2 =

(
q0k0

1 − |q||k| cos θ√
s

)(
q0k0

2 + |q||k| cos θ√
s

)
,

=
(q0)2k0

1k
0
2 + q0(k0

1 − k0
2)|q||k| cos θ − |q|2|k|2 cos2 θ

s
, (C.4.2)

in which θ is the angle between q and k1 in the PP ′ rest frame. Here the cos θ term
corresponds to a P -wave amplitude with Y 0

1 (θ, φ) =
√

3/4π cos θ, which vanishes if P and
P ′ have an identical mass. Since the PP ′ system must be either an S-wave or a D-wave,
the cos θ term is dropped for consistency. We then have

E1E2 ⇒
3(q0)2k0

1k
0
2 − |q|2|k|2

3s
− |q|2|k|2

s

(
cos2 θ − 1

3

)
. (C.4.3)

Using this equation, the continuum contribution in Eq. (C.4.1) becomes

(Mcontinuum)µν =gµν
A

fPfP ′
(M2

PP ′ −m2
P −m2

P ′) + gµν
B

fPfP ′
E1E2

+ (k1µk2ν + k2µk1ν)
C

fPfP ′
,

=gµν

[
A

fPfP ′
(M2

PP ′ −m2
P −m2

P ′) +
B

fPfP ′

3(q0)2k0
1k

0
2 − |q|2|k|2

3s

]
+ gµν

[
− B

fPfP ′

|q|2|k|2

s

](
cos2 θ − 1

3

)
+ (k1µk2ν + k2µk1ν)

C

fPfP ′
. (C.4.4)

Note, that the coe�cient of the A term is originated from (k1.k2) = (M2
PP ′−m2

P −m2
P ′)/2.

We adopted this expression as the continuum contribution.

In summary, we de�ned the continuum amplitudes as

MC
1 (M2

PP ′) =
A

fPfP ′
(M2

PP ′ −m2
P −m2

P ′) +
B

fPfP ′

3(q0)2k0
1k

0
2 − |q|2|k|2

3s
,
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MC
2 (M2

PP ′) = − B

fPfP ′

|q|2|k|2

s
,

MC
3 (M2

PP ′) =
C

fPfP ′
. (C.4.5)

The energies of PP ′ in the rest frame of the initial state Yb are expressed in terms of
the variables in the PP ′ rest frame |~q|, |~k| and θ as follows:

E1 =
m2
Yb
−m2

Υ +M2
PP ′ − 4|~q||~k| cos θ

4mYb

, E2 =
m2
Yb
−m2

Υ +M2
PP ′ + 4|~q||~k| cos θ

4mYb

.

(C.4.6)

The product of them is then given by

E1E2 =

(
m2
Yb
−m2

Υ +M2
PP ′

)2 − 16|~q|2|~k|2 cos2 θ

16m2
Yb

,

=

(
m2
Yb
−m2

Υ +M2
PP ′

)2 − [(m2
Yb
−m2

Υ +M2
PP ′)

2 − 4m2
Yb
M2

PP ′

] (
1− 4m2

π

M2
PP ′

)
cos2 θ

16m2
Yb

,

=
1

6

{
M2

PP ′

2

(
1− 4m2

π

M2
PP ′

)
+

(m2
Yb
−m2

Υ +M2
PP ′)

2

4m2
Yb

(
1 +

2m2
π

M2
PP ′

)

− 3

2

[
(m2

Yb
−m2

Υ +M2
PP ′)

2

4m2
Yb

−M2
PP ′

](
1− 4m2

π

M2
PP ′

)(
cos2 θ − 1

3

)}
. (C.4.7)

In the limit of heavy Yb and Υ, one has MPP ′ � mYb
≈ mΥ and

(m2
Yb
−m2

Υ +M2
PP ′)

2

4m2
Yb

≈
(m2

Yb
−m2

Υ)2

4m2
Yb

≈
(mYb

−mΥ)24m2
Yb

4m2
Yb

≈(mYb
−mΥ)2 ≡ (∆M)2, (C.4.8)

in which the approximation mYb
+mΥ ≈ 2mYb

and ∆M ≡ mV ′ −mV is used.

If one keeps the C terms in Eq. (C.4.1), one �nds the expression derived by Novikov
and Shifman [97], using Eqs. (C.4.7) and (C.4.8), the above equation can be rewritten as

M(V ′ → V ππ) =
F

f 2
π

(εYb
.ε∗Υ)

[
M2

PP ′ − β(∆M)2

(
1 +

2m2
π

M2
PP ′

)

+
3

2
β
[
(∆M)2 −M2

PP ′

](
1− 4m2

π

M2
PP ′

)(
cos2 θ − 1

3

)]
+
C

f 2
π

[(εYb
.k1)(ε

∗
Υ.k2) + (εYb

.k2)(ε
∗
Υ.k1)] , (C.4.9)

in which F ≡ A and β ≡ −B/(6A). This continuum contribution describes the underlying
process of the bottomonia transitions, which is explained in Sec. 3.3. The parameter β is
usually of order O(1/10) for the bottomonia. Hence the D-wave contribution is small. The
underlying process involves two gluon annihilation and is pictured in Fig. 3.13, where also
the decay Υ(4S) → Υ(1S)π+π− as a representative Υ(nS) decay is shown.
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We assumed, that all the form factors A, B and C in Eq. (C.4.1) have a common phase,
originating from �nal-state interactions. Consequently, the parameter β is real, and F and
C have the same phase.

The C term, originating from a spin-dependent interaction, is suppressed by the heavy-
quark mass. Hence, neglecting the λ and C terms, one �nds

M(V ′ → V ππ) ≈ f−2
π (εYb

.ε∗Υ)F
[
(M2

PP ′ − 2m2
π)− 6βE1E2

]
, (C.4.10)

and explicitly

M(V ′ → V ππ) ≈ F

fπ
(εYb

.ε∗Υ)

[(
1− β

2

)
M2

PP ′ + (−2 + 2β)m2
π − β(∆M)2

(
1 +

2m2
π

M2
PP ′

)

+ β
3

2

[
(∆M)2 −M2

PP ′

](
1− 4m2

π

M2
PP ′

)(
cos2 θ − 1

3

)]
, (C.4.11)

The �rst line is the S-wave contribution of the dipion, whereas the second line is the
D-wave contribution.

C.4.2 Scalar-resonance contribution S → ππ

Zweig allowed quark-rearrangement process for the 0++ light scalar tetraquark interchange,
pictured in Fig. C.6. As described in the Eqs. (3.7.2) and (3.7.3), a two-body scattering
process ab→ R→ cd, R being a resonance, can be described by the Breit-Wigner formula,

TR(mab) ∝
1

m2
ab −m2

R + imRΓR
, (C.4.12)

where mab is the is the invariant mass of the ab (and cd) system, MR and ΓR are the mass
and the total decay width of R. The decay width depends in general on mab, since there is
no �rst principle which forces the poles of the S matrix to be constant properties. In fact,
the approximation of ΓR =constant is only valid in special cases, where the mass of the

Figure C.6: Zweig allowed quark-rearrangement process for the interchange of a light
scalar 0++ resonance.
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resonance is large compared with the total decay width, and when the resonance mass is
far away from thresholds. The approximation is then called minimal width approximation.
The threshold problem also occurs in the present case for all scalar resonance contributions
in the analysis of the Belle data on the exclusive channels. How to take that e�ect into
account is described by the Flatté model [107], which is outlined below. Note, that the
derivations are not only valid for scalar resonances, since the spin a�ects only the helicity
distributions, whereas the invariant-mass distribution is for all kinds of resonances the
same. However, since I only need the scalar resonances here, I will not discuss the spin
part in the Flatté model.

The argument why the minimal width approximation can not (or only approximately)
work at threshold is due to the fact, that a constant approximation for the width is only
valid for an on-shell particle. Threshold e�ects are o�-shell e�ects. First I will describe the
on-shell decay, followed by the description of the Flatté model. The spin averaged partial
decay width for the process R→ PP ′ is given by

ΓR→PP ′(mR) =
1

8π
|M|2 |k|

m2
R

, (C.4.13)

in which k is the decay momentum de�ned in (3.6.2). If the decay is dominated by two-
body decays one can approximate

Γtot ≈
1

8π

∑
i

|Mi|2
|ki|
m2
R

. (C.4.14)

By de�ning

ρ(s) ≡
[(

1− (m−m′)2

s

)(
1− (m+m′)2

s

)]1/2

(C.4.15)

with m and m′ being the masses of P and P ′ respectively, one has ki = mRρi(m
2
R)/2.

Further de�ning the constants fi, called Flatté couplings, in units of energy via fi ≡
|Mi|/

√
16πmR, the Eqs. (C.4.12) and (C.4.16) yield

Tr(mab) ∝
1

m2
ab −m2

R + i
∑
i

f 2
i ρi(m

2
R)

Γtot ≈
∑
i

f 2
i ρi(m

2
R)

mR

. (C.4.16)

If the decaying particle is virtual, the particle is not decaying on-shell with mass mR but
with the energy mab, and one needs to replace ρi(m2

R) → ρi(mab). This is the Flatté
model. In Fig. C.7 and C.8 a0 is given as an example (the Flatté couplings for a0 are
listed in Tab. C.4.1). The former shows the width in dependence of the invariant mass,
and the latter shows the contribution in the cross section for a single resonance exchange
|TR(mab)|2. The resonance a0 has two dominant decay modes, ηπ0 and KK̄ also indicated
in the �gure. The Flatté model is compared with the constant width approximation (black
line). One can see, that the decay width is enhanced smoothly at every threshold, where a
new decay mode opens. The dynamic behavior at threshold is described by the phase space
factor ρi(mab). Note, that beside the real (blue) part there is also an imaginary (orange)
part in the decay width present when ρi(s) becomes imaginary for s ≤ (m + m′)2, which
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Figure C.7: Dynamic total decay width of a0 as example for the Flatté model. The solid,
blue line corresponds to the real part of the decay width and the dashed, orange line is the
imaginary part. The solid black line corresponds to the minimal width approximation with
the PDG value of Γ ≈ 75 MeV. The shaded band of approximately 75 MeV corresponds to
the energy range in which the resonance a0 gives a sizable contribution to the amplitudes.

Table C.4.1: Masses and Flatté couplings in units of MeV.

Mf0 ff0ππ ff0KK̄ Ma0 fa0
0ηπ

fa0
0KK̄

Crystal Barrel 982 324 329
BES 965 406 833
KLOE 984 349 869 983 398 429

leads to a real contribution in the denominator of (C.4.12) and thus gives rise to a mass
shift.

In our analysis we have to employ the Flatté formula for the scalar resonances σ(600),
f0(980) and a0

0(980), since their masses are located just around the ππ threshold for the
former and the KK̄ threshold for the latter two, as can be seen in Fig. C.7 for a0

0(980).

The couplings in (3.8.11) gSPP ′ for the scalar resonances de�ne the amplitude by

A(S → PP ′) = gSPP ′ (k1.k2) = gSPP ′
m2
S −m2

P −m2
P ′

2
. (C.4.17)

After specifying the amplitude, Eq. (C.4.13) yields a relation between the Flatté couplings
fSPP ′ and the vertex couplings gSPP ′ :

gSPP ′ = fSPP ′
8
√
π

m2
S −m2

P −m2
P ′
, (C.4.18)

with the isospin relations

ff0π+π− =

√
2

3
ff0ππ , ff0K+K− =

1√
2
ff0KK̄ ,
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Figure C.8: Breit Wigner model for a0, comparison between the constant width approxi-
mation (black) and the Flatté model (blue). The shaded band indicates the constant width
of Γ ≈ 75 MeV, where the resonance has the dominant contribution to the amplitude.

fa0
0ηπ

0 = fa0
0ηπ

, fa0
0K

+K− =
1√
2
fa0

0KK̄
, (C.4.19)

in which the sum over all members in one isospin multiplet is performed, i.e. f 2
f0ππ

=
f 2
f0π+π− + f 2

f0π0π0 , etc., explained in App. C.4.4. The value for the summed and exclusive
couplings and amplitudes for a0(980) → PP ′ and f0(980) → PP ′, extracted from the data,
are summarized in Tab. C.4.1 and Tab. C.4.2. The experiments, from where the data was
obtained, are outlined at the end of this section.

For the σ meson, the coupling gσπ+π− is extracted from the E791 data [89] with the
relation

gσπ+π− =
8mσ

m2
σ − 2m2

π

√
πΓσ→π+π−

(m2
σ − 4m2

π)
1/4

=
8mσ

√
πΓσ × (2/3)

(m2
σ − 2m2

π)(m
2
σ − 4m2

π)
1/4

≈ 27 GeV−1, (C.4.20)

in which the Flatté coupling fσππ is given by

fσππ =
mσ

√
Γσ

(m2
σ − 4m2

π)
1/4

≈ 437 MeV . (C.4.21)

Table C.4.2: Flatté couplings and amplitudes in units of GeV.

ff0π+π−ff0K+K− fa0
0ηπ

0 fa0
0K

+K− Af0π+π− Af0K+K− Aa0
0ηπ

0 Aa0
0K

+K−

CB 0.320 0.230 2.3± 0.1 1.6± 0.3
BES 0.327 0.581 2.32± 0.25 4.12± 0.55
KLOE 0.202 0.530 0.390 0.305 1.43+0.03

−0.60 3.76+1.16
−0.49 2.8± 0.1 2.16± 0.04

Below I summarize the di�erent experiments, which contributed to the measurements
of the Flatté couplings.
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Crystal Barrel (CB): The Crystal Barrel experiment collected pp̄ annihilation events
at the Low Energy Antiproton Ring (LEAR) at CERN from 1989 to 1996. In [109],
they extracted the Flatté couplings for the a0(980) resonance from the data for pp̄→
a±0 (980)π∓ → KLK

±π∓:

fa0ηπ = 324± 15 MeV and f 2
a0KK̄

/f2
a0ηπ

= 1.03± 0.14 , (C.4.22)

while the measured mass and the width areMa0 = 982±3 MeV and Γa0 = 92±8 MeV,
respectively.

Beijing Spectrometer (BES): The Beijing Spectrometer (BES) is a detector for the
Beijing Electron Positron Collider (BEPC) at the Institute of High Energy Physics
(IHEP) in Beijing. The BES detector and the upgraded BES-II detector had oper-
ated from 1989 to 2004. The current detector BES-III is running with the higher-
luminosity collider BEPCII, which has operated in the 2 GeV to 4.6 GeV energy
range.

In [108], the BES collaboration measured the mass and the Flatté couplings for the
f0(980) resonance via J/ψ → φπ+π− and φK+K−, observed at BES-II:

Mf0 = 965± 8± 6 MeV,

f 2
f0ππ

= 0.165± 0.010± 0.015 GeV2

f 2
f0KK̄

/f2
f0ππ

= 4.21± 0.25± 0.21 , (C.4.23)

K LOng Experiment (KLOE): The KLOE experiment had operated at the e+e− φ-
factory DAΦNE at Frascati from 2000 to 2006, collecting about 2.5 fb−1 data. In
[117], the mass and the Flatté couplings for the f0(980) resonance were measured
through the process φ→ π0π0γ, based on an integrated luminosity 450 pb−1 of data:

Mf0 = 976.8± 0.3+0.9
−0.6 ± 10.1 MeV,

A(f0 → π+π−) = −1.43± 0.01+0.01+0.03
−0.06−0.60 GeV,

A(f0 → K+K−) = 3.76± 0.04+0.15+1.16
−0.08−0.48 GeV. (C.4.24)

where the parameters gf0π+π− and gf0K+K− in the paper correspond to the amplitudes
de�ned in (C.4.17). In [118], the φ → π+π−γ mode was also used to extract the
f0(980) parameters, based on an integrated luminosity 350 pb−1 of data: Mf0 =
983.0± 0.6 MeV, A(f0 → K+K−) = 5.89± 0.14 GeV and A(f0 → K+K−)2/A(f0 →
π+π−)2 = 2.66 ± 0.10. However, the charged channel su�ers from a larger non-
resonant background contribution, dominated by the ρ radiative tail [117]. The
a0(980) parameters were measured from φ→ ηπ0γ, using a sample of 414 pb−1 [119]:

Ma0 = 983± 1 MeV,

A(a0
0 → ηπ0) = 2.8± 0.1 GeV, A(a0

0 → K+K−) = 2.16± 0.04 GeV. (C.4.25)

In [110, 111], the KLOE collaboration reported their updated results for the above
parameters, where the number of events were not increased from the above:

Mf0 = 984.7± 1.9 MeV,
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A(f0 → π+π−) = −1.82± 0.19 GeV, A(f0 → K+K−) = 3.97± 0.43 GeV. (C.4.26)

determined from 450 pb−1 of data for φ→ π0π0γ,

Mf0 = 983.7 MeV,

A(f0 → π+π−) = −2.22 GeV,

A(f0 → K+K−) = 4.74 GeV. (C.4.27)

from 350 pb−1 of data for φ→ π+π−γ, and

Ma0 = 982.5± 1.6± 1.1 MeV,

A(a0
0 → ηπ0) = 2.82± 0.03± 0.04 GeV,

A(a0
0 → K+K−) = 2.15± 0.06± 0.06 GeV. (C.4.28)

from about 430 pb−1 of data for φ → ηπ0γ. Averaging over the π0π0γ and π+π−γ
results naively, one obtains

ff0ππ =

√
3

2
ff0π+π− = 0.349 GeV, ff0KK̄ =

√
2 ff0K+K− = 0.869 GeV,

fa0
0ηπ

= fa0
0ηπ

0 = 0.398 GeV, fa0
0KK̄

=
√

2fa0
0K

+K− = 0.429 GeV, (C.4.29)

where the averaged mass for f0(980) is Mf0 = 984.2 MeV.

C.4.3 f2(1270) contribution f2(1270) → ππ

Here I discuss the contribution of intermediate f2(1270) resonance interchange, pictured
in Fig. C.9. The f2(1270) resonance, having the quantum numbers IG(JPC) = 0+(2++),
decays dominantly (∼ 85%) into two pions. Since this resonance is far from threshold and
has a narrow width, the minimal width approximation is adopted. The di�culties arising
from the inclusion of f2(1270) roots in its spin. Therefore this contribution leads to the
most complex helicity amplitude, introducing a large D-wave contribution to the cross
section. The helicity amplitudes are calculated in App. C.5.

Figure C.9: Zweig allowed quark rearrangement diagrams for the intermediate JPC = 2++

f2(1270) meson interchange.
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The interaction between the Y I
b tetraquark and the Υ(nS), P and P ′ mesons is described

by the Lagrangian (3.8.10) and the corresponding vertices in (3.8.11). The polarization
tensor of a spin-2 particle is traceless εµµ = 0. Using Eq. (3.8.11), the decay amplitude for
f2(k1 + k2, λf2) → π+(k1) + π−(k2) is given by

M(f2 → π+π−) = −2gf2π+π−k1µk2ν ε
µν(k1 + k2, λf2) ,

=
gf2π+π−

2
(k1 − k2)µ(k1 − k2)ν ε

µν(k1 + k2, λf2) , (C.4.30)

in which εµν is the polarization tensor, satisfying εµν(p, λ) = ενµ(p, λ), pµεµν(p, λ) =
pνε

µν(p, λ) = 0, gµνεµν(p, λ) = 0, εµν(p, λ)ε∗µν(p, λ
′) = δλλ′ , and the polarization sum is

given by

Bµν,ρσ(p) ≡
∑
λ

εµν(p, λ)ε∗ρσ(p, λ)

=
1

2

(
gµρ −

pµpρ

p2

)(
gνσ −

pνpσ

p2

)
+

1

2

(
gµσ −

pµpσ

p2

)(
gνρ −

pνpρ

p2

)
− 1

3

(
gµν −

pµpν

p2

)(
gρσ −

pρpσ

p2

)
. (C.4.31)

Note, that the polarization tensor can be decomposed into the products of polarization
vectors for a spin-1 state:

εµν(p,±2) = εµ(p,±1)εν(p,±1) ,

εµν(p,±1) =
1√
2

[εµ(p,±1)εν(p, 0) + εµ(p, 0)εν(p,±1)] ,

εµν(p, 0) =
1√
6

[εµ(p, 1)εν(p,−1) + εµ(p,−1)εν(p, 1) + 2εµ(p, 0)εν(p, 0)] . (C.4.32)

Using Eq. (C.4.30), the partial decay width for the process f2(1270) → π+π− reads:

Γ(f2 → π+π−) =
ρππ

16πmf2

1

5

∑
λf2

|M(f2 → π+π−)|2 =
g2
f2π+π−m

3
f2

480π

(
1− 4m2

π

m2
f2

)5/2

, (C.4.33)

and after summing over the isospin multiplet, described in App. C.4.4, one �nds:

Γ(f2 → ππ) ≡ Γ(f2 → π+π−) + Γ(f2 → π0π0) =
3

2
Γ(f2 → π+π−) . (C.4.34)

C.4.4 Isospin decompositions

The u and d quarks and the ū and d̄ quarks belong to isospin doublets:(
u
d

)
,

(
−d̄
ū

)
. (C.4.35)

The three pions π+, π− and π0 belong to an isospin triplet:

|π+〉 = −|ud̄〉 = |1, 1〉 , |π−〉 = |dū〉 = |1, −1〉 ,
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|π0〉 =
1√
2
|uū〉 − 1√

2
|dd̄〉 = |1, 0〉 , (C.4.36)

in which the right-hand sides denote isospin states |I, Iz〉. The isospin states for two pions
are given by

|2, ±2〉 = |π±π±〉 ,

|2, ±1〉 =
1√
2
|π±π0〉+

1√
2
|π0π±〉 , isospin 2

|2, 0〉 =
1√
6
|π+π−〉+

1√
6
|π−π+〉+

2√
6
|π0π0〉 ,

|1, ±1〉 = ± 1√
2
|π±π0〉 ∓ 1√

2
|π0π±〉 ,

isospin 1

|1, 0〉 =
1√
2
|π+π−〉 − 1√

2
|π−π+〉 ,

|0, 0〉 =
1√
3
|π+π−〉+

1√
3
|π−π+〉 − 1√

3
|π0π0〉 , isospin 0 (C.4.37)

from which one �nds the isospin decomposition,

|π±π±〉 = |2, ±2〉 ,

|π±π0〉 =
1√
2
|2, ±1〉 ± 1√

2
|1, ±1〉 ,

|π±π∓〉 =
1√
6
|2, 0〉 ± 1√

2
|1, 0〉+

1√
3
|0, 0〉 ,

|π0π0〉 =

√
2

3
|2, 0〉 − 1√

3
|0, 0〉 . (C.4.38)

The kaons K+, K−, K0 and K̄0 belong to two isospin doublets:(
K+ = us̄
K0 = ds̄

)
,

(
K̄0 = −sd̄
K− = sū

)
. (C.4.39)

The isospin states for the two-kaon systems involving ss̄ are written as

|1, 1〉 = |K+K̄0〉 ,

|1, 0〉 =
1√
2
|K+K−〉+

1√
2
|K0K̄0〉 ,

|1, −1〉 = |K0K−〉 ,

|0, 0〉 =
1√
2
|K+K−〉 − 1√

2
|K0K̄0〉 . (C.4.40)

The η meson is an isospin singlet:

|η〉 ≈ 1√
6
|uū〉+

1√
6
|dd̄〉 − 2√

6
|ss̄〉 = |0, 0〉 . (C.4.41)

The isospin states for ηπ systems are as follows:

|1, 1〉 = |ηπ+〉 , |1, 0〉 = |ηπ0〉 , |1, −1〉 = |ηπ−〉 . (C.4.42)

Note, that the f0(980) and a0(980) are the isospin eigenstates:

|f0〉 = |0, 0〉 , |a+
0 〉 = |1, 1〉 , |a0

0〉 = |1, 0〉 , |a−0 〉 = |1, −1〉 . (C.4.43)



C.5 Helicity amplitudes 123

C.5 Helicity amplitudes

This section is concerned with the angular distribution stemming from the di�erent contin-
uum and resonant contributions. The discussion is outlined by taking the simplest scalar
resonance S contribution as example, while neglecting the strong phase. The amplitude

M=̂
Y

I
b

R

(C.5.1)

for the corresponding decay reads:

M =
∑
λYb

ε∗µΥ (λΥ)k1.k2gσPP ′gY 0
b Υ(1S)σεYbµ(λYb

)ε∗δYb
(λYb

)ge+e−Y I
b

[v̄e(p1, λ1)γδue(p2, λ2)]

[s−m2
Yb

+ imYb
ΓYb

][M2
PP ′ −m2

S + imSΓS]
,(C.5.2)

in which λ1 and λ2 are the polarizations of e+ and e− respectively. With the spin sum of
Yb is given by

∑
λYb

ενYb
(λYb

)ε∗δYb
(λYb

) = −gνδ + qνqδ/q2, as known for spin 1 particles. The
latter part, which is proportional to the momentum exchanged, vanishes due to the on-
shell condition. Leaving implicit every term which is independent of the angles, Eq. (C.5.2)
yields

M∝ ε∗µΥ (λΥ) [v̄e(p1, λ1)γµue(p2, λ2)] . (C.5.3)

This is the helicity contribution of the scalar resonance part. In the same way all other
contributions, which are given below, can be extracted. Before I come to that point,
I discuss the polarization of the e+e− system, �rst in the e+e− rest frame where it is
especially simple and then in the π+π− rest frame, in which the Belle data is given.

Using the following spinors in the Weyl basis:

ue(p, λ) =

( √
p.σ ξλ

√
p.σ̄ ξλ

)
with ξ1/2 =

(
1
0

)
, ξ−1/2 =

(
0
1

)
,

ve(p, λ) =

( √
p.σ ηλ

−
√
p.σ̄ ηλ

)
with η1/2 =

(
0
1

)
, η−1/2 =

(
−1
0

)
, (C.5.4)

the e+e− current which couples to the Yb resonance can be calculated easily in the e+e−

rest frame

v̄e(p
′
1, λ1)γ

νue(p
′
2, λ2) =


√
s (0, ∓1, −i, 0) for λ1 = λ2 = ±1

2
,

0 for λ1 = −λ2 = ±1

2
,

(C.5.5)

in which the �rst line in the right hand side has the same form as the polarization vectors
for a vector-particle with helicity ±1 (except for the normalization). Applying the Lorentz
transformation from the e+e− rest frame to the dipion rest frame, given in Eq. (C.3.14),
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one obtains the current in the dipion rest frame:

v̄e(p1, λ1)γ
νue(p2, λ2) =



√
s e±iϕee

(
∓ |q|√

s
sinϑee, ∓ cosϑee, −i, ∓

q0

√
s

sinϑee

)
for λ1 = λ2 = ±1

2
,

0

for λ1 = −λ2 = ±1

2
.

(C.5.6)

Having calculated the polarization of the e+e− system and using the kinematics for the
momenta and polarization vectors, which are de�ned in App. C.3, it is straightforward to
derive the helicity amplitudes for all contributions. They are

MC
1 : HC

1 ≡ ε∗µΥ (λΥ)gµν [v̄e(p1, λ1)γ
νue(p2, λ2)] ,

MC
2 : HC

2 ≡ ε∗µΥ (λΥ)gµν

(
cos2 θ − 1

3

)
[v̄e(p1, λ1)γ

νue(p2, λ2)] ,

MC
3 : HC

3 ≡ ε∗µΥ (λΥ) (k1µk2ν + k2µk1ν) [v̄e(p1, λ1)γ
νue(p2, λ2)] ,

Mf2 : Hf2 ≡ −1

2
ε∗µΥ (λΥ)

(
ḡµρḡνσ −

1

3
ḡµν ḡρσ

)
(k1 − k2)

ρ(k1 − k2)
σ [v̄e(p1, λ1)γ

νue(p2, λ2)] , (C.5.7)

in which ḡµν = gµν − pµpν/p
2. The scalar resonances have the same structure as the the

S-wave background MC
1 , see Eq. (C.5.3). The results are listed in the following (with

shortened sinα ≡ sα and cosα ≡ cα expressions). The spherical harmonics are given in
App. A.3.

HC
1 =



−
√

2πs(1 + cϑee)e
±iϕeeY 0

0 (θ, φ) for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
,±1

}
,

±
√

2πs

√
2(q.p)√
smΥ

sϑeee
±iϕeeY 0

0 (θ, φ) for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
, 0

}
,

−
√

2πs(1− cϑee)e
±iϕeeY 0

0 (θ, φ) for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
,∓1

}
,

0 otherwise,

(C.5.8)

HC
2 =



−
√

2πs
2

3
√

5
(1 + cϑee)e

±iϕeeY 0
2 (θ, φ) for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
,±1

}
,

±
√

2πs
2
√

2(q.p)

3
√

5smΥ

sϑeee
±iϕeeY 0

2 (θ, φ) for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
, 0

}
,

−
√

2πs
2

3
√

5
(1− cϑee)e

±iϕeeY 0
2 (θ, φ) for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
,∓1

}
,

0 otherwise.

(C.5.9)
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HC
3 =



−
√

2πs|k|2
[
2

3
(1 + cϑee)Y

0
0 (θ, φ)− 2

3
√

5
(1 + cϑee)Y

0
2 (θ, φ)

±2
√

2q0

√
15s

sϑeeY
∓1
2 (θ, φ)− 2

√
2√

15
(1− cϑee)Y

∓2
2 (θ, φ)

]
e±iϕee

for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
,±1

}
,

±
√

2πs|k|2
[
∓ 2p0

√
15mΥ

(1 + cϑee)Y
±1
2 (θ, φ)∓ 2p0

√
15mΥ

(1−ϑee)Y
∓1
2 (θ, φ)

+

√
2√

smΥ

(
2q0p0

3
− M2

PP ′|q|2

2|k|2

)
sϑeeY

0
0 (θ, φ) +

4
√

2q0p0

3
√

5smΥ

sϑeeY
0
2 (θ, φ)

]
e±iϕee

for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
, 0

}
,

−
√

2πs|k|2
[
2

3
(1− cϑee)Y

0
0 (θ, φ)− 2

3
√

5
(1− cϑee)Y

0
2 (θ, φ)

±2
√

2q0

√
15s

sϑeeY
±1
2 (θ, φ)− 2

√
2√

15
(1 + cϑee)Y

±2
2 (θ, φ)

]
e±iϕee

for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
,∓1

}
,

0 otherwise,

(C.5.10)

Hf2 =



−
√

2πs|k|2
[
− 2

3
√

5
(1 + cϑee)Y

0
2 (θ, φ)± 2

√
2q0

√
15s

sϑeeY
∓1
2 (θ, φ)

−2
√

2√
15

(1− cϑee)Y
∓2
2 (θ, φ)

]
e±iϕee for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
,±1

}
,

±
√

2πs|k|2
[
∓ 2p0

√
15mΥ

(1 + cϑee)Y
±1
2 (θ, φ)∓ 2p0

√
15mΥ

(1− cϑee)Y
∓1
2 (θ, φ)

+
4
√

2q0p0

3
√

5smΥ

sϑeeY
0
2 (θ, φ)

]
e±iϕee for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
, 0

}
,

−
√

2πs|k|2
[
− 2

3
√

5
(1− cϑee)Y

0
2 (θ, φ)± 2

√
2q0

√
15s

sϑeeY
±1
2 (θ, φ)

−2
√

2√
15

(1 + cϑee)Y
±2
2 (θ, φ)

]
e±iϕee for{λ1, λ2, λΥ} =

{
±1

2
,±1

2
,∓1

}
,

0 otherwise.

(C.5.11)

C.6 Decay constant for the η meson

The PCAC results for the processes η → γγ and η′ → γγ are given by [120]

Γ(η(′) → γγ) =
α2m3

η(′)

32π3(f̃ eff
η(′))2

. (C.6.1)



126 Tetraquarks

In the above expression, the e�ective decay constants are de�ned by(
(f̃ eff
η(′))

−1

(f̃ eff
η(′))

−1

)
=

1

3

(
cosφ − sinφ

sinφ cosφ

)(
5 f−1

q√
2 f−1

s

)
, (C.6.2)

in which φ is the mixing angle between the �avor states (uū+dd̄)/
√

2 and ss̄ in the physical
states η and η′, and fq,s obey the relations

〈0|Jq,sµ5 |η(′)(p)〉 = i f q,s
η(′)pµ ,

(
f qη f sη
f qη′ f sη′

)
=

(
cosφ − sinφ
sinφ cosφ

)(
fq 0
0 fs

)
.

(C.6.3)

In Ref. [121], the above parameters were determined phenomenologically by combining
various observables, including the processes in Eq. (C.6.1):

φ = (39.3± 1.0)◦ , fq = (1.07± 0.02)fπ , fs = (1.34± 0.06)fπ , (C.6.4)

which leads to [122]Sec. 2.1

f̃ eff
η = 1.02 fπ , f̃ eff

η′ = 0.79 fπ . (C.6.5)

We approximated fη = fπ in our numerical analysis.

C.7 Fitting

In this section I describe how to perform a χ2 �t. First I introduce the general formalism
and explain afterwards how a �t to simultaneous spectra with di�erent formulas, but
depending �t parameters can be performed in Mathematica.

A �t function f depends on n unknown parameters p (the �tting parameters) and on
parameters x of a certain space of arbitrary dimension, in which the data is taken (for
example

√
s where x is on-dimensional, space coordinates where x is three-dimensional,

. . .). Thus every point in the data set, comprised of m points, has the information of its
value yj at point xj, j = 1, . . . ,m and corresponding errors σj. The χ2 function is then
de�ned by the sum over the weighted squares

χ2(p) =
m∑
j=1

(
yj − f(xj,p)

σj

)2

, (C.7.1)

in which the errors σj are assumed to be symmetric, since they are assumed to be Gaussian
distributed. The implementation of antisymmetric errors needs further mathematical jus-
ti�cation and the assumption of di�erent error distributions (Poisson, etc.). In numerical
computations (like for example in ROOT), the errors are usually implemented by taking
the lower error if for ∆ = yj − f(xj,p) ∆ ≤ 0 and the upper error if ∆ > 0. The so called
p-value, the probability of obtaining data in a new run, which is at least as incompatible
with the present data, is given by

p =

∞∫
χ2

dzφ(z;nd), (C.7.2)
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where nd is the number of degrees of freedom and

φ(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
. (C.7.3)

The problem of performing the χ2 �t is now reduced to the problem of �nding the
global minimum of the (positive de�nite) function in Eq. (C.7.1). Several minimization
routines are available to ful�ll this task, such as MINUIT. I sketch in this section the
most important steps to perform a �t using Mathematica and its implemented routine
FindMinimum. In Mathematica the contribution from one data point reads

Chi2OnePoint [∆_, σ+, σ−] := ∆2

(
Θ[∆]

σ+
2

+
Θ[−∆]

σ−2

)
, (C.7.4)

in which Θ[∆] ≡ HeavisideTheta[∆]. The Mathematica prede�ned routines are printed
thick, and our added routines are printed thick and blue. The χ2(p) function is imple-
mented via

Chi2 [f_, Data _, Error _, ScanRange , p _] := N[Sum[Sum[

If[ Data [[j, i, 1]] > ScanRange [[j, 1]]&& Data [[j, i, 1]] < ScanRange [[j, 2]],

Chi2OnePoint [f [ p , Data [[j, i, 1]], j]− Data [[j, i, 2]],

Error [[j, i, 1]], Error [[j, i, 2]]], 0],

{i, 1,Length[ Data [[j]]]}], {j, 1,Length[ Data ]}]]; ,

in which the additional sum over j implies, that more than one model function depending
on the parameters p can be �tted to di�erent data sets. Thus the input function f is an
array of length a. The input is organized as follows. The length of the arrays A is indicated
in brackets A[a, b, c, . . .] (A[2] is a vector of length 2, A[2, 2] is a 2 by 2 matrix, A[2, ki] is
a matrix with 2 rows, where the �rst is of length k1 and the second is of length k2, etc..):
The functions fj in the array of length a are the model functions, which need to be de�ned
in Mathematica (in the upper example) via

f [p_,x_, j_], (C.7.5)

The parameter dependence on x can be di�erent for every j (for j = 1 it can be a two
dimensional space coordinate and for j = 2 a temperature, whatever the data sets provide
as data sample). Correspondingly, the data sets are of length Data [[a, kj, 2]], where to
every function fj corresponds a data sample of length kj with two entries, namely the
coordinate xj,l and the measured value at that point (so Data [[1, 3, 2]] gives the third
measured value of the data set 1 and Data [[1, 3, 1]] gives the corresponding coordinate).
The error array has the same structure Error [[a, kj, 2]], in which Error [[a, kj, 1]] gives
the upper error to the measured value and Error [[a, kj, 2]] gives the lower value. The
ScanRange [[a, 2]] array allows to input the scan range for one dimensional parameter
scan to �t parts of the data sets (with ScanRange [[a, 1]] minimum and ScanRange [[a, 2]]
maximum value, for example 0.25 GeV <

√
s < 1 GeV). The �ts are performed with the

use of the Mathematica routine FindMinimum[{f, cons }, {{x, x0}, {y, y0}, . . .}], which
searches for a local minimum for the parameters x, y, . . . subject to the constraints cons
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with starting points x0, y0, . . .. To �nd the global minimum, it is necessary to �nd all or
at least enough local minima. This is done by de�ning the �tting routine

Options[ Fit ] = { conditions → {}, monitor → 1};

Fit [χ 2fkt _, ParRange _, ParameterNames _, CalcTime _,OptionsPattern[]] :=

Module[{ LocalTimeStart = AbsoluteTime[],

LocalFitList = {},
LocalTime = 0,

LocalFitNumber = 0,

LocalBestChi2 = ∞,

LocalNewMinimum },
(*����-Start Program������*)

If[OptionValue[ evalmonitor ] > 0,

Print[ �time passed: � ,Dynamic[Round[ LocalTime ]],

�number of �ts:� ,Dynamic[ LocalFitNumber ], �average time per �t:� ,

Dynamic[Round[ LocalTime / (LocalFitNumber + 0.1) , 0.1]],

� best χ2: � , Dynamic[ LocalBestChi2 ]];

Print[ �last values:� ];

Print[Dynamic[ LocalNewMinimum ]]; ];

(*����������-*)

While[ LocalTime < CalcTime ,

LocalNewMinimum = FindMinimum[{χ 2fkt ,

OptionValue[ conditions ]},
Table[{ ParameterNames [[i]], NewRandSeed [ ParRange ][[i]]},

{i, 1,Length[ ParRange ]}]];
LocalFitList =

Prepend[ LocalFitList , LocalNewMinimum ];

LocalFitNumber + +;

LocalBestChi2 = Min[ LocalNewMinimum [[1]], LocalBestChi2 ];

LocalTime = AbsoluteTime[]− TimeStart ; ];

Return[Sort[ LocalFitList ,#1[[1]] < #2[[1]]&]]]; ,

in which the function

NewRandSeed [ ParRange _] :=

Table[Random[Real, ParRange [[i, 1]], ParRange [[i, 2]]],

{i, 1,Length[ ParRange ]}];

is used to generate a new set of starting parameters. The input to the de�ned routine is
the χ2 function, depending on the �t parameters, which are listed in ParameterNames
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of length b. The list ParameterRange [[b, 2]] is of the same length and gives the intervals
(minimum, maximum) for the NewRandSeed function to generate a new random tuple
for the next attempt to �nd a local minimum. The number CalcTime gives the amount of
time in seconds, which the routine is supposed to accumulate new �ts. The Mathematica
routine is usually quite fast and needs few seconds per �t for the �ts performed in Sec. 3.8,
which is a little slower than the ROOT �tting routine.

We also wrote a routine, which is based on the method of (inteligent) nested intervals
and does neither need the Mathematica routine FindMinimum nor an analytic input
function. It can handle any Mathematica prede�ned function, as long as the routine re-
turns numeric values for a set of numeric input parameters, on the cost of being much
slower. In this way the �tting routine can for example handle input with several numer-
ical integrations. All three methods (ROOT, FindMinimum and the nested interval
technique) are in agreement with each other. Our routine has also successful been used
by [123]. I will only discuss the main part of the program. In case of interest, please write
an e-mail to christian.hambrock@desy.de.

Options[ FitNested ] = { parstart − > Automatic, namelist − > Automatic,

evalmonitor − > 2};

FitNested [f, Data , Errors , ScanRange , ParRange , CalcTime ,OptionsPattern[]] :=

Module[{
LocalCurPar = If[OptionValue[ parstart ] == Automatic,

NewRandSeed [ ParRange ],OptionValue[ parstart ],

OptionValue[ parstart ]] (* current parameters *) ,

LocalTimeStart = AbsoluteTime[],

LocalbestChi2 ,

LocalBeforeChi2 = ∞,

LocalNameList = If[OptionValue[ namelist ] == Automatic,

Table[ �par[� <> ToString[i] <> �]� , {i, 1,Length[ ParRange ]}],
OptionValue[ namelist ],OptionValue[ namelist ]],

LocalAllFits = {},
LocalShu�List ,

LocalTotFits ,

LocalSecToGo ,

LocalCurBestChi2 ,

LocalAL1Fits = True, (* ensures, that at least one �t is completed *)

LocalP = Table[0, {i, 1,Length[ ParRange ]}], (* forces the program
to make small steps for already well determined parameters *)

LocalP2 = Min[Length[ ParRange ], MinimalizationP recision − 1]

(* ensures, that the program stars with crude steps *) },
(*���� START Program �������*)



130 Tetraquarks

If[OptionValue[ evalmonitor ] > 0, LocalCurBestChi2 = ∞;

LocalSecToGo = ∞; ];

Print[ � mom Chi2: � ,Dynamic[ LocalCurBestChi2 ],

� data in current list: � ,Dynamic[ LocalTotFits ],

� seconds to go: � ,Dynamic[ LocalSecToGo ]];

(*�����������������*)

If[OptionValue[ evalmonitor ] > 1,

Print[ �the precision is set to � , MinimalizationP recision ];

Print[ �parameters have good precision, if the numbers are close to� ,

MinimalizationP recision ];

Print[Dynamic[{ LocalNameList , LocalP , LocalCurPar }]]; ];
(*�����������������*)

LocalTotFits = 0;

ChiTest [ Par _] := Chi2 [f, Data , Errors , ScanRange , Par ];

LocalbestChi2 = Chi2 [f, Data , Errors , ScanRange , LocalCurPar ];

Print[ LocalbestChi2 ];

(*�����������������*)

While[AbsoluteTime[]− LocalTimeStart < CalcTime || LocalAL1Fits ,
(*���-Start While ����������*)

LocalAL1Fits= True;

LocalShu�List = Shu�edList [Length[ ParRange ]];

Do[{ LocalCurPar , LocalbestChi2 , LocalP [[ LocalShu�List [[n]]]]} =

MinimizePar [ LocalCurPar , LocalShu�List [[n]], ParRange ,

LocalP [[n]],Max[ LocalP 2 , 0]] (* MINIMIZE CALLED HERE *)

, {n,Length[ LocalCurPar ]}];
LocalCurBestChi2 = LocalbestChi2 ;

LocalSecToGo =

Round[ CalcTime + LocalTimeStart −AbsoluteTime[]];

(*� start if �*)

If[ LocalBeforeChi2 < Chi2Precision ∗ LocalbestChi2 && LocalP 2 < 1,

(* then: no Improvement; start new randseed *)

LocalAllFits = Append[ LocalAllFits ,

N[{ LocalCurPar , LocalbestChi2 }]];
LocalCurPar = NewRandSeed [ ParRange ];

LocalP = Table[0, {i, 1,Length[ ParRange ]}];
LocalP 2 = Min[Length[ ParRange ], MinimalizationP recision − 1];

LocalbestChi2 = Chi2 [f, Data , Errors , ScanRange , LocalCurPar ];

LocalBeforeChi2 = ∞; LocalTotFits + +; LocalAL1Fits = False;
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, (* else: continue *)

LocalBeforeChi2 = LocalbestChi2 ; LocalP 2 −−; ];

(*� end if �*) ];

(*���-End While����*)

Return[Sort[ LocalAllFits ,#1[[2]] < #2[[2]]&]]];

The following minimization routine is called in the above procedure:

MinimizePar [ ParList _, nthPar _, ParRange _, Precision _, PrecisionTwo _] :=

Module[{
LocalPrecision = Precision ,

LocalParameters = ParList ,

LocalParametersUp = ParList ,

LocalParametersDown = ParList ,

LocalUp = ParList [[ nthPar ]] + ( ParRange [[ nthPar , 2]]

− ParList [[ nthPar ]])/2 Precision ,

LocalDown = ParList [[ nthPar ]]− ( ParList [[ nthPar ]]

− ParRange [[ nthPar , 1]])/2 Precision ,

n = nthPar ,

ChiS1 ,

ChiS2 = ChiTest [ ParList ], ChiS3 },
For[l = 0, l <Max[ MinimalizationP recision

− Precision − PrecisionTwo , 1], l + +,

LocalParametersDown [[n]] = LocalParameters [[n]]

−( LocalParameters [[n]]− LocalDown )/2;

LocalParametersUp [[n]] = LocalParameters [[n]]

+( LocalUp − LocalParameters [[n]])/2;

ChiS1 = ChiTest [ LocalParametersDown ]; ChiS2 = ChiS2 ;

ChiS3 = ChiTest [ LocalParametersUp ];

Which[

ChiS1 <= ChiS2 && ChiS1 <= ChiS3 ,

( LocalDown = LocalDown ; LocalUp = LocalParameters [[n]];

LocalParameters = LocalParametersDown ; ChiS2 = ChiS1 ;

LocalPrecision = LocalPrecision − 1/2; ),

ChiS2 <= ChiS1 && ChiS2 <= ChiS3 ,

( LocalDown = LocalParametersDown [[n]];

LocalUp = LocalParametersUp [[n]];

LocalParameters = LocalParameters ; ChiS2 = ChiS2 ;

LocalPrecision + +; ),

ChiS3 <= ChiS1 && ChiS3 <= ChiS2 ,
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( LocalDown = LocalParameters [[n]]; LocalUp = LocalUp ;

LocalParameters = LocalParametersUp ; ChiS2 = ChiS3 ;

LocalPrecision = LocalPrecision − 1/2; )

]; ];

Return[{N[ LocalParameters ], ChiS2 ,

Max[Min[Floor[ LocalPrecision ], MinimalizationP recision − 1], 0]}]];

To avoid certain patterns in the minimization, the parameters are minimized in a random
order, for which the following routine generates a shu�ed list:

Shu�edList [ LengthShu�e _] :=

Module[{
InList = Table[i, {i, 1, LengthShu�e }],
RandList = {},
RandNumb },
Do[ RandNumb = RandomInteger[{1,Length[ InList ]}];
RandList = Append[ RandList , InList [[ RandNumb ]]];

InList = Delete[ InList , RandNumb ]; , {i, 1, LengthShu�e }];
Return[ RandList ]; ]; (C.7.6)

In case of binned �ts, the following functions are used.

Options[ BinFunction ] = { numericvalue → True};

BinFunction [ f _, x _, StepList _, Accuracy _,OptionsPattern[]] :=

Module[{
LocalNumber = 1},
(* returning the over bin averaged value: *)

If[!Element[OptionValue[ numericvalue ],Reals],

(*then:*)

Return[Sum[HeavisideTheta[( x − StepList [[i, 1]])

( StepList [[i, 2]]− x )] ∗ SepFunction [ f , x ,

StepList [[i, 1]], StepList [[i, 2]], Accuracy ], {i,Length[ StepList ]}]]; ,
(*else:*)

While[( StepList [[ LocalNumber , 1]] > OptionValue[ numericvalue ]||
StepList [[ LocalNumber , 2]] < OptionValue[ numericvalue ])&&

LocalNumber <= Length[ StepList ], LocalNumber + +];

(* returning the over bin averaged value: *)

If[ LocalNumber > Length[ StepList ],

Return[0],

Return[ SepFunction [ f , x , StepList [[ LocalNumber , 1]],
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StepList [[ LocalNumber , 2]], Accuracy ]]; ]; ]];

with

SepFunction [ f _, x _, a _, b _, Accuracy _] :=

Module[{},
If[ Accuracy == ∞,

Return[Re[Normal[NIntegrate[ f , { x , a , b },PrecisionGoal− > 1,

AccuracyGoal→ 1]/( b − a )]]],

Return[Re[Sum[ f /.{ x → a + i( b − a )/ Accuracy

−( b − a )/( Accuracy 2)}, {i, Accuracy }]]/ Accuracy ]]; ]; (C.7.7)

The function f , depending on the parameter x , is split into bins, which are given by
the array StepList [[c, 2]], in which c is the number of bins and StepList [[c, 1]] and
StepList [[c, 2]] de�ne the interval (lower and upper value) of each bin. The accuracy
gives the number of points over which the function f is averaged in each bin. For
Accuracy = ∞, the function is numerically integrated over the bin and the averaged
value is returned. Note, that this possibility works only for the FitNested routine. The
numericvalue option allows to give a numeric value for x , and the function will ignore all
other bins, only returning the value in the corresponding bin to increase evaluation speed
if necessary.

C.8 Tables for Chap. 3



134 Tetraquarks

Table C.8.1: Numerical yields of Υ(5S) → Υ(1S)π+π− and Υ(2S)π+π− transitions as
functions of Mπ+π− and cos θ taken from [91], which are shown in Figure 3.12. The uncer-
tainties of the yields are statistical only.

Υ(1S)π+π− Υ(2S)π+π−

Bin Mπ+π− [GeV] Yield Mπ+π− [GeV] Yield
1 [0.25, 0.35) 1.83+1.84

−1.16 [0.25, 0.30) 0.0
2 [0.35, 0.45) 25.03+5.70

−4.97 [0.30, 0.35) 8.48+3.51
−2.82

3 [0.45, 0.55) 13.67+4.66
−3.94 [0.35, 0.40) 20.31+5.22

−4.52

4 [0.55, 0.65) 11.21+3.99
−3.28 [0.40, 0.45) 13.69+4.38

−3.70

5 [0.65, 0.75) 18.16+5.12
−4.41 [0.45, 0.50) 9.37+3.73

−3.02

6 [0.75, 0.85) 28.70+6.18
−5.47 [0.50, 0.55) 20.51+5.27

−4.58

7 [0.85, 0.95) 34.84+6.70
−5.97 [0.55, 0.60) 24.70+5.70

−4.97

8 [0.95, 1.05) 34.35+6.57
−5.86 [0.60, 0.65) 35.58+6.83

−6.10

9 [1.05, 1.15) 28.49+6.03
−5.35 [0.65, 0.70) 24.70+5.58

−4.88

10 [1.15, 1.25) 60.91+8.57
−7.87 [0.70, 0.75) 10.07+3.74

−3.03

11 [1.25, 1.35) 50.99+7.48
−6.81 [0.75, 0.80) 7.60+3.35

−2.64

12 [1.35, 1.45) 14.00+4.09
−3.41 [0.80, 0.85) 4.28+2.58

−1.88

Bin cos θHel Yield cos θHel Yield
1 [−1.0,−0.8) 37.68+6.90

−6.24 [−1.0,−0.8) 30.59+6.15
−5.46

2 [−0.8,−0.6) 37.09+6.90
−6.20 [−0.8,−0.6) 20.82+5.14

−4.49

3 [−0.6,−0.4) 29.95+6.07
−5.41 [−0.6,−0.4) 18.15+4.83

−4.14

4 [−0.4,−0.2) 21.74+5.51
−4.84 [−0.4,−0.2) 16.78+4.78

−4.07

5 [−0.2,+0.0) 33.77+6.48
−5.85 [−0.2,+0.0) 7.45+3.53

−2.78

6 [+0.0,+0.2) 23.65+5.55
−4.84 [+0.0,+0.2) 14.28+4.53

−3.76

7 [+0.2,+0.4) 32.80+6.34
−5.67 [+0.2,+0.4) 6.00+3.07

−2.36

8 [+0.4,+0.6) 37.72+6.86
−6.17 [+0.4,+0.6) 7.15+3.44

−2.75

9 [+0.6,+0.8) 31.97+6.33
−5.65 [+0.6,+0.8) 24.49+5.65

−4.95

10 [+0.8,+1.0) 31.75+6.28
−5.58 [+0.8,+1.0) 32.26+6.41

−5.65

Table C.8.2: Input parameters in GeV

mYb
= 10.890 mΥ(1S) = 9.460 mπ0 = 0.135

mπ± = 0.140 fπ = 0.130 mK± = 0.494
mK0 = 0.498 fK = 0.160 mη = 0.548
mη = 0.548 fη = fπ = 0.130 mσ = 0.478 [89]

Γσ = 0.324 [89] mf2 = 1.275 Γf2 = 0.185
Γ(f2(1270) → ππ) = 0.157 Γ(f2(1270) → KK̄) = 0.0085 ΓYb

= 0.03√
s = 10.87
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Table C.8.3: Reduced partial decay widths for the tetraquarks Y (i)
[bq], the extracted value

of the coupling constant F and the center of mass momentum |k| (top left). The reduced
total decay widths for Y (i)

[bq] are also tabulated (top right) and for the tetraquarks Y (i)
[bs] (the

lower two tables). The errors in the entries correspond to the errors in the decay widths
in Tab. 3.6.2.

Decay Mode Γ/κ2[MeV] F |k|[GeV]

Y
(1)
[bq] → B B̄ < 8 2.15 1.3

Y
(1)
[bq] → B B̄∗ 9+4

−4 3.7 1.2

Y
(1)
[bq] → B∗ B̄∗ 28+7

−7 1 1.1

Y
(2)
[bq] → B B̄ < 19 2.15 1.8

Y
(2)
[bq] → B B̄∗ 22+9

−9 3.7 1.7

Y
(2)
[bq] → B∗ B̄∗ 81+21

−21 1 1.6

Y
(3)
[bq] → B B̄ < 22 2.15 2

Y
(3)
[bq] → B B̄∗ 29+13

−13 3.7 1.9

Y
(3)
[bq] → B∗ B̄∗ 115+30

−30 1 1.8

Y
(3)
[bq] → Λb Λ̄b 5+3

−3 1.1+0.3
−0.35/3 0.3

Y
(4)
[bq] → B B̄ < 20 2.15 1.9

Y
(4)
[bq] → B B̄∗ 27+12

−12 3.7 1.8

Y
(4)
[bq] → B∗ B̄∗ 106+27

−27 1 1.8

1−− Tetraquark Γtot/κ
2[MeV]

Y
(1)
[bq] 44± 8

Y
(2)
[bq] 119± 24

Y
(3)
[bq] 171± 33

Y
(4)
[bq] 154± 30

Decay Mode Γ/κ2[MeV] F |k|[GeV]

Y
(1)
[bs] → Bs B̄s < 13 2.15 1.6

Y
(1)
[bs] → Bs B̄

∗
s 17+7

−7 3.7 1.6

Y
(1)
[bs] → B∗

s B̄∗
s 59+15

−15 1 1.5

Y
(2)
[bs] → Bs B̄s < 24 2.15 2

Y
(2)
[bs] → Bs B̄

∗
s 32+14

−14 3.7 2

Y
(2)
[bs] → B∗

s B̄∗
s 129+33

−33 1 1.9

Y
(3)
[bs] → Bs B̄s < 32 2.15 2.3

Y
(3)
[bs] → Bs B̄

∗
s 43+19

−19 3.7 2.2

Y
(3)
[bs] → B∗

s B̄∗
s 184+45

−45 1 2.1

Y
(3)
[bs] → Ξ Ξ̄ 10+5

−5 1.1+0.3
−0.35/3 0.6

Y
(4)
[bs] → Bs B̄s < 30 2.15 2.2

Y
(4)
[bs] → Bs B̄

∗
s 42+18

−18 3.7 2.2

Y
(4)
[bs] → B∗

s B̄∗
s 178+45

−45 1 2.1

Y
(4)
[bs] → Ξ Ξ̄ 8+5

−5 1.1+0.3
−0.35/3 0.5

1−− Tetraquark Γtot/κ
2[MeV]

Y
(1)
[bs] 88± 17

Y
(2)
[bs] 184± 35

Y
(3)
[bs] 267± 50

Y
(4)
[bs] 258± 48
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